Synthesis and Applications of Encapsulated Glycol-Stabilized Lyotropic Cholesteric Liquid Crystal Hydrogels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optical Properties of the Prepared Lyotropic LCs
2.1.1. Mechanical Properties of the LCG Films
2.1.2. Dielectric Properties of Lyotropic LCs
2.2. Characterization of LCGs
2.2.1. Mechanical Properties of LCGs
- Tensile Test
- Compressive Test
2.2.2. Thermal Properties of the Synthesized LCGs
2.2.3. Morphology of Synthesized LCGs
2.2.4. Thermal Responsive Color Variations
2.2.5. Stress-Induced Color Variation
2.2.6. Stability of LCGs
- Stretching Stability
- Loading Stability
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Instruments
4.3. Fabrication of Liquid Crystal Hydrogels (LCGs)
4.4. Analysis of Dielectric Properties of LCGs
4.5. Dynamic Mechanical Analysis of LCGs
4.5.1. Tensile Test
4.5.2. Compressive Test
4.5.3. Morphology Observation of LCGs
4.5.4. Encapsulation of LCG Films
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, Z.G.; Li, Y.; Bisoyi, H.K.; Wang, L.; Bunning, T.J.; Li, Q. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 2016, 531, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Jin, X.; Zhao, T.; Duan, P. Circularly polarized luminescence in chiral nematic liquid crystals: Generation and amplification. Mater. Chem. Front. 2021, 5, 4821–4832. [Google Scholar] [CrossRef]
- San Jose, B.A.; Yan, J.; Akagi, K. Dynamic switching of the circularly polarized luminescence of disubstituted polyacetylene by selective transmission through a thermotropic chiral nematic liquid crystal. Angew. Chem. Int. Ed. Engl. 2014, 53, 10641–10644. [Google Scholar] [CrossRef]
- Nys, I. Patterned surface alignment to create complex three-dimensional nematic and chiral nematic liquid crystal structures. Liq. Cryst. Today 2021, 29, 65–83. [Google Scholar] [CrossRef]
- Kim, S.U.; Lee, Y.J.; Liu, J.; Kim, D.S.; Wang, H.; Yang, S. Broadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomers. Nat. Mater. 2022, 21, 41–46. [Google Scholar] [CrossRef]
- Echeverria-Alar, S.; Clerc, M.G.; Bordeu, I. Emergence of disordered branching patterns in confined chiral nematic liquid crystals. Proc. Natl. Acad. Sci. USA 2023, 120, e2221000120. [Google Scholar] [CrossRef]
- Chen, D.; Nakata, M.; Shao, R.; Tuchband, M.R.; Shuai, M.; Baumeister, U.; Weissflog, W.; Walba, D.M.; Glaser, M.A.; Maclennan, J.E.; et al. Twist-bend heliconical chiral nematic liquid crystal phase of an achiral rigid bent-core mesogen. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2014, 89, 022506. [Google Scholar] [CrossRef]
- Cao, Y.; Hamad, W.Y.; MacLachlan, M.J. Broadband Circular Polarizing Film Based on Chiral Nematic Liquid Crystals. Adv. Opt. Mater. 2018, 6, 1800412. [Google Scholar] [CrossRef]
- Lucchetti, L.; Nava, G. Nonlinear optical director reorientation in heliconical cholesteric liquid crystals: A brief review. Giant 2024, 19, 100311. [Google Scholar] [CrossRef]
- Gevorgyan, A.H.; Simoni, F. Nonlinear Optical Propagation in Heliconical Cholesteric Liquid Crystals. In Novel Optical Materials; World Scientific Publishing: Singapore, 2023; pp. 93–119. [Google Scholar]
- Zhang, J.; Xie, Z.; Hill, A.J.; She, F.H.; Thornton, A.W.; Hoang, M.; Kong, L.X. Structure retention in cross-linked poly(ethylene glycol) diacrylate hydrogel templated from a hexagonal lyotropic liquid crystal by controlling the surface tension. Soft Matter 2012, 8, 2087–2094. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, R.; Heimann, K.; Wang, Z.; Wang, J.; Liu, F. Temperature-sensitive lyotropic liquid crystals as systems for transdermal drug delivery. J. Mol. Liq. 2021, 326, 115310. [Google Scholar] [CrossRef]
- Steck, K.; Preisig, N.; Stubenrauch, C. Gelling Lyotropic Liquid Crystals with the Organogelator 1,3:2,4-Dibenzylidene-d-sorbitol Part II: Microstructure. Langmuir 2019, 35, 17142–17149. [Google Scholar] [CrossRef]
- Lee, H.; Sunkara, V.; Cho, Y.-K.; Jeong, J. Effects of poly(ethylene glycol) on the wetting behavior and director configuration of lyotropic chromonic liquid crystals confined in cylinders. Soft Matter 2019, 15, 6127–6133. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S. Recent progresses in lyotropic chromonic liquid crystal research: Elasticity, viscosity, defect structures, and living liquid crystals. Liq. Cryst. Today 2018, 27, 91–108. [Google Scholar] [CrossRef]
- El Mohamad, M.; Han, Q.; Drummond, C.J.; Greaves, T.L.; Zhai, J. Tailoring the self-assembly of lipid-based lyotropic liquid crystalline mesophases with biocompatible ionic liquid aqueous solutions. Mater. Today Chem. 2022, 26, 101221. [Google Scholar] [CrossRef]
- Wei, W.; You, D.; Xiong, H. Thermotropic and Lyotropic Transitions of Concentrated Solutions of Liquid Crystalline Block Copolymers in a Liquid Crystalline Solvent. Macromolecules 2017, 50, 7844–7851. [Google Scholar] [CrossRef]
- Harjung, M.D.; Schubert, C.P.J.; Knecht, F.; Porada, J.H.; Lemieux, R.P.; Giesselmann, F. New amphiphilic materials showing the lyotropic analogue to the thermotropic smectic C* liquid crystal phase. J. Mater. Chem. C 2017, 5, 7452–7457. [Google Scholar] [CrossRef]
- Dietrich, C.F. Lyotropic nematic liquid crystals: Interplay between a small twist elastic constant and chirality effects under confined geometries. Liq. Cryst. Today 2021, 30, 2–14. [Google Scholar] [CrossRef]
- El Nokaly, M.; Friberg, S.E.; Larsen, D.W. Lyotropic liquid crystals from lecithin, water, and polyethylene glycol. J. Colloid. Interface Sci. 1984, 98, 274–276. [Google Scholar] [CrossRef]
- Shiyanovskii, S.V.; Lavrentovich, O.D.; Schneider, T.; Ishikawa, T.; Smalyukh, I.I.; Woolverton, C.J.; Niehaus, G.D.; Doane, K.J. Lyotropic Chromonic Liquid Crystals for Biological Sensing Applications. Mol. Cryst. Liq. Cryst. 2005, 434, 259/[587]–270/[598]. [Google Scholar] [CrossRef]
- Park, H.-S.; Lavrentovich, O.D. Lyotropic Chromonic Liquid Crystals: Emerging Applications. In Liquid Crystals Beyond Displays; Wiley: Hoboken, NJ, USA, 2012; pp. 449–484. [Google Scholar]
- Sato, T.; Nakamura, J.; Teramoto, A.; Green, M.M. Cholesteric Pitch of Lyotropic Polymer Liquid Crystals. Macromolecules 1998, 31, 1398–1405. [Google Scholar] [CrossRef]
- Regina Alcantara, M.; Fernandes, E.G. The orientation process of cholesteric lyotropic liquid crystals submitted to shear. Colloids Surf. Physicochem. Eng. Asp. 2001, 177, 75–82. [Google Scholar] [CrossRef]
- Otón, E.; Otón, J.M.; Caño-García, M.; Escolano, J.M.; Quintana, X.; Geday, M.A. Rapid detection of pathogens using lyotropic liquid crystals. Opt. Express 2019, 27, 10098–10107. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, R. Interplay of Active Stress and Driven Flow in Self-Assembled, Tumbling Active Nematics. Crystals 2021, 11, 1071. [Google Scholar] [CrossRef]
- Weiss, F.; Finkelmann, H. Hexagonal Lyotropic Liquid Crystalline Hydrogels: Influence of Uniaxial Stress and pH Value on the Anisotropic Swelling Behavior. Macromolecules 2004, 37, 6587–6595. [Google Scholar] [CrossRef]
- Meng, F.; Umair, M.M.; Zhang, S.; Jin, X.; Tang, B. Thermal-guided interfacial confinement to fabricate flexible structural color composites for durable applications. J. Mater. Chem. C 2019, 7, 11258–11264. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, Q.; Shi, L.; Zhang, X.; Zhang, K.-Q. Bio-inspired sensors based on photonic structures of Morpho butterfly wings: A review. J. Mater. Chem. C 2016, 4, 1752–1763. [Google Scholar] [CrossRef]
- He, X.; Gu, Y.; Yu, B.; Liu, Z.; Zhu, K.; Wu, N.; Zhao, X.; Wei, Y.; Zhou, J.; Song, Y. Multi-mode structural-color anti-counterfeiting labels based on physically unclonable amorphous photonic structures with convenient artificial intelligence authentication. J. Mater. Chem. C 2019, 7, 14069–14074. [Google Scholar] [CrossRef]
- Lim, C.; Bae, S.; Jeong, S.M.; Ha, N.Y. Manipulation of Structural Colors in Liquid-Crystal Helical Structures Deformed by Surface Controls. ACS Appl. Mater. Interfaces 2018, 10, 12060–12065. [Google Scholar] [CrossRef]
- Xu, D.; Song, Q.; Wu, C.; Zhang, K. Designable Multiple Structural Colors Using Alkaline Periodate Oxidated Cellulose Nanocrystals and Gold Nanorods. Adv. Mater. Technol. 2022, 7, 2200615. [Google Scholar] [CrossRef]
- Xuan, Z.; Li, J.; Liu, Q.; Yi, F.; Wang, S.; Lu, W. Artificial Structural Colors and Applications. Innovation 2021, 2, 100081. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, K.-Q. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors. Sensors 2013, 13, 4192–4213. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Zhang, W.; Xu, K.; Zhao, Y. Bio-inspired intelligent structural color materials. Mater. Horiz. 2019, 6, 945–958. [Google Scholar] [CrossRef]
- Hong, W.; Yuan, Z.; Chen, X. Structural Color Materials for Optical Anticounterfeiting. Small 2020, 16, 1907626. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Shang, L.; Zhao, Y. Structural Color Materials from Natural Polymers. Adv. Mater. Technol. 2021, 6, 2100296. [Google Scholar] [CrossRef]
- Sol, J.A.H.P.; Douma, R.F.; Schenning, A.P.H.J.; Debije, M.G. 4D Printed Light-Responsive Patterned Liquid Crystal Elastomer Actuators Using a Single Structural Color Ink. Adv. Mater. Technol. 2023, 8, 2200970. [Google Scholar] [CrossRef]
- Godinho, M.H.; Gray, D.G.; Pieranski, P. Revisiting (hydroxypropyl) cellulose (HPC)/water liquid crystalline system. Liq. Cryst. 2017, 44, 2108–2120. [Google Scholar] [CrossRef]
- Basta, A.H.; Lotfy, V.F.; Micky, J.A.; Salem, A.M. Hydroxypropylcellulose-based liquid crystal materials. Carbohydr. Polym. Technol. Appl. 2021, 2, 100103. [Google Scholar] [CrossRef]
- Chan, C.L.C.; Lei, I.M.; van de Kerkhof, G.T.; Parker, R.M.; Richards, K.D.; Evans, R.C.; Huang, Y.Y.S.; Vignolini, S. 3D Printing of Liquid Crystalline Hydroxypropyl Cellulose—Toward Tunable and Sustainable Volumetric Photonic Structures. Adv. Funct. Mater. 2022, 32, 2108566. [Google Scholar] [CrossRef]
- Chiba, R.; Nishio, Y.; Miyashita, Y. Electrooptical Behavior of Liquid-Crystalline (Hydroxypropyl)cellulose/Inorganic Salt Aqueous Solutions. Macromolecules 2003, 36, 1706–1712. [Google Scholar] [CrossRef]
- Matsumoto, K.; Ogiwara, Y.; Iwata, N.; Furumi, S. Rheological Properties of Cholesteric Liquid Crystal with Visible Reflection from an Etherified Hydroxypropyl Cellulose Derivative. Polymers 2022, 14, 2059. [Google Scholar] [CrossRef]
- Dierking, I.; Al-Zangana, S. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials. Nanomaterials 2017, 7, 305. [Google Scholar] [CrossRef]
- Fukawa, M.; Suzuki, K.; Furumi, S. Disappearance of Reflection Color by Photopolymerization of Lyotropic Cholesteric Liquid Crystals from Cellulose Derivatives. J. Photopolym. Sci. Technol. 2018, 31, 563–567. [Google Scholar] [CrossRef]
- Dierking, I.; Martins Figueiredo Neto, A. Novel Trends in Lyotropic Liquid Crystals. Crystals 2020, 10, 604. [Google Scholar] [CrossRef]
- Ao, G.; Nepal, D.; Davis, V.A. Rheology of lyotropic cholesteric liquid crystal forming single-wall carbon nanotube dispersions stabilized by double-stranded DNA. Rheol. Acta 2016, 55, 717–725. [Google Scholar] [CrossRef]
- Miyagi, K.; Teramoto, Y. Construction of Functional Materials in Various Material Forms from Cellulosic Cholesteric Liquid Crystals. Nanomaterials 2021, 11, 2969. [Google Scholar] [CrossRef]
- Dietrich, C.F.; Collings, P.J.; Sottmann, T.; Rudquist, P.; Giesselmann, F. Extremely small twist elastic constants in lyotropic nematic liquid crystals. Proc. Natl. Acad. Sci. USA 2020, 117, 27238–27244. [Google Scholar] [CrossRef]
- Pérez-Fuentes, L.; Bastos-González, D.; Faraudo, J.; Drummond, C. Effect of organic and inorganic ions on the lower critical solution transition and aggregation of PNIPAM. Soft Matter 2018, 14, 7818–7828. [Google Scholar] [CrossRef]
- Li, X.; ShamsiJazeyi, H.; Pesek, S.L.; Agrawal, A.; Hammouda, B.; Verduzco, R. Thermoresponsive PNIPAAM bottlebrush polymers with tailored side-chain length and end-group structure. Soft Matter 2014, 10, 2008–2015. [Google Scholar] [CrossRef]
- Balestri, A.; Lonetti, B.; Harrisson, S.; Farias-Mancilla, B.; Zhang, J.; Amenitsch, H.; Schubert, U.S.; Guerrero-Sanchez, C.; Montis, C.; Berti, D. Thermo-responsive lipophilic NIPAM-based block copolymers as stabilizers for lipid-based cubic nanoparticles. Colloids Surf. B. Biointerfaces 2022, 220, 112884. [Google Scholar] [CrossRef]
- Forney, B.S.; Baguenard, C.; Guymon, C.A. Improved stimuli-response and mechanical properties of nanostructured poly(N-isopropylacrylamide-co-dimethylsiloxane) hydrogels generated through photopolymerization in lyotropic liquid crystal templates. Soft Matter 2013, 9, 7458–7467. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, Y.; Xu, H.; Peng, X.; Chen, Y.-N.; Shang, C.; Zhang, Q.; Liu, J.; Wang, H. Tough and Thermosensitive Poly(N-isopropylacrylamide)/Graphene Oxide Hydrogels with Macroscopically Oriented Liquid Crystalline Structures. ACS Appl. Mater. Interfaces 2016, 8, 15637–15644. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-Y.; Lee, K.M.; White, T.J.; Jeong, K.-U. Cholesteric liquid crystal paints: In situ photopolymerization of helicoidally stacked multilayer nanostructures for flexible broadband mirrors. NPG Asia Mater. 2018, 10, 1061–1068. [Google Scholar] [CrossRef]
Chemicals | Monomer | Crosslinker | Solvent | ||
---|---|---|---|---|---|
Sample | NIPAM | AM | Bis-AM | DI Water/ Ethylene Glycol | |
NW10 | 1.0% | 0 | 0.1% | DI water | |
NW15 | 1.5% | 0 | 0.15% | ||
NW20 | 2.0% | 0 | 0.2% | ||
AW10 | 0 | 1.0% | 0.1% | DI water | |
AW15 | 0 | 1.5% | 0.15% | ||
AW20 | 0 | 2.0% | 0.2% | ||
NEG15 | 1.5% | 0 | 0.15% | ethylene glycol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-T.; Kuo, C.-Y.; Shen, Y.; Emelyanenko, A.V.; Liu, C.-Y. Synthesis and Applications of Encapsulated Glycol-Stabilized Lyotropic Cholesteric Liquid Crystal Hydrogels. Gels 2025, 11, 388. https://doi.org/10.3390/gels11060388
Lin Y-T, Kuo C-Y, Shen Y, Emelyanenko AV, Liu C-Y. Synthesis and Applications of Encapsulated Glycol-Stabilized Lyotropic Cholesteric Liquid Crystal Hydrogels. Gels. 2025; 11(6):388. https://doi.org/10.3390/gels11060388
Chicago/Turabian StyleLin, Yan-Ting, Chung-Yu Kuo, Yi Shen, Alexander V. Emelyanenko, and Chun-Yen Liu. 2025. "Synthesis and Applications of Encapsulated Glycol-Stabilized Lyotropic Cholesteric Liquid Crystal Hydrogels" Gels 11, no. 6: 388. https://doi.org/10.3390/gels11060388
APA StyleLin, Y.-T., Kuo, C.-Y., Shen, Y., Emelyanenko, A. V., & Liu, C.-Y. (2025). Synthesis and Applications of Encapsulated Glycol-Stabilized Lyotropic Cholesteric Liquid Crystal Hydrogels. Gels, 11(6), 388. https://doi.org/10.3390/gels11060388