Solution Combustion Synthesis for Various Applications: A Review of the Mixed-Fuel Approach
Abstract
:1. Introduction
2. The Mixed-Fuel Solution Combustion Synthesis Approach
3. Application of Mixed-Fuel SCS in the Preparation of Desirable Nanomaterials
3.1. Ceramics
3.2. Lithium Batteries
3.3. Pigments
3.4. Fuel Cells
3.5. Nanocomposites
3.6. Dielectrics
3.7. Optics
3.8. Catalyst Supports
4. Effect of Mixed Fuels on Combustion of Precursors and Physicochemical and Morphological Properties of the Synthesized Materials
4.1. Adiabatic Flame Temperature of Combustion Reaction
4.2. Thermal Decomposition Rate and Temperature
4.3. Particle Size
4.4. Surface Area
4.5. Material Phases
5. Summary, Conclusions, and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cit | Citric acid |
CS | Combustion Synthesis |
CTAB | Cetyltrimethylammonium bromide |
EDX | Energy-Dispersive X-ray |
En | Ethylenediamine |
En/Cit | Ethylenediamine/Citric acid |
En/Ox | Ethylenediamine/Oxalic acid |
En/Ox/Cit | Ethylenediamine, Oxalic acid, and Citric acid |
FESEM | Field-Emission Scanning Electron Microscopy |
FTIR | Fourier Transform Infrared |
LIBs | Lithium-ion Batteries |
LSM | Lanthanum Strontium Manganite |
Ox/Cit | Oxalic acid/Citric acid |
Ox | Oxalic acid |
PVP | polyvinylpyrrolidone |
SAED | Selected Area Electron Diffraction |
SCS | Solution Combustion Synthesis |
SOFC | Solid Oxide Fuel Cell |
STA | Simultaneous Thermal Analysis |
TEM | Transmission Electron Microscopy |
UV | Ultraviolet |
XRD | X-ray Diffraction |
References
- Anastas, P.T. Introduction: Green Chemistry. Chem. Rev. 2007, 107, 2167–2168. [Google Scholar] [CrossRef]
- Kingsley, J.; Patil, K. A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Mater. Lett. 1988, 6, 427–432. [Google Scholar] [CrossRef]
- Novitskaya, E.; Kelly, J.P.; Bhaduri, S.; Graeve, O.A. A review of solution combustion synthesis: An analysis of parameters controlling powder characteristics. Int. Mater. Rev. 2021, 66, 188–214. [Google Scholar] [CrossRef]
- Mirbagheri, S.; Masoudpanah, S.; Alamolhoda, S. Structural and optical properties of ZnAl2O4 powders synthesized by solution combustion method: Effects of mixture of fuels. Optik 2020, 204, 164170–164177. [Google Scholar] [CrossRef]
- Deganello, F.; Liotta, L.F.; Marcì, G.; Fabbri, E.; Traversa, E. Strontium and iron-doped barium cobaltite prepared by solution combustion synthesis: Exploring a mixed-fuel approach for tailored intermediate temperature solid oxide fuel cell cathode materials. Mater. Renew. Sustain. Energy 2013, 2, 8. [Google Scholar] [CrossRef]
- Deganello, F.; Tyagi, A.K. Solution combustion synthesis, energy and environment: Best parameters for better materials. Prog Cryst Growth Charact Mater. 2018, 64, 23–61. [Google Scholar] [CrossRef]
- Gao, R.; Sun, C.; Zhou, T.; Zhuang, L.; Xie, H. Recycling of LiNi0.5Co0.2Mn0.3O2 Material from Spent Lithium-ion Batteries Using Mixed Organic Acid Leaching and Sol-gel Method. ChemistrySelect 2020, 5, 6482–6490. [Google Scholar] [CrossRef]
- Siddique, F.; Gonzalez-Cortes, S.; Mirzaei, A.; Xiao, T.; Rafiq, M.; Zhang, X. Solution combustion synthesis: The relevant metrics for producing advanced and nanostructured photocatalysts. Nanoscale 2022, 14, 11806–11868. [Google Scholar] [CrossRef]
- Ghadimi Mahanipour, H.; Masoudpanah, S.M.; Adeli, M.; Hoseini, S.M.H. Regeneration of LiNi0.6Co0.2Mn0.2O2 material from spent lithium-ion batteries by solution combustion synthesis method. J. Energy Storage 2024, 79, 110192–110201. [Google Scholar] [CrossRef]
- Masokano, D.S.; Ntola, P.; Mahomed, A.S.; Bala, M.D.; Friedrich, H.B. Influence of support properties on the activity of 2Cr-Fe/MgO-MO2 catalysts (M= Ce, Zr, CeZr and Si) for the dehydrogenation of n-octane with CO2. J. CO2 Util. 2024, 86, 102909–102922. [Google Scholar] [CrossRef]
- Ntola, P.; Friedrich, H.B.; Singh, S.; Olivier, E.J.; Farahani, M.; Mahomed, A.S. Effect of the fuel on the surface VOx concentration, speciation and physico-chemical characteristics of solution combustion synthesised VOx/MgO catalysts for n-octane activation. Catal. Comm. 2023, 174, 106571. [Google Scholar] [CrossRef]
- Chupakhina, T.I.; Melnikova, N.V.; Kadyrova, N.I.; Mirzorakhimov, A.; Tebenkov, A.V.; Deeva, Y.A.; Zainulin, Y.G.; Gyrdasova, O.I. Synthesis, structure and dielectric properties of new ceramics with K2NiF4-type structure. J. Eur. Ceram. Soc. 2019, 39, 3722–3729. [Google Scholar] [CrossRef]
- Masoudpanah, S.; Alamolhoda, S. Solution combustion synthesis of LiMn1.5Ni0.5O4 powders by a mixture of fuels. Ceram. Int. 2019, 45, 22849–22853. [Google Scholar] [CrossRef]
- Xu, S.-L.; Zhao, S.; Zeng, W.-J.; Li, S.; Zuo, M.; Lin, Y.; Chu, S.; Chen, P.; Liu, J.; Liang, H.-W. Synthesis of a Hexagonal-Phase Platinum–Lanthanide Alloy as a Durable Fuel-Cell-Cathode Catalyst. Chem. Mater. 2022, 34, 10789–10797. [Google Scholar] [CrossRef]
- Zaręba, J.K.; Nyk, M.; Samoć, M. Nonlinear Optical Properties of Emerging Nano-and Microcrystalline Materials. Adv. Opt. Mater. 2021, 9, 2100216–2100250. [Google Scholar] [CrossRef]
- Vasei, H.V.; Masoudpanah, S.; Adeli, M.; Aboutalebi, M. Photocatalytic properties of solution combustion synthesized ZnO powders using mixture of CTAB and glycine and citric acid fuels. Adv. Powder. Technol. 2019, 30, 284–291. [Google Scholar] [CrossRef]
- Ahmad, I.; Akhtar, M.S.; Ahmed, E.; Ahmad, M.; Keller, V.; Khan, W.Q.; Khalid, N. Rare earth co-doped ZnO photocatalysts: Solution combustion synthesis and environmental applications. Sep. Purif. Technol. 2020, 237, 116328–116340. [Google Scholar] [CrossRef]
- Carlos, E.; Martins, R.; Fortunato, E.; Branquinho, R. Solution Combustion Synthesis: Towards a Sustainable Approach for Metal Oxides. Chem. Eur. J. 2020, 26, 9099–9125. [Google Scholar] [CrossRef]
- Cao, Z.; Zuo, C. In situ synthesis of chromium carbide nanocomposites from solution combustion synthesis precursors. J. Mol. Struct. 2019, 1175, 496–503. [Google Scholar] [CrossRef]
- Roslyakov, S.; Yermekova, Z.; Trusov, G.; Khort, A.; Evdokimenko, N.; Bindiug, D.; Karpenkov, D.; Zhukovskyi, M.; Degtyarenko, A.; Mukasyan, A. One-step solution combustion synthesis of nanostructured transition metal antiperovskite nitride and alloy. Nano Struct. Nano Objects 2021, 28, 100796–100809. [Google Scholar] [CrossRef]
- Mukasyan, A.S. Combustion synthesis of boron nitride ceramics: Fundamentals and applications. Nitride Ceram. Combust. Synth. Prop. Appl. 2014, 49–74. [Google Scholar] [CrossRef]
- Ramesh, A.; Gavaskar, D.; Nagaraju, P.; Duvvuri, S.; Vanjari, S.R.K.; Subrahmanyam, C. Mn-doped ZnO microspheres prepared by solution combustion synthesis for room temperature NH3 sensing. Appl. Surf. Sci. Adv. 2022, 12, 100349–100360. [Google Scholar] [CrossRef]
- Ntola, P.; Friedrich, H.B.; Mahomed, A.S.; Olivier, E.J.; Govender, A.; Singh, S. Exploring the role of fuel on the microstructure of VOx/MgO powders prepared using solution combustion synthesis. Mater. Chem. Phys. 2022, 278, 125602–125613. [Google Scholar] [CrossRef]
- Chandradass, J.; Balasubramanian, M.; Kim, K.H. Synthesis and characterization of LaAlO3 nanopowders by various fuels. Mater. Manuf. Process. 2010, 25, 1449–1453. [Google Scholar] [CrossRef]
- Varma, A.; Mukasyan, A.S.; Rogachev, A.S.; Manukyan, K.V. Solution combustion synthesis of nanoscale materials. Chem. Rev. 2016, 116, 14493–14586. [Google Scholar] [CrossRef]
- Shah, Z.; Veses, R.C.; Brum, J.; Klunk, M.A.; Rocha, L.A.O.; Missaggia, A.B.; Oliveira, A.P.d.; Caetano, N.R. Sewage sludge bio-oil development and characterization. Inventions 2020, 5, 36. [Google Scholar] [CrossRef]
- Tarragó, D.P.; Malfatti, C.dF.; de Sousa, V.C. Influence of fuel on morphology of LSM powders obtained by solution combustion synthesis. Powder Technol. 2015, 269, 481–487. [Google Scholar] [CrossRef]
- Sherikar, B.N.; Umarji, A.M. Synthesis of γ-alumina by solution combustion method using mixed fuel approach (urea+ glycine fuel). Int. J. Res. Eng. Technol. 2013, 5, 434–438. [Google Scholar] [CrossRef]
- Gotoh, T.; Jeem, M.; Zhang, L.; Okinaka, N.; Watanabe, S. Synthesis of yellow persistent phosphor garnet by mixed fuel solution combustion synthesis and its characteristic. J. Phys. Chem. Solids 2020, 142, 109436–109443. [Google Scholar] [CrossRef]
- Paborji, F.; Shafiee Afarani, M.; Arabi, A.M.; Ghahari, M. Solution combustion synthesis of FeCr2O4 powders for pigment applications: Effect of fuel type. Int. J. Appl. Ceram. Technol. 2022, 19, 2406–2418. [Google Scholar] [CrossRef]
- Shukla, R.; Tyagi, A. Combustion synthesis: A versatile method for functional materials. In Handbook on Synthesis Strategies for Advanced Materials: Volume-I: Techniques and Fundamentals; Springer: Berlin/Heidelberg, Germany, 2021; pp. 51–78. [Google Scholar] [CrossRef]
- Asefi, N.; Masoudpanah, S.; Hasheminiasari, M. Photocatalytic performances of BiFeO3 powders synthesized by solution combustion method: The role of mixed fuels. Mater. Chem. Phys. 2019, 228, 168–174. [Google Scholar] [CrossRef]
- Li, Q.; Li, Y.-l.; Li, B.; Hao, Y.-j.; Wang, X.-j.; Liu, R.-h.; Ling, Y.; Liu, X.; Li, F.-t. Construction of adjustable dominant {314} facet of Bi5O7I and facet-oxygen vacancy coupling dependent adsorption and photocatalytic activity. Appl. Catal. B Environ. 2021, 289, 120041–120052. [Google Scholar] [CrossRef]
- Thoda, O.; Xanthopoulou, G.; Vekinis, G.; Chroneos, A. Review of recent studies on solution combustion synthesis of nanostructured catalysts. Adv. Eng. Mater. 2018, 20, 1800047–1800077. [Google Scholar] [CrossRef]
- Khaliullin, S.M.; Koshkina, A. Influence of fuel on phase formation, morphology, electric and dielectric properties of iron oxides obtained by SCS method. Ceram. Int. 2021, 47, 11942–11950. [Google Scholar] [CrossRef]
- Ianoş, R.; Lazău, I.; Păcurariu, C.; Barvinschi, P. Fuel mixture approach for solution combustion synthesis of Ca3Al2O6 powders. Cem. Concr. Res. 2009, 39, 566–572. [Google Scholar] [CrossRef]
- Ianoş, R.; Istratie, R.; Păcurariu, C.; Lazău, R. Solution combustion synthesis of strontium aluminate, SrAl2O4, powders: Single-fuel versus fuel-mixture approach. Phys. Chem. Chem. Phys. 2016, 18, 1150–1157. [Google Scholar] [CrossRef]
- Bai, J.; Liu, J.; Li, C.; Li, G.; Du, Q. Mixture of fuels approach for solution combustion synthesis of nanoscale MgAl2O4 powders. Adv. Powder Technol. 2011, 22, 72–76. [Google Scholar] [CrossRef]
- Chandradass, J.; Kim, K.H. Mixture of fuels approach for the solution combustion synthesis of LaAlO3 nanopowders. Adv. Powder Technol. 2010, 21, 100–105. [Google Scholar] [CrossRef]
- Aruna, S.; Rajam, K. Mixture of fuels approach for the solution combustion synthesis of Al2O3–ZrO2 nanocomposite. Mater. Res. Bull. 2004, 39, 157–167. [Google Scholar] [CrossRef]
- Parnianfar, H.; Masoudpanah, S.; Alamolhoda, S.; Fathi, H. Mixture of fuels for solution combustion synthesis of porous Fe3O4 powders. J. Magn. Magn. Mater. 2017, 432, 24–29. [Google Scholar] [CrossRef]
- Hadadian, S.; Masoudpanah, S.; Alamolhoda, S. Solution combustion synthesis of Fe3O4 powders using mixture of CTAB and citric acid fuels. J. Supercond. Nov. Magn. 2019, 32, 353–360. [Google Scholar] [CrossRef]
- Kalantari Bolaghi, Z.; Hasheminiasari, M.; Masoudpanah, S.M. Solution combustion synthesis of ZnO powders using mixture of fuels in closed system. Ceram. Int. 2018, 44, 12684–12690. [Google Scholar] [CrossRef]
- Aruna, S.; Kini, N.; Rajam, K. Solution combustion synthesis of CeO2–CeAlO3 nano-composites by mixture-of-fuels approach. Mater. Res. Bull. 2009, 44, 728–733. [Google Scholar] [CrossRef]
- Sasikumar, S.; Vijayaraghavan, R. Solution combustion synthesis of bioceramic calcium phosphates by single and mixed fuels—A comparative study. Ceram. Int. 2008, 34, 1373–1379. [Google Scholar] [CrossRef]
- Aali, H.; Azizi, N.; Baygi, N.J.; Kermani, F.; Mashreghi, M.; Youssefi, A.; Mollazadeh, S.; Khaki, J.V.; Nasiri, H. High antibacterial and photocatalytic activity of solution combustion synthesized Ni0.5Zn0.5Fe2O4 nanoparticles: Effect of fuel to oxidizer ratio and complex fuels. Ceram. Int. 2019, 45, 19127–19140. [Google Scholar] [CrossRef]
- Famenin Nezhad Hamedani, S.; Masoudpanah, S.; Bafghi, M.S.; Asgharinezhad Baloochi, N. Solution combustion synthesis of CoFe2O4 powders using mixture of CTAB and glycine fuels. J. Sol.-Gel. Sci. Technol. 2018, 86, 743–750. [Google Scholar] [CrossRef]
- Naveenkumar, A.; Kuruva, P.; Shivakumara, C.; Srilakshmi, C. Mixture of Fuels Approach for the Synthesis of SrFeO3−δ Nanocatalyst and Its Impact on the Catalytic Reduction of Nitrobenzene. Inorg. Chem. 2014, 53, 12178–12185. [Google Scholar] [CrossRef]
- Vasei, H.V.; Masoudpanah, S.M.; Adeli, M.; Aboutalebi, M.R. Solution combustion synthesis of ZnO powders using CTAB as fuel. Ceram. Int. 2018, 44, 7741–7745. [Google Scholar] [CrossRef]
- Lin, J.; Wen, Z.; Xu, X.; Li, N.; Song, S. Characterization and improvement of water compatibility of γ-LiAlO2 ceramic breeders. Fusion. Eng. Des. 2010, 85, 1162–1166. [Google Scholar] [CrossRef]
- Wen, Z.; Gu, Z.; Xu, X.; Zhu, X. Research on the preparation, electrical and mechanical properties of γ-LiAlO2 ceramics. J. Nucl. Mater. 2004, 329, 1283–1286. [Google Scholar] [CrossRef]
- Zhuravlev, V.D.; Reznitskikh, O.G.; Ermakova, L.V.; Patrusheva, T.A.; Nefedova, K.V. Simultaneous Thermal Analysis of Lithium Aluminate SCS-Precursors Produced with Different Fuels. Int. J. Self-Propagating High-Temp. Synth. 2023, 32, 208–214. [Google Scholar] [CrossRef]
- Sharifidarabad, H.; Zakeri, A.; Adeli, M. Preparation of spinel LiMn2O4 cathode material from used zinc-carbon and lithium-ion batteries. Ceram. Int. 2022, 48, 6663–6671. [Google Scholar] [CrossRef]
- Adams, R.A.; Pol, V.G.; Varma, A. Tailored solution combustion synthesis of high performance ZnCo2O4 anode materials for lithium-ion batteries. Ind. Eng. Chem. Res. 2017, 56, 7173–7183. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Y.; Xing, G.; Chou, S.-L.; Tang, Y. Electrochemical energy storage devices working in extreme conditions. Energy Environ. Sci. 2021, 14, 3323–3351. [Google Scholar] [CrossRef]
- Karami, M.; Masoudpanah, S.; Rezaie, H. Solution combustion synthesis of hierarchical porous LiFePO4 powders as cathode materials for lithium-ion batteries. Adv. Powder. Technol. 2021, 32, 1935–1942. [Google Scholar] [CrossRef]
- Karami, M.; Masoudpanah, S.M.; Rezaei, H.R. Electrochemical Performance of LiFePO4/C Powders Synthesized by Solution Combustion Method as the Lithium-Ion Batteries Cathode Material. J. Adv. Mater. Technol. 2022, 11, 81–93. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, Y.; Wang, Q.; He, G.; Chen, H. Supports promote single-atom catalysts toward advanced electrocatalysis. Coord. Chem. Rev. 2022, 451, 214261–214280. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Y.; Wu, K.; Zhai, H.; Gong, Z.; Peng, Z.; Jin, S.; Du, Q.; Jiao, K. Sintering kinetics and microstructure analysis of composite mixed ionic and electronic conducting electrodes. Int. J. Energy Res. 2022, 46, 8240–8255. [Google Scholar] [CrossRef]
- Ivanishchev, A.V.; Bobrikov, I.A.; Ivanishcheva, I.A.; Ivanshina, O.Y. Study of structural and electrochemical characteristics of LiNi0.33Mn0.33Co0.33O2 electrode at lithium content variation. J. Electroanal. Chem. 2018, 821, 140–151. [Google Scholar] [CrossRef]
- Sommerville, R.; Zhu, P.; Rajaeifar, M.A.; Heidrich, O.; Goodship, V.; Kendrick, E. A qualitative assessment of lithium ion battery recycling processes. Resour. Conserv. Recycl. 2021, 165, 105219–105230. [Google Scholar] [CrossRef]
- Xing, L.; Lin, S.; Yu, J. Novel recycling approach to regenerate a LiNi0.6Co0.2Mn0.2O2 cathode material from spent lithium-ion batteries. Ind. Eng. Chem. Res. 2021, 60, 10303–10311. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, W.; Ma, Y.; Jin, H.; Guo, L. Combustion synthesis of LiNi1/3Co1/3Mn1/3O2 powders with enhanced electrochemical performance in LIBs. J. Alloys Compd. 2015, 635, 207–212. [Google Scholar] [CrossRef]
- Li, W.; Yao, L.; Zhang, X.; Lang, W.; Si, J.; Yang, J.; Li, L. The effect of chelating agent on synthesis and electrochemical properties of LiNi0.6Co0.2Mn0.2O2. SN Appl Sci. 2020, 2, 554. [Google Scholar] [CrossRef]
- Chamyani, S.; Salehirad, A.; Oroujzadeh, N.; Fateh, D.S. Effect of fuel type on structural and physicochemical properties of solution combustion synthesized CoCr2O4 ceramic pigment nanoparticles. Ceram. Int. 2018, 44, 7754–7760. [Google Scholar] [CrossRef]
- Jain, S.; Adiga, K.; Verneker, V.P. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust. Flame 1981, 40, 71–79. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Pizette, P.; Martin, C.; Joshi, S.; Saha, B. Effect of particle size in aggregated and agglomerated ceramic powders. Acta Mater. 2010, 58, 802–812. [Google Scholar] [CrossRef]
- Mestre, S.; Palacios, M.; Agut, P. Solution combustion synthesis of (Co,Fe)Cr2O4 pigments. J. Eur. Ceram. Soc. 2012, 32, 1995–1999. [Google Scholar] [CrossRef]
- Gilabert, J.; Palacios, M.D.; Sanz, V.; Mestre, S. Fuel effect on solution combustion synthesis of Co(Cr,Al)2O4 pigments. Bol. Soc. Esp. Ceram. Vidr. 2017, 56, 215–225. [Google Scholar] [CrossRef]
- Dwivedi, S. Solid oxide fuel cell: Materials for anode, cathode and electrolyte. Int. J. Hydrogen Energy. 2020, 45, 23988–24013. [Google Scholar] [CrossRef]
- Sun, C.; Hui, R.; Roller, J. Cathode materials for solid oxide fuel cells: A review. J. Solid State Electrochem. 2010, 14, 1125–1144. [Google Scholar] [CrossRef]
- Yang, X.-Y.; Chen, L.-H.; Li, Y.; Rooke, J.C.; Sanchez, C.; Su, B.-L. Hierarchically porous materials: Synthesis strategies and structure design. Chem. Soc. Rev. 2017, 46, 481–558. [Google Scholar] [CrossRef]
- Jin, X.; Lim, J.; Ha, Y.; Kwon, N.H.; Shin, H.; Kim, I.Y.; Lee, N.-S.; Kim, M.H.; Kim, H.; Hwang, S.-J. A critical role of catalyst morphology in low-temperature synthesis of carbon nanotube–transition metal oxide nanocomposite. Nanoscale 2017, 9, 12416–12424. [Google Scholar] [CrossRef]
- Rizwan, M.; Gul, S.; Iqbal, T.; Mushtaq, U.; Farooq, M.H.; Farman, M.; Bibi, R.; Ijaz, M. A review on perovskite lanthanum aluminate (LaAlO3), its properties and applications. Mater. Res. Express. 2019, 6, 112001–112031. [Google Scholar] [CrossRef]
- Arzeo, M.; Lombardi, F.; Bauch, T. Microwave losses in MgO, LaAlO3, and (La0.3Sr0.7)(Al0.65Ta0.35)O3 dielectrics at low power and in the millikelvin temperature range. Appl. Phys. Lett. 2014, 104, 212601–212605. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Pan, R.-Y.; Fung, K.-Z. Effect of divalent dopants on crystal structure and electrical properties of LaAlO3 perovskite. J. Phys. Chem. Solids 2008, 69, 540–546. [Google Scholar] [CrossRef]
- Sim, Y.; Yang, I.; Kwon, D.; Ha, J.-M.; Jung, J.C. Preparation of LaAlO3 perovskite catalysts by simple solid-state method for oxidative coupling of methane. Catal. Today 2020, 352, 134–139. [Google Scholar] [CrossRef]
- Lee, M.-H.; Jung, W.-S. Facile synthesis of LaAlO3 and Eu (II)-doped LaAlO3 powders by a solid-state reaction. Ceram. Int. 2015, 41, 5561–5567. [Google Scholar] [CrossRef]
- Lee, G.; Kim, I.; Yang, I.; Ha, J.-M.; Na, H.B.; Jung, J.C. Effects of the preparation method on the crystallinity and catalytic activity of LaAlO3 perovskites for oxidative coupling of methan. Appl. Surf. Sci. 2018, 429, 55–61. [Google Scholar] [CrossRef]
- Yu, H.-F.; Guo, Y.-M. Effects of heating atmosphere on formation of crystalline citrate-derived LaAlO3 nanoparticles. J. Alloys Compd. 2011, 509, 1984–1988. [Google Scholar] [CrossRef]
- Ianoş, R.; Borcănescu, S.; Lazău, R. Large surface area ZnAl2O4 powders prepared by a modified combustion technique. Chem. Eng. J. 2014, 240, 260–263. [Google Scholar] [CrossRef]
- Patra, A.; Chandaluri, C.G.; Radhakrishnan, T. Optical materials based on molecular nanoparticles. Nanoscale 2012, 4, 343–359. [Google Scholar] [CrossRef]
- Strachowski, T.; Grzanka, E.; Mizeracki, J.; Chlanda, A.; Baran, M.; Małek, M.; Niedziałek, M. Microwave-assisted hydrothermal synthesis of zinc-aluminum spinel ZnAl2O4. Materials 2021, 15, 245. [Google Scholar] [CrossRef]
- Birhi, D.N.; Laka, A.F. Study of the efficiency of ZnAl2O4 as green nanocatalyst. Inornatus. Biol. Educ. J. 2024, 4, 11–26. [Google Scholar] [CrossRef]
- Maity, G.; Maji, P.; Sain, S.; Das, S.; Kar, T.; Pradhan, S. Microstructure, optical and electrical characterizations of nanocrystalline ZnAl2O4 spinel synthesized by mechanical alloying: Effect of sintering on microstructure and properties. Physica. E Low Dimens. Syst. Nanostruct. 2019, 108, 411–420. [Google Scholar] [CrossRef]
- Han, M.; Wang, Z.; Xu, Y.; Wu, R.; Jiao, S.; Chen, Y.; Feng, S. Physical properties of MgAl2O4, CoAl2O4, NiAl2O4, CuAl2O4, and ZnAl2O4 spinels synthesized by a solution combustion method. Mater. Chem. Phys. 2018, 215, 251–258. [Google Scholar] [CrossRef]
- Tshabalala, K.G. Synthesis and Characterization of Down−Conversion Nanophosphors. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2014. [Google Scholar]
- Jilani, A.; Yahia, I.; Abdel-wahab, M.S.; Al-ghamdi, A.A.; Alhummiany, H. Correction to: Novel Control of the Synthesis and Band Gap of Zinc Aluminate (ZnAl2O4) by Using a DC/RF Sputtering Technique. Silicon 2019, 11, 577. [Google Scholar] [CrossRef]
- Busca, G. Structural, Surface, and Catalytic Properties of Aluminas, Advances in Catalysis; Elsevier: Amsterdam, The Netherlands, 2014; pp. 319–404. [Google Scholar] [CrossRef]
- Nikoofar, K.; Shahedi, Y.; Chenarboo, F.J. Nano alumina catalytic applications in organic transformations. Mini-Rev. Org. Chem. 2019, 16, 102–110. [Google Scholar] [CrossRef]
- Kazemi, H.; Kermani, F.; Mollazadeh, S.; Vahdati Khakhi, J. The significant role of the glycine-nitrate ratio on the physicochemical properties of CoxZn1−xO nanoparticles. Int. J. Appl. Ceram. Technol. 2020, 17, 1852–1868. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, S.; Lv, J.; Chen, J.; Yang, J.; Wang, Y.; Guo, X.; Peng, L.; Ding, W.; Chen, Y. Nanotubular gamma alumina with high-energy external surfaces: Synthesis and high performance for catalysis. ACS Catal. 2017, 7, 4083–4092. [Google Scholar] [CrossRef]
- Eliassi, A.; Ranjbar, M. Application of novel gamma alumina nano structure for preparation of dimethyl ether from methanol. Int. J. Nanosci. Nanotechnol. 2014, 10, 13–26. [Google Scholar]
- Paranjpe, K.Y. Alpha, beta and gamma alumina as a catalyst-A Review. Pharma Innov. J. 2017, 6, 236–238. [Google Scholar]
- Sherikar, B.N.; Sahoo, B.; Umarji, A.M. Effect of fuel and fuel to oxidizer ratio in solution combustion synthesis of nanoceramic powders: MgO, CaO and ZnO. Solid State Sci. 2020, 109, 106426–106434. [Google Scholar] [CrossRef]
- Behera, P.; Sarkar, R.; Bhattacharyya, S. Nano alumina: A review of the powder synthesis method. InterCeram Int. Ceram. Rev. 2016, 65, 10–16. [Google Scholar] [CrossRef]
- Sharma, A.; Rani, A.; Singh, A.; Modi, O.; Gupta, G.K. Synthesis of alumina powder by the urea–glycine–nitrate combustion process: A mixed fuel approach to nanoscale metal oxides. Appl. Nanosci. 2014, 4, 315–323. [Google Scholar] [CrossRef]
- Khaliullin, S.M.; Zhuravlev, V.D.; Bamburov, V.G. Solution-combustion synthesis of oxide nanoparticles from nitrate solutions containing glycine and urea: Thermodynamic aspects. Int. J. Self-Propagating High-Temp. Synth. 2016, 25, 139–148. [Google Scholar] [CrossRef]
- Patil, K.C.; Aruna, S.T.; Mimani, T. Combustion synthesis: An update. Curr. Opin. Solid State Mater. Sci. 2002, 6, 507–512. [Google Scholar] [CrossRef]
- Goworek, J.; Kierys, A.; Gac, W.; Borowka, A.; Kusak, R. Thermal degradation of CTAB in as-synthesized MCM-41. J. Therm. Anal. Calorim. 2009, 96, 375–382. [Google Scholar] [CrossRef]
- Mandal, K.; Ghose, S.; Mandal, M.; Majumder, D.; Talukdar, S.; Chakraborty, I.; Panda, S.K. Notes on Useful Materials and Synthesis Through Various Chemical Solution Techniques, Chemical Solution Synthesis for Materials Design and Thin Film Device Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 29–78. [Google Scholar] [CrossRef]
- Shukla, R.; Dutta, D.P.; Ramkumar, J.; Mandal, B.P.; Tyagi, A.K. Nanocrystalline Functional Oxide Materials. Springer Handb. Nanomater. 2013, 96, 517–552. [Google Scholar] [CrossRef]
- Lazarova, T.; Kovacheva, D.; Cherkezova-Zheleva, Z.; Tyuliev, G. Studies of the possibilities to obtain nanosized MnFe2O4 by solution combustion synthesis. Bulg. Chem. Commun. 2017, 49, 217–224, WOS:000418322200039. [Google Scholar]
- Evdokimenko, N.; Yermekova, Z.; Roslyakov, S.; Tkachenko, O.; Kapustin, G.; Bindiug, D.; Kustov, A.; Mukasyan, A.S. Sponge-like CoNi catalysts synthesized by combustion of reactive solutions: Stability and performance for CO2 hydrogenation. Materials 2022, 15, 5129. [Google Scholar] [CrossRef]
- Klunk, M.A.; Shah, Z.; Caetano, N.R.; Conceição, R.V.; Wander, P.R.; Dasgupta, S.; Das, M. CO2 sequestration by magnesite mineralisation through interaction of Mg-brine and CO2: Integrated laboratory experiments and computerised geochemical modelling. Int. J. Environ. Stud. 2020, 77, 492–509. [Google Scholar] [CrossRef]
- Meza-Trujillo, I.; Devred, F.; Gaigneaux, E.M. Production of high surface area mayenite (C12A7) via an assisted solution combustion synthesis (SCS) toward catalytic soot oxidation. Mater. Res. Bull. 2019, 119, 110542–110551. [Google Scholar] [CrossRef]
- Meza-Trujillo, I.; Mary, A.; Pietrzyk, P.; Sojka, Z.; Gaigneaux, E.M. Nature and role of Cu (II) species in doped C12A7 catalysts for soot oxidation. Appl. Catal. B Environ. 2022, 316, 121604–121618. [Google Scholar] [CrossRef]
- Lutukurthi, D.N.V.V.K.; Dutta, S.; Behara, D.K. Dual role of activated carbon as fuel and template for solution combustion synthesis of porous zinc oxide powders. J. Am. Ceram. Soc. 2021, 104, 4624–4636. [Google Scholar] [CrossRef]
- Paborji, F.; Afarani, M.S.; Arabi, A.M.; Ghahari, M. Synthesis of (Fe,Cr)2O3 solid solution pigment powders for ink application. Int. J. Appl. Ceram. Technol. 2023, 20, 1154–1166. [Google Scholar] [CrossRef]
- Paborji, F.; Shafiee Afarani, M.; Arabi, A.M.; Ghahari, M. Phase transformation of FeCr2O4 to (Fe,Cr)2O3 solid solution pigment powders: Effect of post-heating temperature. Int. J. Appl. Ceram. Technol. 2023, 20, 281–293. [Google Scholar] [CrossRef]
Entry | Fuel Mixture | Material | Reference |
---|---|---|---|
1 | Urea+ β-alanine | Ca3Al2O6 powders | [36] |
2 | Urea and glycine | SrAl2O4 powders | [37] |
3 | Urea and glycine | ZnAl2O4 powders | [4] |
4 | Urea and glycine | MgAl2O4powders | [38] |
5 | Urea, glycine, and starch | ||
6 | Citric and oxalic acid | LaAlO3 powders | [39] |
7 | Urea and ammonium acetate | Al2O3–ZrO2 nanocomposite | [40] |
8 | Urea and glycine | Fe3O4 powders | [41] |
9 | CTAB and citric acid | Fe3O4 powders | [42] |
10 | Glycine and citric acid | ZnO powders | [43] |
11 | CTAB and glycine | ZnO powders | [16] |
12 | Urea and glycine | CeO2–CeAlO3 nanocomposites | [44] |
13 | Succinic and citric acid | Bio-ceramic calcium phosphates | [45] |
14 | Urea and sucrose | Sr-doped lanthanum manganite | [27] |
15 | Citric acid, cellulose, sucrose polyethylene glycol | Sr and Fe-doped barium cobaltite | [5] |
16 | Urea and glycine | Ni0.5Zn0.5Fe2O4 nanoparticles | [46] |
17 | Glycine and CTAB | BiFeO3powders | [32] |
18 | Urea and glycine | γ-Alumina | [28] |
19 | CTAB and glycine | CoFe2O4 | [47] |
20 | Urea and glycine | Gd3Al2Ga3O12:Ce3+-Cr3 | [29] |
CTAB = Cetyltrimethylammonium bromide |
Entry | Mixed Fuel | Particle Size (nm) | Morphology | Agglomeration | Atomic Ratio (Cr:Co) | Adiabatic Temp/℃ |
---|---|---|---|---|---|---|
1 | En/Ox | 50–350 | Rod shaped | Very high | 0.004 | - |
2 | En/Ox(excess) | 50–150 | Rod shaped | Very high | 0.14 | - |
3 | En(excess)/Ox | 10–30 | Rod shaped | Low | 1.78 | - |
4 | Cit | 10–30 | Cubic | Low | 2.13 | 1262.65 |
5 | Ox/Cit | 35–80 | Cubic | Low | 2.3 | 1141.47 |
6 | En/Cit | 10–25 | Cubic | Very low | 2.26 | 1411.83 |
7 | En/Ox Cit | 10–25 | Cubic | Very low | 2.26 | 1839.93 |
Product | ΔTad K (glyc/urea) | Product | ΔTad, K (glyc/urea) | Product | ΔTad K (glyc/urea) |
---|---|---|---|---|---|
Li2O | 2148/1763 | LiOH | 2511/2106 | Li2CO3 | 2885/2436 |
Na2O | 1502/1199 | NaOH | 2063/1722 | Na2CO3 | 2596/2169 |
K2O | 1123/857 | KOH | 1830/1519 | K2CO3 | 2435/2051 |
Rb2O | 1019/762 | RbOH | 1703/1410 | Rb2CO3 | 2321/1952 |
Cs2O | 885/643 | CsOH | 1673/1381 | Cs2CO3 | 2255/1898 |
BeO | 3910/3292 | Be(OH)2 | 4043/3422 | BeCO3 | 3969/3349 |
MgO | 2977/2484 | Mg(OH)2 | 3219/2710 | MgCO3 | 3358/2825 |
CaO | 2488/2053 | Ca(OH)2 | 2779/2331 | CaCO3 | 3121/2627 |
SrO | 2165/1766 | Sr(OH)2 | 2636/2182 | SrCO3 | 3052/2561 |
BaO | 1954/1561 | Ba(OH)2 | 2401/2004 | BaCO3 | 2928/2456 |
Al2O3 | 3048/2526 | Al(OH)3 | 3273/2731 | Al2(CO3)3 | 3377/2819 |
Ga2O3 | 3632/3055 | Ga(OH)3 | 3897/3292 | Ga2(CO3)3 | 3849/3249 |
In2O3 | 3364/2816 | In(OH)3 | 3603/3029 | In2(CO3)3 | 3533/2967 |
Sc2O3 | 3083/2563 | Sc(OH)3 | 3238/2702 | Sc2(CO3)3 | 3308/2763 |
Y2O3 | 2740/2265 | Y(OH)3 | 3041/2534 | Y2(CO3)3 | 3241/2713 |
La2O3 | 2804/2326 | La(OH)3 | 3162/2651 | La2(CO3)3 | 3405/2863 |
TiO2 | 3043/2571 | Ti(OH)4 | 1696/1358 | Ti(CO3)2 | 2155/1703 |
ZrO2 | 2636/2205 | Zr(OH)4 | 1372/1059 | Zr(CO3)2 | 1821/1415 |
HfO2 | 2546/2130 | Hf(OH)4 | 1173/891 | Hf(CO3)2 | 1629/1252 |
MnO | 2679/2226 | Mn(OH)2 | 2963/2481 | MnCO3 | 3110/2614 |
FeO | 2690/2245 | Fe(OH)2 | 2942/2467 | FeCO3 | 3069/2578 |
CoO | 2816/2367 | Co(OH)2 | 3036/2565 | CoCO3 | 3106/2628 |
NiO | 2955/2474 | Ni(OH)2 | 3135/2636 | NiCO3 | 3315/2797 |
Fe2O3 | 3084/2574 | Fe(OH)3 | 3215/2694 | Fe2(CO3)3 | 3236/2709 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padayatchee, S.; Ibrahim, H.; Friedrich, H.B.; Olivier, E.J.; Ntola, P. Solution Combustion Synthesis for Various Applications: A Review of the Mixed-Fuel Approach. Fluids 2025, 10, 82. https://doi.org/10.3390/fluids10040082
Padayatchee S, Ibrahim H, Friedrich HB, Olivier EJ, Ntola P. Solution Combustion Synthesis for Various Applications: A Review of the Mixed-Fuel Approach. Fluids. 2025; 10(4):82. https://doi.org/10.3390/fluids10040082
Chicago/Turabian StylePadayatchee, Samantha, Halliru Ibrahim, Holger B. Friedrich, Ezra J. Olivier, and Pinkie Ntola. 2025. "Solution Combustion Synthesis for Various Applications: A Review of the Mixed-Fuel Approach" Fluids 10, no. 4: 82. https://doi.org/10.3390/fluids10040082
APA StylePadayatchee, S., Ibrahim, H., Friedrich, H. B., Olivier, E. J., & Ntola, P. (2025). Solution Combustion Synthesis for Various Applications: A Review of the Mixed-Fuel Approach. Fluids, 10(4), 82. https://doi.org/10.3390/fluids10040082