The Hypoglycemic Activity of Gracilaria lemaneiformis Polysaccharide Gels Based on IR/IRS-2/PI3k/Akt/Glut4 and Glycometabolism Signaling Pathways in HepG2 Cells
Abstract
1. Introduction
2. Results and Discussion
2.1. Molecular Weight Chromatogram and Distribution of G. lemaneiformis Polysaccharide Gels
2.2. Monosaccharide Composition of G. lemaneiformis Polysaccharide Gels
2.3. Cytotoxicity of HepG2 Cells
2.4. The Hypoglycemic Activity and Mechanism of G. lemaneiformis Polysaccharide Gels in HepG2 Cells
2.4.1. The Activities of TC, TG, HDL-C, LDL-C, T-AOC, SOD, MDA, CAT, GSH-PX, LDH, Glycogen, and Insulin
2.4.2. ROS and Calcium Ions Analysis
2.5. The Regulation Mechanism of G. lemaneiformis Polysaccharide Gels Based on IR/IRS-2/PI3k/Akt/Glut4 and Gluconeogenesis Signaling Pathways in HepG2 Cells
2.5.1. Gene Analysis in IR/IRS-2/PI3k/Akt/Glut4 and Gluconeogenesis Signaling Pathways
2.5.2. Proteins Expression in IR/IRS-2/PI3k/Akt/Glut4 and Gluconeogenesis Signaling Pathways
2.6. Correlation Analysis of the Activity and Mechanism of Hypoglycemic Mechanism by G. lemaneiformis Polysaccharide Gels in HepG2 Cells
3. Conclusions
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Preparation of G. lemaneiformis Polysaccharide Gels
4.3. Determination of Molecular Weight
4.4. Determination of Monosaccharide Composition
4.5. Cell Culture
4.6. Cell Viability Assay
4.7. Establishment of HepG2 Cells Model with Hyperglycemia
4.8. Biochemical Indexes
4.9. ROS Intensity
4.10. Calcium Ions Intensity
4.11. Quantitative Real-Time (qRT-PCR)
4.12. Western Blot
4.13. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HepG2 | Human hepatocellular carcinomas |
TC | Total cholesterol |
TG | Triglyceride |
HDL-C | High-density lipoprotein cholesterol |
LDL-C | Low-density lipoprotein cholesterol |
T-AOC | Total antioxidant capacity |
SOD | Superoxide dismutase |
MDA | Malondialdehyde |
CAT | Catalase |
GSH-PX | Reduced glutathione hormone |
LDH | Lactate dehydrogenase |
IR | Insulin resistance |
IRS-2 | Insulin receptor substrate 2 |
PI3k | Phosphatidylinositol3-kinase |
Akt | Protein kinase B |
Glut4 | Glucose transporter 4 |
HK | Gluconeogenic pathway, and hexokinase |
G6PD | glucose-6-phosphatase |
PFK | Phosphofructokinase |
PEPCK | Phosphoenolpyruvate carboxykinase |
GK | Glucokinase |
PK | Pyruvate kinase |
References
- Weiss, J.M.; Palmieri, E.M.; Gonzalez-Cotto, M.; Bettencourt, I.A.; Megill, E.L.; Snyder, N.W.; McVicar, D.W. Itaconic Acid Underpins Hepatocyte Lipid Metabolism in Non-Alcoholic Fatty Liver Disease in Male Mice. Nat. Metab. 2023, 5, 981–995. [Google Scholar] [CrossRef] [PubMed]
- She, J.; Tuerhongjiang, G.; Guo, M.; Liu, J.; Hao, X.; Guo, L.; Liu, N.; Xi, W.; Zheng, T.; Du, B.; et al. Statins Aggravate Insulin Resistance through Reduced Blood Glucagon-like Peptide-1 Levels in a Microbiota-Dependent Manner. Cell Metab. 2024, 36, 408–421.e5. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Duan, M.; Liu, Y.; Luo, T.; Ma, N.; Song, S.; Ai, C. The Beneficial Effects of Gracilaria lemaneiformis Polysaccharides on Obesity and the Gut Microbiota in High Fat Diet-Fed Mice. J. Funct. Foods 2018, 46, 48–56. [Google Scholar] [CrossRef]
- Hao, X.T.; Peng, R.; Guan, M.; Zhang, H.J.; Guo, Y.; Shalapy, N.M.; Liu, X.Q.; Ma, C.Y. The Food and Medicinal Homological Resources Benefiting Patients with Hyperlipidemia: Categories, Functional Components, and Mechanisms. Food Med. Homol. 2024, 1, 9420003. [Google Scholar] [CrossRef]
- Dong, M.; Feng, K.; Shen, Z.; Huang, J. Study on Preparation of Sargassum fusiforme Oligosaccharides by Enzyme and Its Antioxidant and Antibacterial Properties. South China Fish. Sci. 2025, 21, 191–200. [Google Scholar] [CrossRef]
- Leng, M.; Lin, D.; Weng, L.; Zhang, L.; Miao, S.; Cao, M.; Sun, L. Enzymatic Extraction and Physicochemical Properties of Porphyra haitanensis Protein. South China Fish. Sci. 2023, 19, 140–150. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.X.; Chen, X.Y.; Liu, Z.H.; Waterhouse, G.I.; Kang, W.Y. Transformation from Traditional Medicine-Food Homology to Modern Food-Medicine Homology. Food Med. Homol. 2024, 1, 9420014. [Google Scholar] [CrossRef]
- Chen, J.; Li, L.; Zhang, X.; Wan, L.; Zheng, Q.; Xu, D.; Li, Y.; Liang, Y.; Chen, M.; Li, B.; et al. Structural Characterization of Polysaccharide from Centipeda minima and Its Hypoglycemic Activity through Alleviating Insulin Resistance of Hepatic HepG2 Cells. J. Funct. Foods 2021, 82, 104478. [Google Scholar] [CrossRef]
- Lu, S.; Liu, Y.; Tang, S.; Zhang, W.; Yu, Q.; Shi, C.; Cheong, K. Food Chemistry: X Gracilaria lemaneiformis Polysaccharides Alleviate Colitis by Modulating the Gut Microbiota and Intestinal Barrier in Mice. Food Chem. X 2022, 13, 100197. [Google Scholar] [CrossRef]
- Han, R.; Ma, Y.; Xiao, J.; You, L.; Pedisić, S.; Liao, L. The Possible Mechanism of the Protective Effect of a Sulfated Polysaccharide from Gracilaria lemaneiformis against Colitis Induced by Dextran Sulfate Sodium in Mice. Food Chem. Toxicol. 2021, 149, 112001. [Google Scholar] [CrossRef]
- Pal, S.; Sahu, A.; Verma, R.; Haldar, C. BPS-Induced Ovarian Dysfunction: Protective Actions of Melatonin via Modulation of SIRT-1/Nrf2/NFĸB and IR/PI3K/PAkt/GLUT-4 Expressions in Adult Golden Hamster. J. Pineal Res. 2023, 75, e12869. [Google Scholar] [CrossRef]
- Li, W.; Jiang, W.S.; Su, Y.R.; Tu, K.W.; Zou, L.; Liao, C.R.; Wu, Q.; Wang, Z.H.; Zhong, Z.M.; Chen, J.T.; et al. PINK1/Parkin-Mediated Mitophagy Inhibits Osteoblast Apoptosis Induced by Advanced Oxidation Protein Products. Cell Death Dis. 2023, 14, 88. [Google Scholar] [CrossRef] [PubMed]
- An, W.; Hall, C.; Li, J.; Hung, A.; Wu, J.; Park, J.; Wang, L.; Bai, X.C.; Choi, E. Activation of the Insulin Receptor by Insulin-like Growth Factor 2. Nat. Commun. 2024, 15, 2609. [Google Scholar] [CrossRef] [PubMed]
- Mirzadeh, M.; Keshavarz Lelekami, A.; Khedmat, L. Plant/Algal Polysaccharides Extracted by Microwave: A Review on Hypoglycemic, Hypolipidemic, Prebiotic, and Immune-Stimulatory Effect. Carbohydr. Polym. 2021, 266, 118134. [Google Scholar] [CrossRef]
- Hassan, Y.R.; Shiekh, R.A.E.; Hefnawy, H.M.E.; Mohamed, O.G.; Elfotuh, K.A.; Hamdan, A.M.; Darwish, A.; Gowifel, A.M.H.; Tripathi, A.; Michael, C.G. A mechanistic exploration of the metabolome of African mango seeds and its potential to alleviate cognitive impairment induced by high-fat/high-carbohydrate diets: Involvement of PI3K/AKT/GSK-3β/CREB, PERK/CHOP/Bcl-2, and AMPK/SIRT-1/mTOR Axes. J. Ethnopharmacol. 2024, 324, 117747. [Google Scholar] [CrossRef] [PubMed]
- Vora, M.; Pyonteck, S.M.; Popovitchenko, T.; Matlack, T.L.; Prashar, A.; Kane, N.S.; Favate, J.; Shah, P.; Rongo, C. The Hypoxia Response Pathway Promotes PEP Carboxykinase and Gluconeogenesis in C. Elegans. Nat. Commun. 2022, 13, 6168. [Google Scholar] [CrossRef]
- Bielczyk-Maczynska, E.; Zhao, M.; Zushin, P.J.H.; Schnurr, T.M.; Kim, H.J.; Li, J.; Nallagatla, P.; Sangwung, P.; Park, C.Y.; Cornn, C.; et al. G Protein-Coupled Receptor 151 Regulates Glucose Metabolism and Hepatic Gluconeogenesis. Nat. Commun. 2022, 13, 7408. [Google Scholar] [CrossRef]
- Gupta, M.; Rumman, M.; Singh, B.; Mahdi, A.A.; Pandey, S. Berberine Ameliorates Glucocorticoid-Induced Hyperglycemia: An In Vitro and In Vivo Study. Naunyn. Schmiedebergs Arch. Pharmacol. 2024, 397, 1647–1658. [Google Scholar] [CrossRef]
- Long, X.; Hu, X.; Pan, C.; Xiang, H.; Chen, S.; Qi, B.; Liu, S.; Yang, X. Antioxidant Activity of Gracilaria lemaneiformis Polysaccharide Degradation Based on Nrf-2/Keap-1 Signaling Pathway in HepG2 Cells with Oxidative Stress Induced by H2O2. Mar. Drugs 2022, 20, 545. [Google Scholar] [CrossRef]
- Tang, L.; Luo, X.; Wang, M.; Wang, Z.; Guo, J.; Kong, F.; Bi, Y. Synthesis, Characterization, in Vitro Antioxidant and Hypoglycemic Activities of Selenium Nanoparticles Decorated with Polysaccharides of Gracilaria lemaneiformis. Int. J. Biol. Macromol. 2021, 193, 923–932. [Google Scholar] [CrossRef]
- Zhang, X.; Aweya, J.J.; Huang, Z.X.; Kang, Z.Y.; Bai, Z.H.; Li, K.H.; He, X.T.; Liu, Y.; Chen, X.Q.; Cheong, K.L. In Vitro Fermentation of Gracilaria lemaneiformis Sulfated Polysaccharides and Its Agaro-Oligosaccharides by Human Fecal Inocula and Its Impact on Microbiota. Carbohydr. Polym. 2020, 234, 115894. [Google Scholar] [CrossRef]
- Cordero-Herrera, I.; Martín, M.Á.; Goya, L.; Ramos, S. Cocoa Flavonoids Attenuate High Glucose-Induced Insulin Signalling Blockade and Modulate Glucose Uptake and Production in Human HepG2 Cells. Food Chem. Toxicol. 2014, 64, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.W.; Kong, Z.L.; Tsai, M.L.; Lo, C.Y.; Ho, C.T.; Lai, C.S. Tetrahydrocurcumin Ameliorates Free Fatty Acid-Induced Hepatic Steatosis and Improves Insulin Resistance in HepG2 Cells. J. Food Drug Anal. 2018, 26, 1075–1085. [Google Scholar] [CrossRef]
- Dou, Z.M.; Zhang, Y.L.; Tang, C.Y.; Liu, C.; Fang, J.Q.; Huang, Q.; Chen, C.; You, L.J.; Tan, C.P.; Niu, H.; et al. Construction of Blackberry Polysaccharide Nano-Selenium Particles: Structure Features and Regulation Effects of Glucose/Lipid Metabolism in HepG2 Cells. Food Res. Int. 2024, 187, 114428. [Google Scholar] [CrossRef]
- Hu, S.M.; Zhou, J.M.; Zhou, Q.Q.; Li, P.; Xie, Y.Y.; Zhou, T.; Gu, Q. Purification, Characterization and Biological Activities of Exopolysaccharides from Lactobacillus rhamnosus ZFM231 Isolated from Milk. LWT 2021, 147, 111561. [Google Scholar] [CrossRef]
- Li, X.; Ma, T.K.; Wang, P.; Shi, H.; Hai, S.; Qin, Y.; Zou, Y.; Zhu, W.T.; Li, H.M.; Li, Y.N.; et al. HOXD10 Attenuates Renal Fibrosis by Inhibiting NOX4-Induced Ferroptosis. Cell Death Dis. 2024, 15, 398. [Google Scholar] [CrossRef]
- Chen, T.Y.; Lin, S.P.; Huang, D.F.; Huang, H.S.; Tsai, F.C.; Lee, L.J.; Lin, H.Y.; Huang, H.P. Mature Neurons from IPSCs Unveil Neurodegeneration-Related Pathways in Mucopolysaccharidosis Type II: GSK-3β Inhibition for Therapeutic Potential. Cell Death Dis. 2024, 15, 302. [Google Scholar] [CrossRef]
- Sharma, B.; Balomajumder, C.; Roy, P. Hypoglycemic and Hypolipidemic Effects of Flavonoid Rich Extract from Eugenia jambolana Seeds on Streptozotocin Induced Diabetic Rats. Food Chem. Toxicol. 2008, 46, 2376–2383. [Google Scholar] [CrossRef]
- Jin, S.; Chen, X.; Yang, J.; Ding, J. Lactate Dehydrogenase D Is a General Dehydrogenase for D-2-Hydroxyacids and Is Associated with D-Lactic Acidosis. Nat. Commun. 2023, 14, 6638. [Google Scholar] [CrossRef]
- Yu, L.; Xu, M.; Yan, Y.; Huang, S.; Yuan, M.; Cui, B.; Lv, C.; Zhang, Y.; Wang, H.; Jin, X.; et al. ZFYVE28 Mediates Insulin Resistance by Promoting Phosphorylated Insulin Receptor Degradation via Increasing Late Endosomes Production. Nat. Commun. 2023, 14, 6833. [Google Scholar] [CrossRef]
- Ding, Y.; Xia, S.; Fang, H.; Niu, B.; Chen, Q. Loureirin B Attenuates Insulin Resistance in HepG2 Cells by Regulating Gluconeogenesis Signaling Pathway. Eur. J. Pharmacol. 2021, 910, 174481. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.M.; Wang, F.; Li, G.; Tang, M.T.; Wang, C.; Zhou, Q.Q.; Zhou, T.; Gu, Q. Antioxidant and Hypolipidemic Activities of Pectin Isolated from Citrus Canning Processing Water. LWT 2022, 159, 113203. [Google Scholar] [CrossRef]
- Portmann, T.; Voineagu, I.; Yazawa, M.; Cord, B.; Palmer, T.D.; Chikahisa, S.; Seiji, N.; Bernstein, J.A.; Hallmayer, J.; Geschwind, D.H.; et al. Using IPS Cell-Derived Neurons to Uncover Cellular Phenotypes Associated with Timothy Syndrome. Nat. Med. 2012, 17, 1657–1662. [Google Scholar] [CrossRef]
- Zhou, F.; Gao, H.; Shang, L.; Li, J.; Zhang, M.; Wang, S.; Li, R.; Ye, L.; Yang, S. Oridonin Promotes Endoplasmic Reticulum Stress via TP53-Repressed TCF4 Transactivation in Colorectal Cancer. J. Exp. Clin. Cancer Res. 2023, 42, 150. [Google Scholar] [CrossRef]
- Cui, Y.; Li, B. Hypoglycemic Effects of Edible Fungus Polysaccharides: A Mini Review. Food Med. Homol 2025, 6867, 3006–4252. [Google Scholar] [CrossRef]
- Long, X.S.; Liao, S.T.; Wen, P.; Zou, Y.X.; Liu, F.; Shen, W.Z.; Hu, T.G. Superior Hypoglycemic Activity of Mulberry Lacking Monosaccharides Is Accompanied by Better Activation of the PI3K/Akt and AMPK Signaling Pathways. Food Funct. 2020, 11, 4249–4258. [Google Scholar] [CrossRef]
- Zhang, S.; Hong, H.; Zhang, H.; Chen, Z. Investigation of Anti-Aging Mechanism of Multi-Dimensional Nanomaterials Modified Asphalt by FTIR, NMR and GPC. Constr. Build. Mater. 2021, 305, 124809. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, Z.J.; Xie, D.; Sun, X.; Yang, W.; Zhao, X.; Xu, N. Characterization and Potential Antitumor Activity of Polysaccharide from Gracilariopsis lemaneiformis. Mar. Drugs 2017, 15, 100. [Google Scholar] [CrossRef]
- Jiao, H.L.; Ye, P.; Zhao, B.L. Protective Effects of Green Tea Polyphenols on Human HepG2 Cells against Oxidative Damage of Fenofibrate. Free Radic. Biol. Med. 2003, 35, 1121–1128. [Google Scholar] [CrossRef]
- Balkrishna, A.; Solleti, S.K.; Singh, H.; Verma, S.; Sharma, N.; Nain, P.; Varshney, A. Herbal Decoction Divya-Swasari-Kwath Attenuates Airway Inflammation and Remodeling through Nrf-2 Mediated Antioxidant Lung Defence in Mouse Model of Allergic Asthma. Phytomedicine 2020, 78, 153295. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, X.; Niu, Y.; Diao, Z.; Ren, B.; Li, X.; Liu, Z.; Liu, X. Cichoric Acid Improved Hyperglycaemia and Restored Muscle Injury via Activating Antioxidant Response in MLD-STZ-Induced Diabetic Mice. Food Chem. Toxicol. 2017, 107, 138–149. [Google Scholar] [CrossRef] [PubMed]
Monosaccharide (%) | GLP | GLP-HV |
---|---|---|
Glucose | 34.354 | 33.372 |
Galactose | 57.367 | 59.123 |
Mannose | 0.189 | 0.272 |
Ribose | 0.019 | 0.659 |
Rhamnose | 1.329 | 0.363 |
Xylose | 0.123 | 0.614 |
Arabinose | 1.085 | 0.748 |
Fucose | 5.074 | 4.441 |
Glucuronic acid | 0.187 | 0.317 |
Galacturonic acid | 0.274 | 0.091 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, X.; Liu, S.; Yang, X.; Zhao, Y.; Yang, S.; Wei, Y.; Pan, C.; Chen, S.; Jiang, P.; Qi, B.; et al. The Hypoglycemic Activity of Gracilaria lemaneiformis Polysaccharide Gels Based on IR/IRS-2/PI3k/Akt/Glut4 and Glycometabolism Signaling Pathways in HepG2 Cells. Gels 2025, 11, 366. https://doi.org/10.3390/gels11050366
Long X, Liu S, Yang X, Zhao Y, Yang S, Wei Y, Pan C, Chen S, Jiang P, Qi B, et al. The Hypoglycemic Activity of Gracilaria lemaneiformis Polysaccharide Gels Based on IR/IRS-2/PI3k/Akt/Glut4 and Glycometabolism Signaling Pathways in HepG2 Cells. Gels. 2025; 11(5):366. https://doi.org/10.3390/gels11050366
Chicago/Turabian StyleLong, Xiaoshan, Shucheng Liu, Xianqing Yang, Yongqiang Zhao, Shaoling Yang, Ya Wei, Chuang Pan, Shengjun Chen, Peihong Jiang, Bo Qi, and et al. 2025. "The Hypoglycemic Activity of Gracilaria lemaneiformis Polysaccharide Gels Based on IR/IRS-2/PI3k/Akt/Glut4 and Glycometabolism Signaling Pathways in HepG2 Cells" Gels 11, no. 5: 366. https://doi.org/10.3390/gels11050366
APA StyleLong, X., Liu, S., Yang, X., Zhao, Y., Yang, S., Wei, Y., Pan, C., Chen, S., Jiang, P., Qi, B., & Hu, X. (2025). The Hypoglycemic Activity of Gracilaria lemaneiformis Polysaccharide Gels Based on IR/IRS-2/PI3k/Akt/Glut4 and Glycometabolism Signaling Pathways in HepG2 Cells. Gels, 11(5), 366. https://doi.org/10.3390/gels11050366