Ultrasonic Atomization—From Onset of Protruding Free Surface to Emanating Beads Fountain—Leading to Mist Spreading
Abstract
:Highlights
- As a prerequisite to effective ultrasonic atomization, the process of liquid fountaining is detailed.
- Its whole process spans a series of structural variations of free-surface morphology in four phases.
- Size specificity and periodicity exhibited by undulating and beading fountains are model- predicted.
- Critical values of ultrasound excitation frequency are evaluated/proposed for possible bifurcation.
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
3.1. Free-Surface Protrusion and Its Growth
3.2. Characterization of Emanating Beads Fountain
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsuchiya, K.; Hayashi, H.; Fujiwara, K.; Matsuura, K. Visual analysis of ultrasonic atomization and its associated phenomena. Earozoru Kenkyu 2011, 26, 11–17. (In Japanese) [Google Scholar] [CrossRef]
- Wang, X.; Mori, Y.; Tsuchiya, K. Periodicity in ultrasonic atomization involving beads-fountain oscillations and mist generation: Effects of driving frequency. Ultrason. Sonochem. 2022, 86, 105997. [Google Scholar] [CrossRef] [PubMed]
- Kobara, H.; Tamiya, M.; Wakisaka, A.; Fukazu, T.; Matsuura, K. Relationship between the size of mist droplets and ethanol condensation efficiency at ultrasonic atomization on ethanol−water mixtures. AIChE J. 2010, 56, 810–814. [Google Scholar] [CrossRef]
- Sekiguchi, K.; Noshiroya, D.; Handa, M.; Yamamoto, K.; Sakamoto, K.; Namiki, N. Degradation of organic gases using ultrasonic mist generated from TiO2 suspension. Chemosphere 2010, 81, 33–38. [Google Scholar] [CrossRef]
- Kudo, T.; Sekiguchi, K.; Sankoda, K.; Namiki, N.; Nii, S. Effect of ultrasonic frequency on size distributions of nanosized mist generated by ultrasonic atomization. Ultrason. Sonochem. 2017, 37, 16–22. [Google Scholar] [CrossRef]
- Sato, M.; Matsuura, K.; Fujii, T. Ethanol separation from ethanol−water solution by ultrasonic atomization and its proposed mechanism based on parametric decay instability of capillary wave. J. Chem. Phys. 2001, 114, 2382–2386. [Google Scholar] [CrossRef]
- Nii, S.; Oka, N. Size-selective separation of submicron particles in suspensions with ultrasonic atomization. Ultrason. Sonochem. 2014, 21, 2032–2036. [Google Scholar] [CrossRef]
- Naidu, H.; Kahraman, O.; Feng, H. Novel applications of ultrasonic atomization in the manufacturing of fine chemicals, pharmaceuticals, and medical devices. Ultrason. Sonochem. 2022, 86, 105984. [Google Scholar] [CrossRef]
- Wang, X.; Tsuchiya, K. Frequency specificity of liquid-fountain swinging with mist generation: Effects of ultrasonic irradiation angle. Fluids 2022, 7, 306. [Google Scholar] [CrossRef]
- Fujita, K.; Tsuchiya, K. Cavitating bubble inside liquid fountain of beads associated with ultrasonic atomization. In Proceedings of the International Conference on Multiphase Flow (ICMF 2013), Jeju, Republic of Korea, 26–31 May 2013. Paper 863/1–5. [Google Scholar]
- Tomita, Y. Jet atomization and cavitation induced by interactions between focused ultrasound and a water surface. Phys. Fluids 2014, 26, 097105. [Google Scholar] [CrossRef]
- Simon, J.C.; Sapozhnikov, O.A.; Khokhlova, V.A.; Wang, Y.-N.; Crum, L.A.; Bailey, M.R. Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound. Phys. Med. Biol. 2012, 57, 8061–8078. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.C.; Sapozhnikov, O.A.; Khokhlova, V.A.; Crum, L.A.; Bailey, M.R. Ultrasonic atomization of liquids in drop-chain acoustic fountains. J. Fluid Mech. 2015, 766, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.L.; Xie, W.J.; Wei, B. Parametrically excited sectorial oscillation of liquid drops floating in ultrasound. Phys. Rev. E 2010, 81, 046305. [Google Scholar] [CrossRef] [PubMed]
- Bouwhuis, W.; Winkels, K.G.; Peters, I.R.; Brunet, P.; van der Meer, D.; Snoeijer, J.H. Oscillating and star-shaped drops levitated by an airflow. Phys. Rev. E 2013, 88, 023017. [Google Scholar] [CrossRef]
- Watanabe, A.; Hasegawa, K.; Abe, Y. Contactless fluid manipulation in air: Droplet coalescence and active mixing by acoustic levitation. Sci. Rep. 2018, 8, 10221. [Google Scholar] [CrossRef]
- Qi, A.; Yeo, L.Y.; Friend, J.R. Interfacial destabilization and atomization driven by surface acoustic waves. Phys. Fluids 2008, 20, 074103. [Google Scholar] [CrossRef]
- Collins, D.J.; Manor, O.; Winkler, A.; Schmidt, H.; Friend, J.R.; Yeo, L.Y. Atomization off thin water films generated by high-frequency substrate wave vibrations. Phys. Rev. E 2012, 86, 056312. [Google Scholar] [CrossRef]
- Blamey, J.; Yeo, L.Y.; Friend, J.R. Microscale capillary wave turbulence excited by high frequency vibration. Langmuir 2013, 29, 3835–3845. [Google Scholar] [CrossRef]
- Neppiras, E.A.; Noltingk, B.E. Cavitation produced by ultrasonics: Theoretical conditions for the onset of cavitation. Proc. Phys. Soc. B 1951, 64, 1032–1038. [Google Scholar] [CrossRef]
- Kojima, Y.; Asakura, Y.; Sugiyama, G.; Koda, S. The effects of acoustic flow and mechanical flow on the sonochemical efficiency in a rectangular sonochemical reactor. Ultrason. Sonochem. 2010, 17, 978–984. [Google Scholar] [CrossRef]
- Ramisetty, K.A.; Pandit, A.B.; Gogate, P.R. Investigations into ultrasound induced atomization. Ultrason. Sonochem. 2013, 20, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Inui, A.; Honda, A.; Yamanaka, S.; Ikeno, T.; Yamamoto, K. Effect of ultrasonic frequency and surfactant addition on microcapsule destruction. Ultrason. Sonochem. 2021, 70, 105308. [Google Scholar] [CrossRef]
- Antonevich, J.N. Ultrasonic atomization of liquids. IRE Trans. Ultrasonic Eng. 1959, 6, 6–15. [Google Scholar]
- Boguslavskii, Y.Y.; Eknadiosyants, O.K. Physical mechanism of the acoustic atomization of a liquid. Sov. Phys. Acoust. 1969, 15, 14–21. [Google Scholar]
- Rozenberg, L.D. (Ed.) Physical Principles of Ultrasonic Technology; Springer: Berlin/Heidelberg, Germany, 1973; Volume 2, pp. 4–88. [Google Scholar]
- Barreras, F.; Amaveda, H.; Lozano, A. Transient high-frequency ultrasonic water atomization. Exp. Fluids 2002, 33, 405–413. [Google Scholar] [CrossRef]
- Kirpalani, D.M.; Toll, F. Revealing the physicochemical mechanism for ultrasonic separation of alcohol−water mixtures. J. Chem. Phys. 2002, 117, 3874–3877. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Yi, X.; He, F.; Niu, F.; Hao, P. Dynamic behaviors of droplets impacting on ultrasonically vibrating surfaces. Exp. Therm. Fluid Sci. 2020, 112, 110019. [Google Scholar] [CrossRef]
- Lee, J.; Yasui, K.; Tuziuti, T.; Kozuka, T.; Towata, A.; Iida, Y. Spatial distribution enhancement of sonoluminescence activity by altering sonication and solution conditions. J. Phys. Chem. B 2008, 112, 15333–15341. [Google Scholar] [CrossRef]
- Lee, J.; Ashokkumar, M.; Yasui, K.; Tuziuti, T.; Kozuka, T.; Towata, A.; Iida, Y. Development and optimization of acoustic bubble structures at high frequencies. Ultrason. Sonochem. 2011, 18, 92–98. [Google Scholar] [CrossRef]
- Son, Y.; Lim, M.; Ashokkumar, M.; Khim, J. Geometric optimization of sonoreactors for the enhancement of sonochemical activity. J. Phys. Chem. C 2011, 115, 4096–4103. [Google Scholar] [CrossRef]
- Orisaki, M.; Kajishima, T. Numerical analysis of water surface rising caused by underwater ultrasonic wave. Trans. JSME 2022, 88, 21-00377. [Google Scholar] [CrossRef]
- Xu, Z.; Yasuda, K.; Liu, X. Simulation of the formation and characteristics of ultrasonic fountain. Ultrason. Sonochem. 2016, 32, 241–246. [Google Scholar] [CrossRef]
- Kim, G.; Cheng, S.; Hong, L.; Kim, J.-T.; Li, K.C.; Chamorro, L.P. On the acoustic fountain types and flow induced with focused ultrasound. J. Fluid Mech. 2021, 909, R2. [Google Scholar] [CrossRef]
- Aikawa, T.; Kudo, N. Relation between thresholds of free radical generation and atomization under ultrasound exposure. Jpn. J. Appl. Phys. 2021, 60, SDDD13. [Google Scholar] [CrossRef]
- Percival, D.B.; Walden, A.T. Wavelet Methods for Time Series Analysis; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef]
- Mijaković, M.; Kežić, B.; Zoranić, L.; Sokolić, F.; Asenbaum, A.; Pruner, C.; Wilhelm, E.; Perera, A. Ethanol−water mixtures: Ultrasonics, Brillouin scattering and molecular dynamics. J. Mol. Liq. 2011, 164, 66–73. [Google Scholar] [CrossRef]
- Lang, R.J. Ultrasonic atomization of liquids. J. Acoust. Soc. Am. 1962, 34, 6–8. [Google Scholar] [CrossRef]
- Choi, J.; Khim, J.; Neppolian, B.; Son, Y. Enhancement of sonochemical oxidation reactions using air sparging in a 36 kHz sonoreactor. Ultrason. Sonochem. 2019, 51, 412–418. [Google Scholar] [CrossRef]
- Leighton, T.G. The Acoustic Bubble; Academic Press: London, UK, 1994. [Google Scholar] [CrossRef]
- Laborde, J.-L.; Bouyer, C.; Caltagirone, J.-P.; Gérard, A. Acoustic cavitation field prediction at low and high frequency ultrasounds. Ultrasonics 1998, 36, 581–587. [Google Scholar] [CrossRef]
- Yasui, K. Influence of ultrasonic frequency on multibubble sonoluminescence. J. Acoust. Soc. Am. 2002, 112, 1405–1413. [Google Scholar] [CrossRef]
- Brotchie, A.; Grieser, F.; Ashokkumar, M. Effect of power and frequency on bubble-size distributions in acoustic cavitation. Phy. Rev. Lett 2009, 102, 084302. [Google Scholar] [CrossRef]
- Merouani, S.; Ferkous, H.; Hamdaoui, O.; Rezgui, Y.; Guemini, M. A method for predicting the number of active bubbles in sonochemical reactors. Ultrason. Sonochem. 2015, 22, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Khattab, I.S.; Bandarkar, F.; Fakhree, M.A.A.; Jouyban, A. Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K. Korean J. Chem. Eng. 2012, 29, 812–817. [Google Scholar] [CrossRef]
Driving Frequency (MHz) | ) | |||
---|---|---|---|---|
State 1 | State 2 | State 3 | State 4 | |
0.43 | 6, 7, 8 | 9, 10 | –– b | –– b |
0.80 | 6, 7 | 8 | 9, 10 | –– b |
1.0 | –– a | 0.5 | 1, 1.5, 2 | 2.5 |
1.6 | –– a | 0.5 | 1 | 1.5 |
Driving Frequency (MHz) | Beads Diameter without Nozzle (μm) | Beads Diameter with Nozzle (μm) |
---|---|---|
0.65 | — a | — a |
0.70 | 2065 ± 37 | — a |
0.75 | 1902 ± 23 | — a |
0.80 | — a | |
0.85 (0.80) | ||
0.85 (1.0) | 1792 ± 41 | 1803 ± 29 |
0.90 (0.80) | ||
0.90 (1.0) | 1662 ± 36 | 1641 ± 35 |
0.95 (1.0) | 1554 ± 22 | 1461 ± 50 |
1.0 | 1394 ± 25 | 1420 ± 80 |
1.6 | 859 ± 18 | 850 ± 37 |
2.0 | 573 ± 14 | 670 ± 40 |
3.0 | — b | 440 ± 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuchiya, K.; Wang, X. Ultrasonic Atomization—From Onset of Protruding Free Surface to Emanating Beads Fountain—Leading to Mist Spreading. Fluids 2025, 10, 89. https://doi.org/10.3390/fluids10040089
Tsuchiya K, Wang X. Ultrasonic Atomization—From Onset of Protruding Free Surface to Emanating Beads Fountain—Leading to Mist Spreading. Fluids. 2025; 10(4):89. https://doi.org/10.3390/fluids10040089
Chicago/Turabian StyleTsuchiya, Katsumi, and Xiaolu Wang. 2025. "Ultrasonic Atomization—From Onset of Protruding Free Surface to Emanating Beads Fountain—Leading to Mist Spreading" Fluids 10, no. 4: 89. https://doi.org/10.3390/fluids10040089
APA StyleTsuchiya, K., & Wang, X. (2025). Ultrasonic Atomization—From Onset of Protruding Free Surface to Emanating Beads Fountain—Leading to Mist Spreading. Fluids, 10(4), 89. https://doi.org/10.3390/fluids10040089