Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = cholesteric lyotropic liquid crystal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1885 KiB  
Article
Insight into the Mechanism for the Emergence of Thermally Stable Reflection Colors from Cholesteric Liquid Crystals of Etherified Ethyl Cellulose Derivatives and Methacrylic Acid
by Wakako Kishi, Naoto Iwata and Seiichi Furumi
Molecules 2025, 30(13), 2839; https://doi.org/10.3390/molecules30132839 - 2 Jul 2025
Viewed by 289
Abstract
Ethyl cellulose (EC) and its derivatives are known to exhibit the cholesteric liquid crystal (CLC) phase with visible light reflection in a lyotropic manner after adding appropriate solvents. Generally, the reflection peak of conventional CLCs is easily wavelength shifted by temperature. However, our [...] Read more.
Ethyl cellulose (EC) and its derivatives are known to exhibit the cholesteric liquid crystal (CLC) phase with visible light reflection in a lyotropic manner after adding appropriate solvents. Generally, the reflection peak of conventional CLCs is easily wavelength shifted by temperature. However, our previous study showed that the reflection wavelength can be maintained even after heating for the lyotropic CLCs of completely pentyl-etherified EC derivatives with methacrylic acid (MAA). However, the emergence of thermally stable reflection colors still remains obscure in the mechanism at the mesoscopic scale. In this study, we evaluated the temperature dependence of the reflection wavelength for the lyotropic CLCs of a series of completely etherified EC derivatives possessing different alkoxy chains by addition of MAA. It was found that butyl- or pentyl-etherified EC derivatives are suitable for preparation of the lyotropic CLCs with visible Bragg reflection, whereas visible light reflection cannot be observed for the other mixtures of propyl- and hexyl-etherified EC derivatives with MAA. Furthermore, it turned out that lyotropic CLCs of pentyl-etherified EC derivatives with MAA show the smallest temperature dependence of their reflection wavelength. Based on the results of ultra-small-angle X-ray scattering (USAXS) and small-angle X-ray scattering (SAXS) measurements of CLC films, we presumed that the emergence of thermally stable reflection colors from the lyotropic CLCs of pentyl-etherified EC derivatives with MAA arises from their phase separation at the mesoscopic scale by changing the temperature. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

16 pages, 4079 KiB  
Article
Synthesis and Applications of Encapsulated Glycol-Stabilized Lyotropic Cholesteric Liquid Crystal Hydrogels
by Yan-Ting Lin, Chung-Yu Kuo, Yi Shen, Alexander V. Emelyanenko and Chun-Yen Liu
Gels 2025, 11(6), 388; https://doi.org/10.3390/gels11060388 - 25 May 2025
Viewed by 484
Abstract
The micro-phase segregation of two incompatible components on a nanometer scale results in a unique solvent-induced extended anisotropic arrangement. With the addition of a chiral dopant, lyotropic liquid crystals can be induced to adopt a helical structure, forming lyotropic cholesteric liquid crystals capable [...] Read more.
The micro-phase segregation of two incompatible components on a nanometer scale results in a unique solvent-induced extended anisotropic arrangement. With the addition of a chiral dopant, lyotropic liquid crystals can be induced to adopt a helical structure, forming lyotropic cholesteric liquid crystals capable of reflecting incident light. In this study, to prevent fluid leakage in lyotropic materials, we encapsulated a series of hydrogel-stabilized lyotropic liquid crystals, presenting tunable structural colors visible in all directions, mimicking the color-changing characteristics of living organisms. Hydrogel scaffolds with controllable swelling behaviors were engineered by incorporating crosslinking monomers. To ensure stable integration of lyotropic liquid crystals, high-boiling-point ethylene glycol was employed as a fluid during the fabrication process. This study extensively explores the relationship between tensile force, temperature, and pressure and the color changes in lyotropic liquid crystals (LC). The results indicate that lyotropic LC membranes, stabilized by ethylene glycol and PDMS encapsulation, exhibit long-term stability, rendering them suitable for applications in temperature and pressure sensing. This approach ensures the continuous presence and stability of lyotropic liquid crystals within the hydrogel matrix. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

16 pages, 7436 KiB  
Article
Cholesteric Liquid Crystals with Thermally Stable Reflection Color from Mixtures of Completely Etherified Ethyl Cellulose Derivative and Methacrylic Acid
by Kazuma Matsumoto, Naoto Iwata and Seiichi Furumi
Polymers 2024, 16(3), 401; https://doi.org/10.3390/polym16030401 - 31 Jan 2024
Cited by 2 | Viewed by 1874
Abstract
Cellulose derivatives have attracted attention as environmentally friendly materials that can exhibit a cholesteric liquid crystal (CLC) phase with visible light reflection. Previous reports have shown that the chemical structures and the degrees of substitution of cellulose derivatives have significant influence on their [...] Read more.
Cellulose derivatives have attracted attention as environmentally friendly materials that can exhibit a cholesteric liquid crystal (CLC) phase with visible light reflection. Previous reports have shown that the chemical structures and the degrees of substitution of cellulose derivatives have significant influence on their reflection properties. Although many studies have been reported on CLC using ethyl cellulose (EC) derivatives in which the hydroxy groups are esterified, there have been no studies on EC derivatives with etherified side chains. In this article, we optimized the Williamson ether synthesis to introduce pentyl ether groups in the EC side chain. The degree of substitution with pentyl ether group (DSPe), confirmed via 1H-NMR spectroscopic measurements, was controlled using the solvent and the base concentration in this synthesis. All the etherified EC derivatives were soluble in methacrylic acid (MAA), allowing for the preparation of lyotropic CLCs with visible reflection. Although the reflection peak of lyotropic CLCs generally varies with temperature, the reflection peak of lyotropic CLCs of completely etherified EC derivatives with MAA could almost be preserved in the temperature range from 30 to 110 °C even without the aid of any crosslinking. Such thermal stability of the reflection peak of CLCs may be greatly advantageous for fabricating new photonic devices with eco-friendliness. Full article
(This article belongs to the Special Issue Advances in Sustainable Polymeric Materials II)
Show Figures

Figure 1

64 pages, 13312 KiB  
Review
From Equilibrium Liquid Crystal Formation and Kinetic Arrest to Photonic Bandgap Films Using Suspensions of Cellulose Nanocrystals
by Christina Schütz, Johanna R. Bruckner, Camila Honorato-Rios, Zornitza Tosheva, Manos Anyfantakis and Jan P. F. Lagerwall
Crystals 2020, 10(3), 199; https://doi.org/10.3390/cryst10030199 - 13 Mar 2020
Cited by 96 | Viewed by 13357
Abstract
The lyotropic cholesteric liquid crystal phase developed by suspensions of cellulose nanocrystals (CNCs) has come increasingly into focus from numerous directions over the last few years. In part, this is because CNC suspensions are sustainably produced aqueous suspensions of a fully bio-derived nanomaterial [...] Read more.
The lyotropic cholesteric liquid crystal phase developed by suspensions of cellulose nanocrystals (CNCs) has come increasingly into focus from numerous directions over the last few years. In part, this is because CNC suspensions are sustainably produced aqueous suspensions of a fully bio-derived nanomaterial with attractive properties. Equally important is the interesting and useful behavior exhibited by solid CNC films, created by drying a cholesteric-forming suspension. However, the pathway along which these films are realized, starting from a CNC suspension that may have low enough concentration to be fully isotropic, is more complex than often appreciated, leading to reproducibility problems and confusion. Addressing a broad audience of physicists, chemists, materials scientists and engineers, this Review focuses primarily on the physics and physical chemistry of CNC suspensions and the process of drying them. The ambition is to explain rather than to repeat, hence we spend more time than usual on the meanings and relevance of the key colloid and liquid crystal science concepts that must be mastered in order to understand the behavior of CNC suspensions, and we present some interesting analyses, arguments and data for the first time. We go through the development of cholesteric nuclei (tactoids) from the isotropic phase and their potential impact on the final dry films; the spontaneous CNC fractionation that takes place in the phase coexistence window; the kinetic arrest that sets in when the CNC mass fraction reaches ∼10 wt.%, preserving the cholesteric helical order until the film has dried; the ’coffee-ring effect’ active prior to kinetic arrest, often ruining the uniformity in the produced films; and the compression of the helix during the final water evaporation, giving rise to visible structural color in the films. Full article
(This article belongs to the Special Issue New Trends in Lyotropic Liquid Crystals)
Show Figures

Graphical abstract

25 pages, 10678 KiB  
Review
Liquid Crystals as Lubricants
by Nadezhda V. Usol’tseva and Antonina I. Smirnova
Lubricants 2019, 7(12), 111; https://doi.org/10.3390/lubricants7120111 - 9 Dec 2019
Cited by 16 | Viewed by 5921
Abstract
The review summarizes the literature data and the authors’ own research results on the application of liquid crystals in tribology. It has been shown that both thermotropic (calamitic, discotic, cholesteric) and lyotropic (surfactants, chromonics) mesogens as tribological additives are able to optimize the [...] Read more.
The review summarizes the literature data and the authors’ own research results on the application of liquid crystals in tribology. It has been shown that both thermotropic (calamitic, discotic, cholesteric) and lyotropic (surfactants, chromonics) mesogens as tribological additives are able to optimize the properties of lubricating compositions when introduced even at low concentrations to oils and greases. A wide possibility of varying the chemical structure of mesogens and studying the relationship between their structure and tribological properties can be used for the desired (programmed) change of the quality of tribotechnical processes. The synergism of the combined use of mesogenic esters of cholesterol and carbon nanostructures as additives in improving tribological properties has been established. The use of synthetic lubricants in biological systems still requires further research as the experimental results obtained on models of joint prostheses in vitro conditions are significantly worse than the results obtained in vivo. Considering the annual loss of billions of US dollars worldwide due to the low efficiency of friction processes in the industry and the resulting wear, liquid crystals and the systems based on them can be the most effective way to optimize these processes. The present review will be useful for researchers and industrialists. Full article
(This article belongs to the Special Issue Liquid Crystalline and Ionic Liquid Crystalline Lubricants)
Show Figures

Figure 1

8 pages, 866 KiB  
Communication
Side Chain Effect of Hydroxypropyl Cellulose Derivatives on Reflection Properties
by Kenichiro Hayata and Seiichi Furumi
Polymers 2019, 11(10), 1696; https://doi.org/10.3390/polym11101696 - 16 Oct 2019
Cited by 15 | Viewed by 3418
Abstract
Some cellulose derivatives are known to exhibit thermotropic and lyotropic cholesteric liquid crystal (CLC) phases with a visible reflection feature by changing the side chains and mixing with specific solvents, respectively. Although many studies have been reported so far, most of the derivatives [...] Read more.
Some cellulose derivatives are known to exhibit thermotropic and lyotropic cholesteric liquid crystal (CLC) phases with a visible reflection feature by changing the side chains and mixing with specific solvents, respectively. Although many studies have been reported so far, most of the derivatives have the side chains of linear alkyl groups, but not the bulky phenyl groups. In this report, we synthesized a series of hydroxypropyl cellulose (HPC) derivatives that possessed both linear propionyl esters and bulky (trifluoromethyl)phenyl carbamates in the side chains. The reflection peaks of HPC derivatives shifted to longer wavelengths upon heating due to an increase in the CLC helical pitch. Such thermally induced shifting behavior of the reflection peak was crucially dependent on not only the propionyl esterification degree, but also the substituents in the side chains of HPC derivatives. When the side chains of HPC were chemically modified with both propionyl esters and bulky substituents such as 3,5-bis(trifluoromethyl)phenyl carbamates, the reflection peaks emerged at longer wavelengths at the same temperature. This probably happened because of the steric hindrance of bulky side chains, as supported by the empirical molecular modeling calculation. Although the occupied volumes of (trifluoromethyl)phenyl groups were independent of the CLC phase temperature with visible Bragg reflection, the substituent position, i.e., substituent orientation of trifluoromethyl groups affected the CLC phase temperature. Moreover, we found that the hydrogen bonds between carbamate moieties in the HPC side chains play an important role in the thermally induced shift of reflection peaks. Full article
(This article belongs to the Special Issue Cellulose and Renewable Materials)
Show Figures

Graphical abstract

29 pages, 1632 KiB  
Review
Chiral Liquid Crystals: Structures, Phases, Effects
by Ingo Dierking
Symmetry 2014, 6(2), 444-472; https://doi.org/10.3390/sym6020444 - 16 Jun 2014
Cited by 191 | Viewed by 24290
Abstract
The introduction of chirality, i.e., the lack of mirror symmetry, has a profound effect on liquid crystals, not only on the molecular scale but also on the supermolecular scale and phase. I review these effects, which are related to the formation of [...] Read more.
The introduction of chirality, i.e., the lack of mirror symmetry, has a profound effect on liquid crystals, not only on the molecular scale but also on the supermolecular scale and phase. I review these effects, which are related to the formation of supermolecular helicity, the occurrence of novel thermodynamic phases, as well as electro-optic effects which can only be observed in chiral liquid crystalline materials. In particular, I will discuss the formation of helical superstructures in cholesteric, Twist Grain Boundary and ferroelectric phases. As examples for the occurrence of novel phases the Blue Phases and Twist Grain Boundary phases are introduced. Chirality related effects are demonstrated through the occurrence of ferroelectricity in both thermotropic as well as lyotropic liquid crystals. Lack of mirror symmetry is also discussed briefly for some biopolymers such as cellulose and DNA, together with its influence on liquid crystalline behavior. Full article
(This article belongs to the Special Issue Supramolecular Chirality)
Show Figures

Graphical abstract

Back to TopTop