Rheological and Physicochemical Characterization of Structured Chia Oil: A Novel Approach Using a Low-Content Shellac Wax/Beeswax Blend as Oleogelant
Abstract
1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties of Structured ChO
2.1.1. Oil Binding Capacity, Firmness and Microstructure
2.1.2. Peroxide Value and Induction Period
2.2. Rheological Properties of Structured ChO
2.2.1. Shear Sweep
2.2.2. Strain Sweep
2.2.3. Frequency Sweep
2.2.4. Temperature Sweep
2.2.5. Thixotropic Properties
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Structured ChO
4.3. Oil Binding Capacity (OBC)
4.4. Texture Analysis
4.5. Confocal Laser Scanning and Optical Microscopy Analyses
4.6. Fourier Transform Infrared (FTIR) Spectroscopy
4.7. Lipid Oxidation
4.8. Oxidative Stability
4.9. Rheological Analysis
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saghafi, Z.; Naeli, M.H.; Bahmaei, M.; Tabibiazar, M.; Zargaraan, A. Zero-Trans Cake Shortening: Effects on Batter, Texture and Sensory Characteristics of High Ratio Cake. J. Food Meas. Charact. 2019, 13, 3040–3048. [Google Scholar] [CrossRef]
- Naeli, M.H.; Milani, J.M.; Farmani, J.; Zargaraan, A. Developing and Optimizing Low-Saturated Oleogel Shortening Based on Ethyl Cellulose and Hydroxypropyl Methyl Cellulose Biopolymers. Food Chem. 2022, 369, 130963. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.J.; Cerqueira, M.A.; Fasolin, L.H.; Cunha, R.L.; Vicente, A.A. Beeswax Organogels: Influence of Gelator Concentration and Oil Type in the Gelation Process. Food Res. Int. 2016, 84, 170–179. [Google Scholar] [CrossRef]
- Millao, S.; Iturra, N.; Contardo, I.; Morales, E.; Quilaqueo, M.; Rubilar, M. Structuring of Oils with High PUFA Content: Evaluation of the Formulation Conditions on the Oxidative Stability and Structural Properties of Ethylcellulose Oleogels. Food Chem. 2023, 405, 134772. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Akhilender Naidu, K.; Shang, X.; Keum, Y.-S. Omega−3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits—A Review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef]
- Winkler-Moser, J.K.; Hwang, H.-S.; Felker, F.C.; Byars, J.; Peterson, S. Increasing the Firmness of Wax-Based Oleogels Using Ternary Mixtures of Sunflower Wax with Beeswax:Candelilla Wax Combinations. J. Am. Oil Chem. Soc. 2023, 100, 387–402. [Google Scholar] [CrossRef]
- Pino, A.; Marchetti, L.; Lorenzo, G. Impact of Binary Mixtures of Natural Waxes in Mechanical Properties and Microstructure of Oleogels. J. Sci. Food Agric. 2024, 104, 6157–6165. [Google Scholar] [CrossRef]
- Lim, J.; Jeong, S.; Oh, I.K.; Lee, S. Evaluation of Soybean Oil-Carnauba Wax Oleogels as an Alternative to High Saturated Fat Frying Media for Instant Fried Noodles. LWT-Food Sci. Technol. 2017, 84, 788–794. [Google Scholar] [CrossRef]
- Patel, A.R. Shellac-Based Oleogels. In Edible Oleogels; Elsevier: Amsterdam, The Netherlands, 2018; pp. 173–192. ISBN 978-0-12-814270-7. [Google Scholar]
- Blake, A.I.; Co, E.D.; Marangoni, A.G. Structure and Physical Properties of Plant Wax Crystal Networks and Their Relationship to Oil Binding Capacity. J. Am. Oil Chem. Soc. 2014, 91, 885–903. [Google Scholar] [CrossRef]
- Doan, C.D.; Tavernier, I.; Okuro, P.K.; Dewettinck, K. Internal and External Factors Affecting the Crystallization, Gelation and Applicability of Wax-Based Oleogels in Food Industry. Innov. Food Sci. Emerg. Technol. 2018, 45, 42–52. [Google Scholar] [CrossRef]
- Patel, A.R.; Schatteman, D.; De Vos, W.H.; Lesaffer, A.; Dewettinck, K. Preparation and Rheological Characterization of Shellac Oleogels and Oleogel-Based Emulsions. J. Colloid Interface Sci. 2013, 411, 114–121. [Google Scholar] [CrossRef]
- Gao, Y.; Li, M.; Zhang, L.; Wang, Z.; Yu, Q.; Han, L. Preparation of Rapeseed Oil Oleogels Based on Beeswax and Its Application in Beef Heart Patties to Replace Animal Fat. LWT-Food Sci. Technol. 2021, 149, 111986. [Google Scholar] [CrossRef]
- Doan, C.D.; To, C.M.; De Vrieze, M.; Lynen, F.; Danthine, S.; Brown, A.; Dewettinck, K.; Patel, A.R. Chemical Profiling of the Major Components in Natural Waxes to Elucidate Their Role in Liquid Oil Structuring. Food Chem. 2017, 214, 717–725. [Google Scholar] [CrossRef]
- Yuan, Y.; He, N.; Xue, Q.; Guo, Q.; Dong, L.; Haruna, M.H.; Zhang, X.; Li, B.; Li, L. Shellac: A Promising Natural Polymer in the Food Industry. Trends Food Sci. Technol. 2021, 109, 139–153. [Google Scholar] [CrossRef]
- Puşcaş, A.; Mureşan, V. The Feasibility of Shellac Wax Emulsion Oleogels as Low-Fat Spreads Analyzed by Means of Multidimensional Statistical Analysis. Gels 2022, 8, 749. [Google Scholar] [CrossRef] [PubMed]
- Fei, T.; Wang, T. A Review of Recent Development of Sustainable Waxes Derived from Vegetable Oils. Curr. Opin. Food Sci. 2017, 16, 7–14. [Google Scholar] [CrossRef]
- Han, W.; Chai, X.; Liu, Y.; Xu, Y.; Tan, C.-P. Crystal Network Structure and Stability of Beeswax-Based Oleogels with Different Polyunsaturated Fatty Acid Oils. Food Chem. 2022, 381, 131745. [Google Scholar] [CrossRef]
- Patel, A.R.; Babaahmadi, M.; Lesaffer, A.; Dewettinck, K. Rheological Profiling of Organogels Prepared at Critical Gelling Concentrations of Natural Waxes in a Triacylglycerol Solvent. J. Agric. Food Chem. 2015, 63, 4862–4869. [Google Scholar] [CrossRef]
- Barroso, N.G.; Okuro, P.K.; Ribeiro, A.P.B.; Cunha, R.L. Tailoring Properties of Mixed-Component Oleogels: Wax and Monoglyceride Interactions Towards Flaxseed Oil Structuring. Gels 2020, 6, 5. [Google Scholar] [CrossRef]
- Kim, M.; Hwang, H.-S.; Jeong, S.; Lee, S. Utilization of Oleogels with Binary Oleogelator Blends for Filling Creams Low in Saturated Fat. LWT-Food Sci. Technol. 2022, 155, 112972. [Google Scholar] [CrossRef]
- Jeong, S.; Oh, I. Characterization of Mixed-Component Oleogels: Beeswax and Glycerol Monostearate Interactions towards Tenebrio Molitor Larvae Oil. Curr. Res. Food Sci. 2024, 8, 100689. [Google Scholar] [CrossRef]
- Pang, M.; Wang, X.; Cao, L.; Shi, Z.; Lei, Z.; Jiang, S. Structure and Thermal Properties of Β-sitosterol-beeswax-sunflower Oleogels. Int. J. Food Sci. Technol. 2020, 55, 1900–1908. [Google Scholar] [CrossRef]
- Morales, E.; Iturra, N.; Contardo, I.; Quilaqueo, M.; Franco, D.; Rubilar, M. Fat Replacers Based on Oleogelation of Beeswax/Shellac Wax and Healthy Vegetable Oils. LWT-Food Sci. Technol. 2023, 185, 115144. [Google Scholar] [CrossRef]
- Sivakanthan, S.; Fawzia, S.; Mundree, S.; Madhujith, T.; Karim, A. Optimization and Characterization of New Oleogels Developed Based on Sesame Oil and Rice Bran Oil. Food Hydrocoll. 2023, 142, 108839. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Z.; Chen, G.; Yao, J.; Zhang, X.; Qiu, X.; Liu, L. A Comprehensive Review: Impact of Oleogel Application on Food Texture and Sensory Properties. Food Sci. Nutr. 2024, 12, 3849–3862. [Google Scholar] [CrossRef]
- Pandolsook, S.; Kupongsak, S. Influence of Bleached Rice Bran Wax on the Physicochemical Properties of Organogels and Water-in-Oil Emulsions. J. Food Eng. 2017, 214, 182–192. [Google Scholar] [CrossRef]
- Millao, S.; Quilaqueo, M.; Contardo, I.; Rubilar, M. Enhancing the Oxidative Stability of Beeswax–Canola Oleogels: Effects of Ascorbic Acid and Alpha-Tocopherol on Their Physical and Chemical Properties. Gels 2025, 11, 43. [Google Scholar] [CrossRef]
- Thakur, D.; Singh, A.; Prabhakar, P.K.; Meghwal, M.; Upadhyay, A. Optimization and Characterization of Soybean Oil-Carnauba Wax Oleogel. LWT-Food Sci. Technol. 2022, 157, 113108. [Google Scholar] [CrossRef]
- Blake, A.I.; Toro-Vazquez, J.F.; Hwang, H.-S. Wax Oleogels. In Edible Oleogels; Elsevier: Amsterdam, The Netherlands, 2018; pp. 133–171. ISBN 978-0-12-814270-7. [Google Scholar]
- Aliasl Khiabani, A.; Tabibiazar, M.; Roufegarinejad, L.; Hamishehkar, H.; Alizadeh, A. Preparation and Characterization of Carnauba Wax/Adipic Acid Oleogel: A New Reinforced Oleogel for Application in Cake and Beef Burger. Food Chem. 2020, 333, 127446. [Google Scholar] [CrossRef]
- Fayaz, G.; Goli, S.A.H.; Kadivar, M.; Valoppi, F.; Barba, L.; Calligaris, S.; Nicoli, M.C. Potential Application of Pomegranate Seed Oil Oleogels Based on Monoglycerides, Beeswax and Propolis Wax as Partial Substitutes of Palm Oil in Functional Chocolate Spread. LWT—Food Sci. Technol. 2017, 86, 523–529. [Google Scholar] [CrossRef]
- Sundar, S.; Singh, B.; Kaur, A. Influence of Hot-Air and Infra-Red Pretreatments on Oxidative Stability, Physicochemical Properties, Phenolic and Fatty Acid Profile of White and Black Chia Seed (Salvia hispanica L.) Oil. J. Food Compos. Anal. 2023, 123, 105556. [Google Scholar] [CrossRef]
- Dominguez-Candela, I.; Lerma-Canto, A.; Cardona, S.C.; Lora, J.; Fombuena, V. Physicochemical Characterization of Novel Epoxidized Vegetable Oil from Chia Seed Oil. Materials 2022, 15, 3250. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Vongsvivut, J.; Tobin, M.J.; Adhikari, R.; Barrow, C.; Adhikari, B. Investigation of Oil Distribution in Spray-Dried Chia Seed Oil Microcapsules Using Synchrotron-FTIR Microspectroscopy. Food Chem. 2019, 275, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, A.; Kumar Rastogi, V. Spray Coating of Edible Insect Waxes for Liquid Food Packaging. Appl. Surf. Sci. 2023, 624, 157150. [Google Scholar] [CrossRef]
- CODEX-STAN 210; WHO Codex Standards for Fats and Oils from Vegetable Sources. FAO: Rome, Italy, 1990.
- Sobolev, R.; Frolova, Y.; Sarkisyan, V.; Makarenko, M.; Kochetkova, A. Effect of Beeswax and Combinations of Its Fractions on the Oxidative Stability of Oleogels. Food Biosci. 2022, 48, 101744. [Google Scholar] [CrossRef]
- Hwang, H.; Fhaner, M.; Winkler-Moser, J.K.; Liu, S.X. Oxidation of Fish Oil Oleogels Formed by Natural Waxes in Comparison with Bulk Oil. Eur. J. Lipid Sci. Technol. 2018, 120, 1700378. [Google Scholar] [CrossRef]
- Öğütcü, M.; Yılmaz, E. Characterization of Hazelnut Oil Oleogels Prepared with Sunflower and Carnauba Waxes. Int. J. Food Prop. 2015, 18, 1741–1755. [Google Scholar] [CrossRef]
- Frolova, Y.; Sobolev, R.; Sarkisyan, V.; Kochetkova, A. Investigation of the Effect of Hydrocarbons and Monoesters in the Gelators’ Composition on the Properties of Edible Oleogel. Grain Oil Sci. Technol. 2024, 7, 96–104. [Google Scholar] [CrossRef]
- Aydeniz Guneser, B.; Yılmaz, E.; Uslu, E.K. Sunflower Oil–Beeswax Oleogels Are Promising Frying Medium for Potato Strips. Eur. J. Lipid Sci. Technol. 2021, 123, 2100063. [Google Scholar] [CrossRef]
- Jiang, Q.; Yu, Z.; Meng, Z. Double Network Oleogels Co-Stabilized by Hydroxypropyl Methylcellulose and Monoglyceride Crystals: Baking Applications. Int. J. Biol. Macromol. 2022, 209, 180–187. [Google Scholar] [CrossRef]
- Yılmaz, E.; Öğütcü, M. Comparative Analysis of Olive Oil Organogels Containing Beeswax and Sunflower Wax with Breakfast Margarine. J. Food Sci. 2014, 79, E1732–E1738. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, B.; Varidi, M.; Assadpour, E.; Zhang, F.; Jafari, S.M. Natural Oleogelators for the Formulation of Oleogels by Considering Their Rheological and Textural Perspective; a Review. Int. J. Biol. Macromol. 2024, 259, 129246. [Google Scholar] [CrossRef]
- Chóez-Guaranda, I.; Mosi-Roa, Y.; Chacón-Fuentes, M.; Garrido-Miranda, K.; Opazo-Navarrete, M.; Coronel-León, J.; Burgos-Díaz, C. Enhancing the Oxidative Stability of Flaxseed Oil Using Food-Grade O/W Pickering Emulsions Stabilized by Antioxidant-Rich Cocoa Byproduct Particles. Appl. Food Res. 2025, 5, 101027. [Google Scholar] [CrossRef]
- Yılmaz, M.T.; Kutlu, G.; Tulukcu, E.; Toker, O.S.; Sagdic, O.; Karaman, S. Rheological characteristics of Salvia sclarea seed gum solutions at different hydration temperature levels: Application of three interval thixotropy test (3ITT). LWT-Food Sci. Technol. 2016, 71, 391–399. [Google Scholar] [CrossRef]
Samples | OBC (%) | Firmness (g) | PV (meq O2/Kg Sample) | IP90 °C (h) |
---|---|---|---|---|
SW/BW 1% | 43.6 ± 1.23 e | nd | 3.66 ± 0.23 bcd | 2.22 ± 0.01 abc |
SW/BW 3% | 75.6 ± 1.12 c | 16.9 ± 0.37 d | 3.19 ± 0.20 abc | 2.24 ± 0.03 abc |
SW/BW 5% | 88.4 ± 1.01 ab | 55.1 ± 4.15 b | 3.12 ± 0.20 ab | 2.38 ± 0.15 abc |
SW 1% | 39.8 ± 0.71 f | nd | 3.86 ± 0.23 d | 1.93 ± 0.37 c |
SW 3% | 67.3 ± 0.29 f | 9.59 ± 0.95 d | 3.85 ± 0.12 d | 1.87 ± 0.27 c |
SW 5% | 87.6 ± 1.65 f | 31.6 ± 1.91 c | 3.79 ± 0.20 d | 2.19 ± 0.07 abc |
BW 1% | 10.0 ± 1.24 g | nd | 3.45 ± 0.11 bcd | 2.22 ± 0.15 abc |
BW 3% | 66.3 ± 1.04 d | 46.6 ± 2.89 b | 3.45 ± 0.30 bcd | 2.71 ± 0.31 ab |
BW 5% | 91.3 ± 0.53 a | 134.8 ± 6.37 a | 2.73 ± 0.12 a | 2.79 ± 0.40 a |
ChO | − | − | 3.71 ± 0.11 cd | 2.09 ± 0.09 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, E.; Marilaf, K.; Rubilar, M.; Contardo, I.; Quilaqueo, M.; Millao, S.; Bustamante, M.; Burgos-Díaz, C.; Garrido-Miranda, K. Rheological and Physicochemical Characterization of Structured Chia Oil: A Novel Approach Using a Low-Content Shellac Wax/Beeswax Blend as Oleogelant. Gels 2025, 11, 680. https://doi.org/10.3390/gels11090680
Morales E, Marilaf K, Rubilar M, Contardo I, Quilaqueo M, Millao S, Bustamante M, Burgos-Díaz C, Garrido-Miranda K. Rheological and Physicochemical Characterization of Structured Chia Oil: A Novel Approach Using a Low-Content Shellac Wax/Beeswax Blend as Oleogelant. Gels. 2025; 11(9):680. https://doi.org/10.3390/gels11090680
Chicago/Turabian StyleMorales, Eduardo, Katerine Marilaf, Mónica Rubilar, Ingrid Contardo, Marcela Quilaqueo, Sonia Millao, Mariela Bustamante, César Burgos-Díaz, and Karla Garrido-Miranda. 2025. "Rheological and Physicochemical Characterization of Structured Chia Oil: A Novel Approach Using a Low-Content Shellac Wax/Beeswax Blend as Oleogelant" Gels 11, no. 9: 680. https://doi.org/10.3390/gels11090680
APA StyleMorales, E., Marilaf, K., Rubilar, M., Contardo, I., Quilaqueo, M., Millao, S., Bustamante, M., Burgos-Díaz, C., & Garrido-Miranda, K. (2025). Rheological and Physicochemical Characterization of Structured Chia Oil: A Novel Approach Using a Low-Content Shellac Wax/Beeswax Blend as Oleogelant. Gels, 11(9), 680. https://doi.org/10.3390/gels11090680