Improvement of Gel Properties of Nemipterus virgatus Myofibrillar Protein Emulsion Gels by Curdlan: Development and Application to Emulsified Surimi
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of Cur/MP Mixtures
2.1.1. FTIR
2.1.2. XRD
2.2. Cur/MP Emulsion Gels Property Determination
2.2.1. TPA and Gel Strength
2.2.2. Water-Holding Capacity (WHC)
2.2.3. Rheological Behavior
2.2.4. LF-NMR Relaxation
2.2.5. CLSM
2.2.6. Cryo-SEM
2.3. Emulsified Surimi Gels Property Determination
2.3.1. TPA and Gel Strength
2.3.2. WHC and Whiteness
2.3.3. LF-NMR
3. Conclusions
4. Material and Methods
4.1. Materials and Chemicals
4.2. Extraction of MP
4.3. Preparation of Cur/MP Mixtures
4.4. Characterization of Cur/MP Mixtures
4.4.1. Fourier Transform Infrared Spectrometer (FTIR)
4.4.2. X-Ray Diffraction (XRD)
4.5. Preparation of Cur/MP Emulsion Gels
4.6. Cur/MP Emulsion Gels Property Determination
4.6.1. Texture Profile Analysis (TPA) and Gel Strength
4.6.2. Water-Holding Capacity (WHC)
4.6.3. Rheological Properties
4.6.4. Low-Field Nuclear Magnetic Resonance (LF-NMR)
4.6.5. Confocal Laser Scanning Microscopy (CLSM)
4.6.6. Cryo-Scanning Electron Microscope (Cryo-SEM)
4.7. Preparation of Emulsified Surimi Gels
4.8. Emulsified Surimi Gels Property Determination
4.8.1. TPA and Gel Strength
4.8.2. WHC and Whiteness
4.8.3. LF-NMR
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zembyla, M.; Murray, B.S.; Sarkar, A. Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: A review. Trends Food Sci. Technol. 2020, 104, 49–59. [Google Scholar] [CrossRef]
- Yu, J.; Song, L.; Xiao, H.; Xue, Y.; Xue, C. Structuring emulsion gels with peanut protein isolate and fish oil and analyzing the mechanical and microstructural characteristics of surimi gel. LWT 2022, 154, 112555. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, W.; Liang, Q.; Jiang, X.; Zhang, Z.; Shi, W. High inner phase emulsion of fish oil stabilized with rutin-grass carp (Ctenopharyngodon idella) myofibrillar protein: Application as a fat substitute in surimi gel. Food Hydrocoll. 2023, 145, 109115. [Google Scholar] [CrossRef]
- Salminen, H.; Herrmann, K.; Weiss, J. Oil-in-water emulsions as a delivery system for n-3 fatty acids in meat products. Meat Sci. 2013, 93, 659–667. [Google Scholar] [CrossRef]
- Zhao, J.; Chang, B.; Wen, J.; Fu, Y.; Luo, Y.; Wang, J.; Zhang, Y.; Sui, X. Fabrication of soy protein isolate-konjac glucomannan emulsion gels to mimic the texture, rheological behavior and in vitro digestion of pork fat. Food Chem. 2025, 468, 142462. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Sun, L.; Wang, Y.; Liu, S.; Cao, J.; Li, H.; Liu, X. Salt ions improve soybean protein isolate/curdlan complex fat substitutes: Effect of molecular interactions on freeze-thaw stability. Int. J. Biol. Macromol. 2024, 272, 132774. [Google Scholar] [CrossRef]
- Li, J.; Huang, G.; Qian, H.; Pi, F. Fabrication of soy protein isolate—High methoxyl pectin composite emulsions for improving the stability and bioavailability of carotenoids. Food Biosci. 2023, 53, 102738. [Google Scholar] [CrossRef]
- Li, M.; Feng, L.; Xu, Y.; Nie, M.; Li, D.; Zhou, C.; Dai, Z.; Zhang, Z.; Zhang, M. Rheological property, β-carotene stability and 3D printing characteristic of whey protein isolate emulsion gels by adding different polysaccharides. Food Chem. 2023, 414, 135702. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Shi, W. Pickering emulsion stabilized by grass carp myofibrillar protein via one-step: Study on microstructure, processing stability and stabilization mechanism. Food Chem. 2024, 447, 139014. [Google Scholar] [CrossRef]
- Lin, L.; Xiong, Y.L. Competitive adsorption and dilatational rheology of pork myofibrillar and sarcoplasmic proteins at the O/W emulsion interface. Food Hydrocoll. 2021, 118, 106816. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, H.; Lv, Y.; Xu, Y.; Yi, S.; Li, X.; Li, J. Improved gel properties of Nemipterus virgatus myofibrillar protein emulsion gel by Konjac glucomannan incorporation: Insight into the modification of protein conformation. Int. J. Biol. Macromol. 2024, 282, 136833. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Wang, H.; Xia, G.; Hu, Y.; Xue, C.; Lu, S.; Li, C.; Shen, X. Emulsion gel stabilized by tilapia myofibrillar protein: Application in lipid-enhanced surimi preparation. Food Chem. 2023, 403, 134424. [Google Scholar] [CrossRef] [PubMed]
- Shao, T.; Zhou, Y.; Dai, H.; Ma, L.; Feng, X.; Wang, H.; Zhang, Y. Regulation mechanism of myofibrillar protein emulsification mode by adding psyllium (Plantago ovata) husk. Food Chem. 2022, 376, 131939. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-M.; Meng, R.; Xu, B.-C.; Zhang, B. Investigation of the fabrication, characterization, protective effect and digestive mechanism of a novel Pickering emulsion gels. Food Hydrocoll. 2021, 117, 106708. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, W.; Yuan, C.; Morioka, K.; Chen, S.; Liu, D.; Ye, X. Enhancement of the gelation properties of hairtail (Trichiurus haumela) muscle protein with curdlan and transglutaminase. Food Chem. 2015, 176, 115–122. [Google Scholar] [CrossRef]
- Jiang, S.; Mo, F.; Liu, Q.; Jiang, L. Insights into the in vitro digestibility and rheology properties of myofibrillar protein with different incorporation types of curdlan. Food Chem. 2024, 459, 140255. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, S.; Jia, X.; Wang, H.; Zhang, H.; Liu, Q.; Kong, B. Thermal gelling properties and structural properties of myofibrillar protein including thermo-reversible and thermo-irreversible curdlan gels. Food Chem. 2020, 311, 126018. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, P.; He, J.; Zhao, Y.; Fang, Y. Microstructure and mechanical behavior of curdlan hydrogels: The role of thermal pre-treatment temperature. Carbohydr. Polym. 2025, 367, 123982. [Google Scholar] [CrossRef]
- Choi, M.; Choi, H.W.; Jo, M.; Hahn, J.; Choi, Y.J. High-set curdlan emulsion gel fortified by transglutaminase: A promising animal fat substitute with precisely simulated texture and thermal stability of animal fat. Food Hydrocoll. 2024, 154, 110063. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, Y.; Ding, Y.; Xiang, X.; Yang, Q.; Wei, Z.; Song, H.; Liu, S.; Zhou, X. Improved texture properties and toughening mechanisms of surimi gels by double network strategies. Food Hydrocoll. 2024, 152, 109900. [Google Scholar] [CrossRef]
- Mi, H.; Su, Q.; Chen, J.; Yi, S.; Li, X.; Li, J. Starch-fatty acid complexes improve the gel properties and enhance the fatty acid content of Nemipterus virgatus surimi under high-temperature treatment. Food Chem. 2021, 362, 130253. [Google Scholar] [CrossRef]
- Cando, D.; Borderías, A.J.; Moreno, H.M. Combined effect of aminoacids and microbial transglutaminase on gelation of low salt surimi content under high pressure processing. Innov. Food Sci. Emerg. Technol. 2016, 36, 10–17. [Google Scholar] [CrossRef]
- Hong, Z.; Kong, Y.; Chen, J.; Guo, R.; Huang, Q. Collaborative stabilizing effect of trehalose and myofibrillar protein on high internal phase emulsions: Improved freeze-thaw stability and 3D printability. Food Chem. 2025, 469, 142564. [Google Scholar] [CrossRef]
- Wang, F.; Li, J.; Wang, Y.; Liu, H.; Yu, B.; Zhao, H.; Zhang, R.; Tao, H.; Ren, X.; Cui, B. The dispersibility of biphasic stabilized oil-in-water emulsions improved by the interaction between curdlan and soy protein isolate. Food Chem. 2024, 457, 140101. [Google Scholar] [CrossRef]
- Tao, H.; Guo, L.; Qin, Z.; Yu, B.; Wang, Y.; Li, J.; Wang, Z.; Shao, X.; Dou, G.; Cui, B. Textural characteristics of mixed gels improved by structural recombination and the formation of hydrogen bonds between curdlan and carrageenan. Food Hydrocoll. 2022, 129, 107678. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Chen, H.; Gao, P.; Xu, Y.; Xia, W.; Liu, S.-Q. Interfacial structures and processing stability of surimi particles-konjac glucomannan complexes stabilized pickering emulsions via one-step and layer-by-layer. Food Hydrocoll. 2024, 147, 109349. [Google Scholar] [CrossRef]
- Zhang, N.; Han, J.; Chen, F.; Gao, C.; Tang, X. Chitosan/gum arabic complexes to stabilize Pickering emulsions: Relationship between the preparation, structure and oil-water interfacial activity. Food Hydrocoll. 2022, 129, 107532. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Lei, H.; Li, L.-Q.; Liu, F.; Li, L.; Yan, J.-K. Effects of direct addition of curdlan on the gelling characteristics of thermally induced soy protein isolate gels. Int. J. Biol. Macromol. 2023, 253, 127092. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Yuan, C.; Chen, S.; Liu, D.; Ye, X.; Hu, Y. The effect of curdlan on the rheological properties of restructured ribbonfish (Trichiurus spp.) meat gel. Food Chem. 2015, 179, 222–231. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, Q.; Xiao, N.; Du, Y.; Feng, Q.; Shi, W. Changes in Gel Structure and Chemical Interactions of Hypophthalmichthys molitrix Surimi Gels: Effect of Setting Process and Different Starch Addition. Foods 2022, 11, 9. [Google Scholar] [CrossRef]
- Hatakeyama, T.; Iijima, M.; Hatakeyama, H. Role of bound water on structural change of water insoluble polysaccharides. Food Hydrocoll. 2016, 53, 62–68. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, A.; Benjakul, S.; Zou, Y.; Liu, X.; Xiao, S. The mechanism of low-level pressure coupled with heat treatment on water migration and gel properties of Nemipterus virgatus surimi. LWT 2021, 150, 112086. [Google Scholar] [CrossRef]
- Cui, B.; Mao, Y.; Liang, H.; Li, Y.; Li, J.; Ye, S.; Chen, W.; Li, B. Properties of soybean protein isolate/curdlan based emulsion gel for fat analogue: Comparison with pork backfat. Int. J. Biol. Macromol. 2022, 206, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Han, X.; Guo, K.-J.; Ren, Y.-P.; Chen, Y.; Yang, J.; Qian, J.-Y. Pickering emulsion gels with curdlan as both the emulsifier and the gelling agent: Emulsifying mechanism, gelling performance and gel properties. Food Chem. 2025, 465, 141971. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, J. Emulsion co-stabilized with high methoxyl pectin and myofibrillar protein: Used to enhance the application in emulsified gel. Food Chem. 2025, 475, 143359. [Google Scholar] [CrossRef]
- Tcholakova, S.S.; Denkov, N.; Sidzhakova, D.; Ivanov, I.B.; Campbell, B.E.J.L. Interrelation between Drop Size and Protein Adsorption at Various Emulsification Conditions. Langmuir 2003, 19, 5640–5649. [Google Scholar] [CrossRef]
- Hu, X.; McClements, D.J. Construction of plant-based adipose tissue using high internal phase emulsions and emulsion gels. Innov. Food Sci. Emerg. Technol. 2022, 78, 103016. [Google Scholar] [CrossRef]
- Li, D.; Li, N.; Wang, Y.; Zhang, K.; Tan, Z.; Liu, H.; Liu, X.; Wu, Q.; Zhou, D. Effect of konjac glucomannan on gelling and digestive properties of myofibrillar protein in Litopenaeus vannamei based on molecular docking. Food Hydrocoll. 2024, 149, 109595. [Google Scholar] [CrossRef]
- Hu, W.; Xu, X.; Wang, X.; Ma, T.; Li, Y.; Qin, X.; Wei, J.; Chen, S. Effect of curdlan on the gel properties and interactions of whey protein isolate gels. Int. J. Biol. Macromol. 2024, 277, 134161. [Google Scholar] [CrossRef]
- Yao, W.; Huang, X.; Li, C.; Kong, B.; Xia, X.; Sun, F.; Liu, Q.; Cao, C. Underlying the effect of soybean oil concentration on the gelling properties of myofibrillar protein-based emulsion gels: Perspective on interfacial adsorption, rheological properties and protein conformation. Food Hydrocoll. 2025, 162, 110935. [Google Scholar] [CrossRef]
- Hu, X.; Xiang, X.; Ju, Q.; Li, S.; McClements, D.J. Impact of lipid droplet characteristics on the rheology of plant protein emulsion gels: Droplet size, concentration, and interfacial properties. Food Res. Int. 2024, 191, 114734. [Google Scholar] [CrossRef]
- Lv, Y.; Zhao, H.; Xu, Y.; Yi, S.; Li, X.; Li, J. Properties and microstructures of golden thread fish myofibrillar proteins gel filled with diacylglycerol emulsion: Effects of emulsifier type and dose. Food Hydrocoll. 2023, 144, 108935. [Google Scholar] [CrossRef]
- Jain, B.P.; Pandey, S.; Goswami, S.K. Chapter 36—Estimation of Proteins by the Biuret Method. In Protocols in Biochemistry and Clinical Biochemistry, 2nd ed.; Jain, B.P., Pandey, S., Goswami, S.K., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 85–86. [Google Scholar] [CrossRef]
- Yang, Z.; He, X.; Song, Y.; Zhang, W.; Chen, L.; Jiang, L.; Huang, Z.; Tian, T. Fabrication and characterization of novel curcumin-loaded thermoreversible high amylose maize starch emulsion gel. Int. J. Biol. Macromol. 2024, 280, 136173. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Chen, F.; Yin, L.; Zhang, P.; Rashid, M.T.; Yu, J. Wheat bran arabinoxylan-soybean protein isolate emulsion-filled gels as a β-carotene delivery carrier: Effect of polysaccharide content on textural and rheological properties. Int. J. Biol. Macromol. 2023, 253, 126465. [Google Scholar] [CrossRef]
- Lv, Y.; Sun, X.; Jia, H.; Hao, R.; Jan, M.; Xu, X.; Li, S.; Dong, X.; Pan, J. Antarctic krill (Euphausia superba) oil high internal phase emulsions improved the lipid quality and gel properties of surimi gel. Food Chem. 2023, 423, 136352. [Google Scholar] [CrossRef]
- Zhou, A.; Chen, H.; Zou, Y.; Liu, X.; Benjakul, S. Insight into the mechanism of optimal low-level pressure coupled with heat treatment to improve the gel properties of Nemipterus virgatus surimi combined with water migration. Food Res. Int. 2022, 157, 111230. [Google Scholar] [CrossRef] [PubMed]
Concentration of Cur | Gel Strength (g·mm) | Hardness (g) | Springiness (cm) | Gumminess (g) | Chewiness (mJ) | Cohesiveness |
---|---|---|---|---|---|---|
Control | 105.85 ± 6.34 e | 125.06 ± 5.78 f | 7.60 ± 0.02 c | 75.24 ± 10.25 e | 57.29 ± 9.28 e | 0.6 ± 0.06 c |
2% | 241.06 ± 20.08 d | 247.82 ± 18.77 e | 8.06 ± 0.00 b | 136.73 ± 21.44 d | 110.12 ± 16.96 d | 0.55 ± 0.06 cd |
3% | 316.36 ± 23.73 c | 306.39 ± 24.46 d | 7.96 ± 0.02 b | 158.20 ± 11.6 d | 125.86 ± 7.18 d | 0.52 ± 0.00 e |
4% | 378.28 ± 65.87 c | 424.04 ± 36.6 c | 8.76 ± 0.02 a | 290.45 ± 22.33 c | 254.59 ± 20.58 c | 0.69 ± 0.04 b |
5% | 481.04 ± 72.29 b | 521.05 ± 5.76 b | 8.65 ± 0.01 a | 384.47 ± 9.19 b | 332.52 ± 14.26 b | 0.74 ± 0.02 ab |
6% | 734.89 ± 64.97 a | 736.45 ± 30.76 a | 8.66 ± 0.05 a | 568.19 ± 21.57 a | 492.06 ± 21.41 a | 0.77 ± 0.00 a |
Concentration of Cur | T2 Relaxation Peak Relative Area (%) | ||
---|---|---|---|
A21 | A22 | A23 | |
Control | 0.03 ± 0.02 b | 79.87 ± 0.71 d | 20.10 ± 0.68 a |
2% | 0.04 ± 0.01 ab | 84.11 ± 1.99 c | 14.64 ± 1.04 b |
3% | 0.03 ± 0.01 b | 86.83 ± 1.41 bc | 13.14 ± 1.41 b |
4% | 0.05 ± 0.02 ab | 87.67 ± 3.31 b | 12.28 ± 3.3 b |
5% | 0.07 ± 0.02 a | 99.93 ± 0.02 a | - |
6% | 0.07 ± 0.03 a | 99.93 ± 0.03 a | - |
Sample Name | Gel Strength (g·mm) | Hardness (g) | Springiness (cm) | Gumminess (g) | Chewiness (mJ) | Cohesiveness | WHC | Whiteness |
---|---|---|---|---|---|---|---|---|
Control | 2276.94 ± 121.62 d | 3363.11 ± 45.82 d | 8.99 ± 0.00 a | 2778.56 ± 5.21 d | 2498.68 ± 8.19 d | 0.83 ± 0.01 a | 82.39 ± 1.85 f | 81.45 ± 0.31 a |
C0 | 2327.28 ± 141.69 d | 3439.76 ± 41.41 d | 9.08 ± 0.01 a | 2864.74 ± 29.92 d | 2601.66 ± 35.69 cd | 0.83 ± 0.00 a | 84.40 ± 0.47 e | 76.85 ± 0.31 e |
C2 | 2354.61 ± 107.67 d | 3608.62 ± 64.26 c | 9.03 ± 0.03 a | 3012.90 ± 23.68 d | 2720.11 ± 106.41 bc | 0.84 ± 0.01 a | 85.20 ± 0.33 de | 77.76 ± 0.63 d |
C3 | 2470.32 ± 125.07 cd | 3775.74 ± 14.28 b | 9.05 ± 0.01 a | 3137.31 ± 53.47 d | 2837.85 ± 77.31 b | 0.83 ± 0.01 a | 86.28 ± 0.41 cd | 78.36 ± 0.11 d |
C4 | 2654.41 ± 107.10 bc | 3837.46 ± 30.98 b | 9.11 ± 0.01 a | 3149.79 ± 60.39 c | 2867.74 ± 39.98 b | 0.82 ± 0.02 a | 87.22 ± 0.55 bc | 78.46 ± 0.44 d |
C5 | 2766.86 ± 111.26 ab | 4111.54 ± 106.42 a | 9.14 ± 0.00 a | 3455.46 ± 152.53 b | 3157.24 ± 151.49 a | 0.84 ± 0.02 a | 88.31 ± 0.45 b | 79.35 ± 0.31 c |
C6 | 2916.58 ± 56.45 a | 4163.11 ± 89.49 a | 9.18 ± 0.02 a | 3481.12 ± 116.91 a | 3196.54 ± 133.86 a | 0.84 ± 0.01 a | 90.14 ± 0.40 a | 80.10 ± 0.17 b |
Samples | T2 Relaxation Peak Relative Area (%) | |||
---|---|---|---|---|
A21 | A22 | A23 | ||
A23a | A23b | |||
Control | 0.08 ± 0.01 c | 65.34 ± 1.50 d | 18.82 ± 1.28 b | 15.77 ± 2.56 |
C0 | 0.07 ± 0.01 c | 67.34 ± 0.22 c | 16.71 ± 0.34 c | 15.87 ± 0.40 |
C2 | 0.09 ± 0.01 bc | 77.78 ± 0.49 b | 22.13 ± 0.50 a | - |
C3 | 0.09 ± 0.01 bc | 79.57 ± 1.49 ab | 20.34 ± 1.50 ab | - |
C4 | 0.11 ± 0.02 ab | 80.08 ± 0.99 a | 19.80 ± 0.99 b | - |
C5 | 0.11 ± 0.02 a | 81.00 ± 0.64 a | 18.89 ± 0.63 b | - |
C6 | 0.13 ± 0.01 a | 80.99 ± 0.57 a | 18.88 ± 0.58 b | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Qu, Y.; Li, O.; Benjakul, S.; Zhou, A. Improvement of Gel Properties of Nemipterus virgatus Myofibrillar Protein Emulsion Gels by Curdlan: Development and Application to Emulsified Surimi. Gels 2025, 11, 753. https://doi.org/10.3390/gels11090753
Wu Z, Qu Y, Li O, Benjakul S, Zhou A. Improvement of Gel Properties of Nemipterus virgatus Myofibrillar Protein Emulsion Gels by Curdlan: Development and Application to Emulsified Surimi. Gels. 2025; 11(9):753. https://doi.org/10.3390/gels11090753
Chicago/Turabian StyleWu, Zhiqin, Yongyan Qu, Ouhongyi Li, Soottawat Benjakul, and Aimei Zhou. 2025. "Improvement of Gel Properties of Nemipterus virgatus Myofibrillar Protein Emulsion Gels by Curdlan: Development and Application to Emulsified Surimi" Gels 11, no. 9: 753. https://doi.org/10.3390/gels11090753
APA StyleWu, Z., Qu, Y., Li, O., Benjakul, S., & Zhou, A. (2025). Improvement of Gel Properties of Nemipterus virgatus Myofibrillar Protein Emulsion Gels by Curdlan: Development and Application to Emulsified Surimi. Gels, 11(9), 753. https://doi.org/10.3390/gels11090753