Effect of Calcination Temperature and Strontium Addition on the Properties of Sol-Gelled Bioactive Glass Powder
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Calcination Temperature and Strontium Addition on SBG
2.2. In Vitro Mineralization of SBG Powder
2.3. Biocompatibility and Cytotoxicity of SBG
3. Conclusions
4. Materials and Methods
4.1. Preparation of SBG Powder
4.2. Characterization of SBG Powder
4.3. In Vitro Mineralization and Biocompatibility of SBG Powders
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, J.R. Review of bioactive glass: From Hench to hybrids. Acta Biomater 2013, 9, 4457–4486. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.Z.; Rezabeigi, E.; Drew, R.A. Crystallization behavior of combeite in 45S5 Bioglass® via controlled heat treatment. J. Non-Cryst. Solids 2018, 502, 176–183. [Google Scholar] [CrossRef]
- Gavinho, S.; Graça, M.; Prezas, P.; Kumar, J.S.; Melo, B.; Sales, A.; Almeida, A.; Valente, M. Structural, thermal, morphological and dielectric investigations on 45S5 glass and glass-ceramics. J. Non-Cryst. Solids 2021, 562, 120780. [Google Scholar] [CrossRef]
- Ma, J.; Wu, L.; Liu, X.; Wang, C.; Huang, B.; Zhao, X.; Ban, C.; Hao, X. Influence of the substitution of CaO by SrO on the structure, degradation and in vitro apatite formation of sol–gel derived SiO2–CaO–SrO–P2O5 system bioactive glasses. Ceram. Int. 2024, 50, 55906–55919. [Google Scholar] [CrossRef]
- Wu, X.L.; Meng, G.L.; Wang, S.L.; Wu, F.; Huang, W.X.; Gu, Z.W. Zn and Sr incorporated 64S bioglasses: Material characterization, in-vitro bioactivity and mesenchymal stem cell responses. Mater. Sci. Eng. C-Mater. Biol. Appl. 2015, 52, 242–250. [Google Scholar] [CrossRef]
- Akhtach, S.; Tabia, Z.; Bricha, M.; El Mabrouk, K. Structural characterization, in vitro bioactivity, and antibacterial evaluation of low silver-doped bioactive glasses. Ceram. Int. 2021, 47, 29036–29046. [Google Scholar] [CrossRef]
- Taye, M.B.; Ningsih, H.S.; Shih, S.-J. Antibacterial and in vitro bioactivity studies of silver-doped, cerium-doped, and silver–cerium co-doped 80S mesoporous bioactive glass particles via spray pyrolysis. Appl. Sci. 2023, 13, 12637. [Google Scholar] [CrossRef]
- Pawar, V.; Shinde, V. Bioglass and hybrid bioactive material: A review on the fabrication, therapeutic potential and applications in wound healing. Hybrid Adv. 2024, 6, 100196. [Google Scholar] [CrossRef]
- Owoeye, S.S.; Folorunso, D.O.; Aramide, F.; Olaniran, O.; Okotie, B. Microwave irradiation melt-quenching preparation of 45S5 bioglass using biogenic wastes as alternative materials. Biomed. Mater. Devices 2024, 3, 463–473. [Google Scholar] [CrossRef]
- Ningsih, H.S.; Liu, Y.-C.; Chen, J.-W.; Chou, Y.-J. Effects of strontium dopants on the in vitro bioactivity and cytotoxicity of strontium-doped spray-dried bioactive glass microspheres. J. Non-Cryst. Solids 2022, 576, 121284. [Google Scholar] [CrossRef]
- Nakanishi, A.; Ningsih, H.S.; Putra, D.F.A.; Moriga, T.; Shih, S.-J. Fabrication and Characterization of Granulated β-Tricalcium Phosphate and Bioactive Glass Powders by Spray Drying. J. Compos. Sci. 2024, 8, 111. [Google Scholar] [CrossRef]
- Workie, A.B.; Sefene, E.M. Ion-doped mesoporous bioactive glass: Preparation, characterization, and applications using the spray pyrolysis method. RSC Adv. 2022, 12, 1592–1603. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.-Y.; Tsai, P.-Y.; Chen, M.-S.; Mine, Y.; Wu, S.-H.; Chen, C.-Y.; Lin, D.-J.; Lin, C.-K. Mesoporous properties of bioactive glass synthesized by spray pyrolysis with various polyethylene glycol and acid additions. Polymers 2021, 13, 618. [Google Scholar] [CrossRef]
- Bahati, D.; Bricha, M.; El Mabrouk, K. Synthesis, characterization, and in vitro apatite formation of strontium-doped sol-gel-derived bioactive glass nanoparticles for bone regeneration applications. Ceram. Int. 2023, 49, 23020–23034. [Google Scholar] [CrossRef]
- Moghanian, A.; Tajer, M.H.M.; Zohourfazeli, M.; Miri, Z.; Yazdi, M. Sol-gel derived silicate-based bioactive glass: Studies of synergetic effect of zirconium and magnesium on structural and biological characteristics. J. Non-Cryst. Solids 2021, 554, 120613. [Google Scholar] [CrossRef]
- Taye, M.B.; Ningsih, H.S.; Shih, S.-J. Exploring the advancements in surface-modified bioactive glass: Enhancing antibacterial activity, promoting angiogenesis, and modulating bioactivity. J. Nanoparticle Res. 2024, 26, 28. [Google Scholar] [CrossRef]
- Neščáková, Z.; Zheng, K.; Liverani, L.; Nawaz, Q.; Galusková, D.; Kaňková, H.; Michálek, M.; Galusek, D.; Boccaccini, A.R. Multifunctional zinc ion doped sol–gel derived mesoporous bioactive glass nanoparticles for biomedical applications. Bioact. Mater. 2019, 4, 312–321. [Google Scholar] [CrossRef]
- Pantulap, U.; Arango-Ospina, M.; Boccaccini, A.R. Bioactive glasses incorporating less-common ions to improve biological and physical properties. J. Mater. Sci. Mater. Med. 2022, 33, 3. [Google Scholar] [CrossRef]
- Rabiee, S.M.; Nazparvar, N.; Azizian, M.; Vashaee, D.; Tayebi, L. Effect of ion substitution on properties of bioactive glasses: A review. Ceram. Int. 2015, 41, 7241–7251. [Google Scholar] [CrossRef]
- Silva, A.V.; Gomes, D.d.S.; Victor, R.d.S.; Santana, L.N.d.L.; Neves, G.A.; Menezes, R.R. Influence of strontium on the biological behavior of bioactive glasses for bone regeneration. Materials 2023, 16, 7654. [Google Scholar] [CrossRef]
- Moghanian, A.; Firoozi, S.; Tahriri, M. Characterization, in vitro bioactivity and biological studies of sol-gel synthesized SrO substituted 58S bioactive glass. Ceram. Int. 2017, 43, 14880–14890. [Google Scholar] [CrossRef]
- Goudarzi, Z.; Ijadi, A.; Bakhriari, A.; Eskandarinezhad, S.; Azizabadi, N.; Asgari Jazi, M. Sr-doped bioactive glasses for biological applications. J. Compos. Compd. 2020, 2, 105–109. [Google Scholar] [CrossRef]
- Maçon, A.L.; Lee, S.; Poologasundarampillai, G.; Kasuga, T.; Jones, J.R. Synthesis and dissolution behaviour of CaO/SrO-containing sol–gel-derived 58S glasses. J. Mater. Sci. 2017, 52, 8858–8870. [Google Scholar] [CrossRef]
- Hu, Q.; Jiang, W.H.; Chen, X.F.; Li, Y.L.; Liang, Q.M. The effects of Sr concentration on physicochemical properties, bioactivity and biocompatibility of sub-micron bioactive glasses spheres. Adv. Powder Technol. 2017, 28, 2713–2722. [Google Scholar] [CrossRef]
- El Baakili, S.; El Mabrouk, K.; Bricha, M. Acellular bioactivity and drug delivery of new strontium doped bioactive glasses prepared through a hydrothermal process. RSC Adv. 2022, 12, 15361–15372. [Google Scholar] [CrossRef]
- MacKenzie, K.J.; Rahner, N.; Smith, M.E.; Wong, A. Calcium-containing inorganic polymers as potential bioactive materials. J. Mater. Sci. 2010, 45, 999–1007. [Google Scholar] [CrossRef]
- Raja, N.; Park, H.; Choi, Y.-J.; Yun, H.-s. Multifunctional calcium-deficient hydroxyl apatite–alginate core–shell-structured bone substitutes as cell and drug delivery vehicles for bone tissue regeneration. ACS Biomater. Sci. Eng. 2021, 7, 1123–1133. [Google Scholar] [CrossRef]
- Kuo, C.-K.; Chen, L.-G.; Tseng, C.-F.; Chou, Y.-J. Influences of acid catalysts on the microstructure, bioactivity and cytotoxicity of bioactive glass nanoparticles prepared by spray pyrolysis. J. Non-Cryst. Solids 2021, 560, 120710. [Google Scholar] [CrossRef]
- Intawin, P.; Eitssayeam, S.; Tunkasiri, T.; Pengpat, K. Crystallization kinetics and heat treatment temperature on microstructure and properties of Na2O-CaO-P2O5 bioactive glass system. Ceram. Int. 2018, 44, S203–S206. [Google Scholar] [CrossRef]
- Kaygili, O.; Keser, S.; Tatar, C.; Koytepe, S.; Ates, T. Investigation of the structural and thermal properties of Y, Ag and Ce-assisted SiO2–Na2O–CaO–P2O5-based glasses derived by sol–gel method. J. Therm. Anal. Calorim. 2017, 128, 765–770. [Google Scholar] [CrossRef]
- Solgi, S.; Khakbiz, M.; Shahrezaee, M.; Zamanian, A.; Tahriri, M.; Keshtkari, S.; Raz, M.; Khoshroo, K.; Moghadas, S.; Rajabnejad, A. Synthesis, characterization and in vitro biological evaluation of sol-gel derived Sr-containing nano bioactive glass. Silicon 2017, 9, 535–542. [Google Scholar] [CrossRef]
- Baldovino-Medrano, V.G.; Niño-Celis, V.; Giraldo, R.I. Systematic Analysis of the Nitrogen Adsorption-Desorption Isotherms Recorded for a Series of Materials Based on Microporous-Mesoporous Amorphous Aluminosilicates Using Classical Methods. J. Chem. Eng. Data 2023, 68, 2512–2528. [Google Scholar] [CrossRef]
- Jones, J.R.; Ehrenfried, L.M.; Hench, L.L. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 2006, 27, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Moghanian, A.; Zohourfazeli, M.; Tajer, M.H.M.; Miri, Z.; Hosseini, S.; Rashvand, A. Preparation, characterization and in vitro biological response of simultaneous co-substitution of Zr+ 4/Sr+ 2 58S bioactive glass powder. Ceram. Int. 2021, 47, 23762–23769. [Google Scholar] [CrossRef]
- Maciel, P.P.; Pessôa, J.A.M.; Medeiros, E.L.G.d.; Batista, A.U.D.; Figueiredo, L.R.F.; Medeiros, E.S.d.; Duarte, D.F.d.O.; Alves, A.F.; Sousa, F.B.d.; Vieira, B.R.; et al. Use of strontium doping glass-ceramic material for bone regeneration in critical defect: In vitro and in vivo analyses. Ceram. Int. 2020, 46, 24940–24954. [Google Scholar] [CrossRef]
- Leite, A.J.; Goncalves, A.I.; Rodrigues, M.T.; Gomes, M.E.; Mano, J.F. Strontium-Doped Bioactive Glass Nanoparticles in Osteogenic Commitment. ACS Appl Mater Interfaces 2018, 10, 23311–23320. [Google Scholar] [CrossRef]
- Yadav, A.; Sathala, P.; Divate, M.; Chenkul, L.; Nupur, N.; Upmanyu, N.; Porwal, P.K. Deciphering solid state photostability of polymyxin B using deconvolution based FTIR insights. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 339, 126256. [Google Scholar] [CrossRef]
- Reyes-Rivera, J.; Terrazas, T. Lignin Analysis by HPLC and FTIR: Spectra Deconvolution and S/G Ratio Determination. In Xylem: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2023; pp. 149–169. [Google Scholar]
- Gieroba, B.; Przekora, A.; Kalisz, G.; Kazimierczak, P.; Song, C.L.; Wojcik, M.; Ginalska, G.; Kazarian, S.G.; Sroka-Bartnicka, A. Collagen maturity and mineralization in mesenchymal stem cells cultured on the hydroxyapatite-based bone scaffold analyzed by ATR-FTIR spectroscopic imaging. Mater. Sci. Eng. C 2021, 119, 111634. [Google Scholar] [CrossRef]
- Copete, H.; López, E.; Baudin, C. Synthesis and characterization of B-type carbonated hydroxyapatite materials: Effect of carbonate content on mechanical strength and in vitro degradation. Boletín de la Soc. Española de Cerámica y Vidr. 2024, 63, 255–267. [Google Scholar] [CrossRef]
- Mano, T.; Akita, K.; Fukuda, N.; Kamada, K.; Kurio, N.; Ishikawa, K.; Miyamoto, Y. Histological comparison of three apatitic bone substitutes with different carbonate contents in alveolar bone defects in a beagle mandible with simultaneous implant installation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 1450–1459. [Google Scholar] [CrossRef]
- Cho, Y.S.; Heo, C.M.; Gebauer, D.; Yang, S.H. Control of Hydroxyapatite Mineralization in an Orthogonal Diffusion System. Cryst. Growth Des. 2025, 25, 2960–2969. [Google Scholar] [CrossRef]
- ISO10993-5; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. ISO: Geneva, Switzerland, 2009.
- Chen, Y.-Y.; Ma, T.-L.; Chang, P.-J.; Chiou, Y.-J.; Chang, W.-M.; Weng, C.-F.; Chen, C.-Y.; Chang, Y.-K.; Lin, C.-K. Synergistic Effect of Strontium Doping and Surfactant Addition in Mesoporous Bioactive Glass for Enhanced Osteogenic Bioactivity and Advanced Bone Regeneration. Polymers 2025, 17, 187. [Google Scholar] [CrossRef] [PubMed]
- Amudha, S.; Ramya, J.R.; Arul, K.T.; Deepika, A.; Sathiamurthi, P.; Mohana, B.; Asokan, K.; Dong, C.-L.; Kalkura, S.N. Enhanced mechanical and biocompatible properties of strontium ions doped mesoporous bioactive glass. Compos. Part B Eng. 2020, 196, 108099. [Google Scholar] [CrossRef]
- Meng, L.; Zhao, P.; Jiang, Y.; You, J.; Xu, Z.; Yu, K.; Boccaccini, A.R.; Ma, J.; Zheng, K. Extracellular and intracellular effects of bioactive glass nanoparticles on osteogenic differentiation of bone marrow mesenchymal stem cells and bone regeneration in zebrafish osteoporosis model. Acta Biomater. 2024, 174, 412–427. [Google Scholar] [CrossRef]
- Gentleman, E.; Fredholm, Y.C.; Jell, G.; Lotfibakhshaiesh, N.; O’Donnell, M.D.; Hill, R.G.; Stevens, M.M. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 2010, 31, 3949–3956. [Google Scholar] [CrossRef]
- Oyane, A.; Kim, H.M.; Furuya, T.; Kokubo, T.; Miyazaki, T.; Nakamura, T. Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res. Part A 2003, 65, 188–195. [Google Scholar] [CrossRef]
Sample | Composition | Percentage (wt.%) * | PDF Card No |
---|---|---|---|
As prepared | amorphous | 100% | - |
400 °C | Ca9HPO4(PO4)5OH Ca2SiO4 CaCO3 | 47.5% 39.4% 13.0% | PDF 46-0905 PDF 29-0369 PDF 05-0586 |
500 °C | Ca2SiO4 Ca9HPO4(PO4)5OH CaCO3 | 47.4% 45.9% 6.6% | PDF 29-0369 PDF 46-0905 PDF 05-0586 |
575 °C | Ca10(PO4)6O | 100% | PDF 89-6495 |
650 °C | Ca14.92(PO4)2.35(SiO4)5.65 | 100% | PDF 83-1494 |
Sample | Composition | Percentage (wt.%) * | PDF Card No |
---|---|---|---|
As prepared | Ca0.33Sr0.67(NO3)2 Sr(NO3)2 | 69.4% 35.1% | PDF 26-1073 PDF 25-0746 |
400 °C | Ca0.33Sr0.67(NO3)2 Ca2SiO4 | 86.0% 14.0% | PDF 26-1073 PDF 29-0369 |
500 °C | Ca0.33Sr0.67(NO3)2 Ca2SiO4 Ca2P2O7 | 59.0% 25.2% 15.8% | PDF 26-1073 PDF 29-0369 PDF 33-0297 |
575 °C | Ca14.92(PO4)2.35(SiO4)5.65 Ca2SiO4 Ca2P2O7 | 45.6% 43.0% 11.4% | PDF 83-1494 PDF 29-0369 PDF 33-0297 |
650 °C | Ca14.92(PO4)2.35(SiO4)5.65 Sr2SiO4 | 87.8% 12.2% | PDF 83-1494 PDF 38-0271 |
Sample | Composition | Percentage (wt.%) * | PDF Card No |
---|---|---|---|
0SBG | Ca14.92(PO4)2.35(SiO4)5.65 | 100% | PDF 83-1494 |
3SBG | Ca14.92(PO4)2.35(SiO4)5.65 Sr2SiO4 | 91.5% 8.5% | PDF 83-1494 PDF 38-0271 |
5SBG | Ca14.92(PO4)2.35(SiO4)5.65 Sr2SiO4 | 87.8% 12.2% | PDF 83-1494 PDF 38-0271 |
7SBG | Ca14.92(PO4)2.35(SiO4)5.65 Ca2SiO4 Sr2SiO4 | 49.9% 42.9% 7.2% | PDF 83-1494 PDF 29-0369 PDF 38-0271 |
Sample Code | 0SBG | 3SBG | 5SBG | 7SBG | |
---|---|---|---|---|---|
Property | |||||
BET Surface Area (m2/g) | 204.31 ± 0.55 | 216.41 ± 1.15 | 233.07 ± 1.13 | 232.56 ± 1.27 | |
Average Pore Diameter (nm) | 6.04 | 6.39 | 5.86 | 5.92 | |
Total Pore Volume (cm3/g) | 0.32 | 0.32 | 0.31 | 0.31 |
Before | After | |||
---|---|---|---|---|
Sample | PO43− | CO32− | PO43− | CO32− |
0SBG | 56.8% | 8.6% | 77.2% | 1.5% |
3SBG | 50.2% | 6.5% | 70.3% | 0.7% |
5SBG | 43.7% | 5.9% | 77.2% | 1.1% |
7SBG | 44.8% | 2.4% | 66.0% | 1.4% |
Sample | Control | 0SBG | 3SBG | 5SBG | 7SBG | |
---|---|---|---|---|---|---|
Cell | ||||||
L929 | 100.00 ± 5.99 | 106.04 ± 0.90 | 93.94 ± 2.26 | 117.22 ± 6.65 | 105.04 ± 3.95 | |
MG63 | 100.00 ± 7.97 | 110.93 ± 7.26 | 111.89 ± 4.46 | 121.13 ± 2.13 | 102.10 ± 5.46 |
Sample Code | Bioactive Glass Composition (mol%) | |||
---|---|---|---|---|
SiO2 | CaO | P2O5 | SrO | |
0SBG | 60 | 36 | 4 | 0 |
3SBG | 60 | 33 | 4 | 3 |
5SBG | 60 | 31 | 4 | 5 |
7SBG | 60 | 29 | 4 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, P.-J.; Chen, J.-Y.; Cheng, C.-H.; Aoki, K.; Su, C.-Y.; Lin, C.-K. Effect of Calcination Temperature and Strontium Addition on the Properties of Sol-Gelled Bioactive Glass Powder. Gels 2025, 11, 401. https://doi.org/10.3390/gels11060401
Chang P-J, Chen J-Y, Cheng C-H, Aoki K, Su C-Y, Lin C-K. Effect of Calcination Temperature and Strontium Addition on the Properties of Sol-Gelled Bioactive Glass Powder. Gels. 2025; 11(6):401. https://doi.org/10.3390/gels11060401
Chicago/Turabian StyleChang, Pei-Jung, Jia-Yu Chen, Chi-Han Cheng, Kazuhiro Aoki, Cherng-Yuh Su, and Chung-Kwei Lin. 2025. "Effect of Calcination Temperature and Strontium Addition on the Properties of Sol-Gelled Bioactive Glass Powder" Gels 11, no. 6: 401. https://doi.org/10.3390/gels11060401
APA StyleChang, P.-J., Chen, J.-Y., Cheng, C.-H., Aoki, K., Su, C.-Y., & Lin, C.-K. (2025). Effect of Calcination Temperature and Strontium Addition on the Properties of Sol-Gelled Bioactive Glass Powder. Gels, 11(6), 401. https://doi.org/10.3390/gels11060401