TEMPO-Oxidized Cellulose Hydrogels Loaded with Copper Nanoparticles as Highly Efficient and Reusable Catalysts for Organic Pollutant Reduction
Abstract
1. Introduction
2. Results and Discussion
2.1. Basic Properties of Tempo-Oxidized Cellulose Hydrogel
2.2. Synthesis and Characterization of Cu NP-Loaded Cellulose Hydrogel
2.3. Catalytic Performance of Cu-Loaded Cellulose Hydrogel
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Tempo-Oxidized Cellulose Hydrogels
4.3. Preparation of the Cu NP-Loaded Cellulose Hydrogels
4.4. Catalytic Performance of Cu NP-Loaded Cellulose Hydrogels
4.5. Characterization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devadas, A.; Vasudevan, S.; Epron, F. Nitrate reduction in water: Influence of the addition of a second metal on the performances of the Pd/CeO2 catalyst. J. Hazard. Mater. 2011, 185, 1412–1417. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, L.; Zhu, T.; Ning, R. Catalytic oxidation of chlorobenzene over noble metals (Pd, Pt, Ru, Rh) and the distributions of polychlorinated by-products. J. Hazard. Mater. 2019, 363, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Salamatmanesh, A.; Heydari, A.; Nahzomi, H. Stabilizing Pd on magnetic phosphine-functionalized cellulose: DFT study and catalytic performance under deep eutectic solvent assisted conditions. Carbohydr. Polym. 2020, 235, 115947. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Lee, M.; Lee, S.N.; Kim, T.; Oh, B. Noble Metal Nanomaterial-Based Biosensors for Electrochemical and Optical Detection of Viruses Causing Respiratory Illnesses. Front. Chem. 2021, 9, 672739. [Google Scholar] [CrossRef]
- Singh, H.; Bamrah, A.; Bhardwaj, S.K.; Deep, A.; Bhardwaj, N. Recent advances in the application of noble metal nanoparticles in colorimetric sensors for lead ions. Environ. Sci. Nano 2021, 8, 863–889. [Google Scholar] [CrossRef]
- Chen, J.B.; Yousefi, H.; Nemr, C.R.; Gomis, S.; Atwal, R.; Labib, M.; Sargent, E.; Kelley, S.O. Nanostructured Architectures for Biomolecular Detection inside and outside the Cell. Adv. Funct. Mater. 2020, 30, 1907701. [Google Scholar] [CrossRef]
- Lv, Z.Q.; He, S.; Wang, Y.; Zhu, X. Noble Metal Nanomaterials for NIR-Triggered Photothermal Therapy in Cancer. Adv. Healthc. Mater. 2021, 10, 2001806. [Google Scholar] [CrossRef]
- Das, R.; Sypu, V.S.; Paumo, H.K.; Bhaumik, M.; Maharaj, V.; Maity, A. Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Appl. Catal. B Environ. 2019, 244, 546–558. [Google Scholar] [CrossRef]
- Qi, L.; Zhang, K.; Qin, W.; Hu, Y. Highly efficient flow-through catalytic reduction of methylene blue using silver nanoparticles functionalized cotton. Chem. Eng. J. 2020, 388, 124252. [Google Scholar] [CrossRef]
- Mallikarjuna, K.; Raju, B.D.P.; Park, S.; Kim, H. Synthesis and Catalytic Activity of Alkylamine-Capped Ultra-small Palladium Nanoparticles for Organic Pollutant Degradation. J. Clust. Sci. 2017, 28, 2833–2846. [Google Scholar] [CrossRef]
- Mata, R.; Bhaskaran, A.; Sadras, S.R. Green-synthesized gold nanoparticles from Plumeria alba flower extract to augment catalytic degradation of organic dyes and inhibit bacterial growth. Particuology 2016, 24, 78–86. [Google Scholar] [CrossRef]
- Pandey, S.; Do, J.Y.; Kim, J.; Kang, M. Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst. Carbohydr. Polym. 2020, 230, 115597. [Google Scholar] [CrossRef] [PubMed]
- Khodadadi, B.; Bordbar, M.; Nasrollahzadeh, M. Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes. J. Colloid Interface Sci. 2017, 490, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.J.; Khan, S.B.; Kamal, T.; Asiri, A.M. Agarose biopolymer coating on polyurethane sponge as host for catalytic silver metal nanoparticles. Polym. Test. 2019, 78, 105983. [Google Scholar] [CrossRef]
- Mishakov, L.V.; Bauman, Y.I.; Brzhezinskaya, M.; Netskina, O.V.; Shubin, Y.V.; Kibis, L.S.; Stoyanovskii, V.O.; Larionov, K.B.; Serkova, A.N.; Vedyagin, A.A. Water purification from chlorobenzenes using heteroatom-functionalized carbon nanofibers produced on self-organizing Ni-Pd catalyst. J. Environ. Chem. Eng. 2022, 10, 107873. [Google Scholar] [CrossRef]
- Rong, J.; Qiu, F.; Zhang, T.; Zhu, Y.; Xu, J.; Guo, Q.; Peng, X. Non-noble metal@carbon nanosheet derived from exfoliated MOF crystal as highly reactive and stable heterogeneous catalyst. Appl. Surf. Sci. 2018, 447, 222–234. [Google Scholar] [CrossRef]
- Baye, A.F.; Appiah-Ntiamoah, R.; Kim, H. Synergism of transition metal (Co, Ni, Fe, Mn) nanoparticles and “active support” Fe3O4@C for catalytic reduction of 4-nitrophenol. Sci. Total Environ. 2020, 712, 135492. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, Y.; Wu, F.; Niu, H.; Tang, Z.; Cai, Y.; Giesy, J.P. Cu/Cu2O/CuO loaded on the carbon layer derived from novel precursors with amazing catalytic performance. Sci. Total Environ. 2016, 571, 380–387. [Google Scholar] [CrossRef]
- Fathima, J.B.; Pugazhendhi, A.; Oves, M.; Venis, R. Synthesis of eco-friendly copper nanoparticles for augmentation of catalytic degradation of organic dyes. J. Mol. Liq. 2018, 260, 1–8. [Google Scholar] [CrossRef]
- Xu, X.; Jia, K.; Chen, S.; Lang, D.; Yang, C.; Wang, L.; Wu, R.; Wang, W.; Wang, J. Ultra-fast degradation of phenolics and dyes by Cu2O/Cu catalysts: Synthesis and degradation kinetics. J. Environ. Chem. Eng. 2021, 9, 105505. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, N.; Lai, J.; Liu, R.; Liu, X. Tannic acid functionalized graphene hydrogel for entrapping gold nanoparticles with high catalytic performance toward dye reduction. J. Hazard. Mater. 2015, 300, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Zahoor, C.; Musaddiq, S.; Hussain, M.; Begum, R.; Irfan, A.; Azam, M.; Faroqi, Z.H. Silver nanoparticles stabilized in polymer hydrogels for catalytic degradation of azo dyes. Ecotoxicol. Environ. Saf. 2020, 202, 110924. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Basu, K.; Das, K.S.; Banerjee, A. Peptide-Based Hydrogels as a Scaffold for In Situ Synthesis of Metal Nanoparticles: Catalytic Activity of the Nanohybrid System. ChemNanoMat 2018, 4, 882–887. [Google Scholar] [CrossRef]
- Zhang, R.R.; Yin, Q.; Liang, H.P.; Chen, Q.; Luo, W.H.; Han, B.H. Hypercrosslinked porous polycarbazoles from carbazolyl-bearing aldehydes or ketones. Polymer 2018, 143, 87–95. [Google Scholar] [CrossRef]
- Godiya, C.B.; Cheng, X.; Li, D.; Chen, Z.; Lu, X. Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J. Hazard. Mater. 2019, 364, 28–38. [Google Scholar] [CrossRef]
- Zainal, S.H.; Mohd, N.H.; Suhaili, N.; Anuar, F.H.; Lazim, A.M.; Othaman, R. Preparation of cellulose-based hydrogel: A review. J. Mater. Res. Technol. 2021, 10, 935–952. [Google Scholar] [CrossRef]
- Wu, C.; Li, J.; Zhang, Y.; Li, X.; Wang, S.; Li, D. Cellulose Dissolution, Modification, and the Derived Hydrogel: A Review. ChemSusChem 2023, 16, e202300518. [Google Scholar] [CrossRef]
- Isobe, N.; Komamiya, T.; Kimura, S.; Kim, U.J.; Wada, M. Cellulose hydrogel with tunable shape and mechanical properties: From rigid cylinder to soft scaffold. Int. J. Biol. Macromol. 2018, 117, 625–631. [Google Scholar] [CrossRef]
- Yang, Y.J.; Shin, J.M.; Kang, T.H.; Kimura, S.; Wada, M.; Kim, U.J. Cellulose dissolution in aqueous lithium bromide solutions. Cellulose 2014, 21, 1175–1181. [Google Scholar] [CrossRef]
- Kim, H.J.; Yang, Y.J.; Oh, H.J.; Kimura, S.; Wada, M.; Kim, U.J. Cellulose–silk fibroin hydrogels prepared in a lithium bromide aqueous solution. Cellulose 2017, 24, 5079–5088. [Google Scholar] [CrossRef]
- Xi, Y.; Zhang, L.; Tian, Y.; Song, J.; Ma, J.; Wang, Z. Rapid dissolution of cellulose in an AlCl3/ZnCl2 aqueous system at room temperature and its versatile adaptability in functional materials. Green Chem. 2022, 24, 885–897. [Google Scholar] [CrossRef]
- Hishikawa, Y.; Togawa, E.; Kondo, T. Characterization of individual hydrogen bonds in crystalline regenerated cellulose using resolved polarized FTIR spectra. ACS Omega 2017, 2, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Lin, X.; Yu, M.; Mondal, A.K.; Wu, H. Recent advances in TEMPO-oxidized cellulose nanofibers: Oxidation mechanism, characterization, properties and applications. Int. J. Biol. Macromol. 2024, 259, 129081. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Issaabadi, Z.; Sajadi, S.M. Green synthesis of Cu/Al2O3 nanoparticles as efficient and recyclable catalyst for reduction of 2,4-dinitrophenylhydrazine, Methylene blue and Congo red. Compos. Part B 2019, 166, 112–119. [Google Scholar] [CrossRef]
- Gangula, A.; Podila, R.; Ramakrishna, M.; Karanam, L.; Janardhana, C.; Rao, A.M. Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from breynia rhamnoides. Langmuir 2011, 27, 15268–15274. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Y. Eco-friendly floatable foam hydrogel for the adsorption of heavy metal ions and use of the generated waste for the catalytic reduction of organic dyes. Soft Matter 2020, 16, 6914–6923. [Google Scholar] [CrossRef]
- Marcuello, C.; Foulon, L.; Chabbert, B.; Aguié-Béghin, V.; Molinari, M. Atomic force microscopy reveals how relative humidity impacts the Young’s modulus of lignocellulosic polymers and their adhesion with cellulose nanocrystals at the nanoscale. Int. J. Biol. Macromol. 2020, 147, 1064–1075. [Google Scholar] [CrossRef]
- Isobe, N.; Chen, X.; Kim, U.J.; Kimura, S.; Wada, M.; Saito, T.; Isogai, A. TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent. J. Hazard. Mater. 2013, 260, 195–201. [Google Scholar] [CrossRef]
- Wang, N.; Wen, Q.; Liu, L.; Xu, J.; Zheng, J.; Yue, M.; Asiri, A.M.; Marwani, H.M.; Zhang, M. One dimensional hierarchical nanoflakes with nickel-immobilization for high performance catalysis and histidine-rich protein adsorption. Dalton Trans. 2019, 48, 11308. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, Y.; Yu, X. TEMPO-Oxidized Cellulose Hydrogels Loaded with Copper Nanoparticles as Highly Efficient and Reusable Catalysts for Organic Pollutant Reduction. Gels 2025, 11, 512. https://doi.org/10.3390/gels11070512
Zhang Y, Li Y, Yu X. TEMPO-Oxidized Cellulose Hydrogels Loaded with Copper Nanoparticles as Highly Efficient and Reusable Catalysts for Organic Pollutant Reduction. Gels. 2025; 11(7):512. https://doi.org/10.3390/gels11070512
Chicago/Turabian StyleZhang, Yangyang, Yuanyuan Li, and Xuejun Yu. 2025. "TEMPO-Oxidized Cellulose Hydrogels Loaded with Copper Nanoparticles as Highly Efficient and Reusable Catalysts for Organic Pollutant Reduction" Gels 11, no. 7: 512. https://doi.org/10.3390/gels11070512
APA StyleZhang, Y., Li, Y., & Yu, X. (2025). TEMPO-Oxidized Cellulose Hydrogels Loaded with Copper Nanoparticles as Highly Efficient and Reusable Catalysts for Organic Pollutant Reduction. Gels, 11(7), 512. https://doi.org/10.3390/gels11070512