A Tunable Sponge-like Lipophilic Gel with Branched Poly(2-propyl aspartamide) Crosslinkers for Enhanced VOC Absorption
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis of Poly(2-propyl aspartamide) Grafted Methacrylate
2.2. Optimization of Swelling and Mechanical Properties of Lipophilic Gel
2.3. Toluene Absorption Behavior of Sponge-Like Lipophilic Gel in a Continuous-Gas Flow Column System
2.4. Swelling Kinetics of Sponge-Like Lipophilic Gels
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis of Grafted Crosslinker PPA-g-MA
4.3. Preparation of Lipophilic Gel
4.4. Fabrication of Sponge-Like Lipophilic Gel
4.5. Application of Sponge-Like Lipophilic Gel in a Continuous Gas Flow Column System
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Wang, J.; Li, Q.; Zhang, W.; Yan, C. The Investigation of Volatile Organic Compounds (VOCs) Emissions in Environmentally Friendly Modified Asphalt. Polymers 2022, 14, 3459. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Du, X.; Liu, Y.; Liu, X.; Sun, A.; Wei, L.; Li, Y. An Environmentally Friendly Supramolecular Glue Developed from Natural 3, 4-Dihydroxybenzaldehyde. Polymers 2022, 14, 916. [Google Scholar] [CrossRef] [PubMed]
- Fang, P.; Tang, Z.J.; Chen, X.B.; Tang, Z.X.; Chen, D.S.; Huang, J.H.; Zeng, W.H.; Cen, C.P. Experimental study on the absorption of toluene from exhaust gas by paraffin/surfactant/water emulsion. J. Chem. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Scheepers, P.T.; de Werdt, L.; van Dael, M.; Anzion, R.; Vanoirbeek, J.; Duca, R.C.; Creta, M.; Godderis, L.; Warnakulasurya, D.; Devanarayana, N.M. Assessment of exposure of gas station attendants in Sri Lanka to benzene, toluene and xylenes. Environ. Res. 2019, 178, 108670. [Google Scholar] [CrossRef]
- Liu, C.; Guo, M.; Zhai, X.; Ye, X.; Zhang, L. Using epoxidized solution polymerized styrene-butadiene rubbers (ESSBRs) as coupling agents to modify silica without volatile organic compounds. Polymers 2020, 12, 1257. [Google Scholar] [CrossRef]
- Vu, D.L.; Lin, T.F.; Lin, T.H.; Wu, M.C. Highly-sensitive detection of volatile organic compound vapors by electrospun PANI/P3TI/PMMA fibers. Polymers 2020, 12, 455. [Google Scholar] [CrossRef]
- Lee, C.W.; Dai, Y.T.; Chien, C.H.; Hsu, D.J. Characteristics and health impacts of volatile organic compounds in photocopy centers. Environ. Res. 2006, 100, 139–149. [Google Scholar] [CrossRef]
- Ryu, H.W.; Song, M.Y.; Park, J.S.; Kim, J.M.; Jung, S.C.; Song, J.; Kim, B.J.; Park, Y.K. Removal of toluene using ozone at room temperature over mesoporous Mn/Al2O3 catalysts. Environ. Res. 2019, 172, 649–657. [Google Scholar] [CrossRef]
- Darracq, G.; Couvert, A.; Couriol, C.; Amrane, A.; Le Cloirec, P. Removal of hydrophobic volatile organic compounds in an integrated process coupling absorption and biodegradation—Selection of an organic liquid phase. Water Air Soil Pollut. 2012, 223, 4969–4997. [Google Scholar] [CrossRef]
- Maitlo, H.A.; Kim, K.H.; Khan, A.; Szulejko, J.E.; Kim, J.C.; Song, H.N.; Ahn, W.S. Competitive adsorption of gaseous aromatic hydrocarbons in a binary mixture on nanoporous covalent organic polymers at various partial pressures. Environ. Res. 2019, 173, 1–11. [Google Scholar] [CrossRef]
- Puthiaraj, P.; Lee, Y.R.; Ahn, W.S. Microporous amine-functionalized aromatic polymers and their carbonized products for CO2 adsorption. Chem. Eng. J. 2017, 319, 65–74. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, S.; Kim, K.H.; Tsang, D.C.; Lee, S.S. Metal organic frameworks as potent treatment media for odorants and volatiles in air. Environ. Res. 2019, 168, 336–356. [Google Scholar] [CrossRef]
- Dumont, E.; Darracq, G.; Couvert, A.; Couriol, C.; Amrane, A.; Thomas, D.; Andres, Y.; Le Cloirec, P. Hydrophobic VOC absorption in two-phase partitioning bioreactors; influence of silicone oil volume fraction on absorber diameter. Chem. Eng. Sci. 2012, 71, 146–152. [Google Scholar] [CrossRef]
- Al Zallouha, M.; Landkocz, Y.; Brunet, J.; Cousin, R.; Genty, E.; Courcot, D.; Siffert, S.; Shirali, P.; Billet, S. Usefulness of toxicological validation of VOCs catalytic degradation by air-liquid interface exposure system. Environ. Res. 2017, 152, 328–335. [Google Scholar] [CrossRef]
- Meena, M.; Samal, S. Alternaria host-specific (HSTs) toxins: An overview of chemical characterization, target sites, regulation and their toxic effects. Toxicol. Rep. 2019, 6, 745–758. [Google Scholar] [CrossRef]
- Raboni, M.; Torretta, V.; Viotti, P. Treatment of airborne BTEX by a two-stage biotrickling filter and biofilter, exploiting selected bacterial and fungal consortia. Int. J. Environ. Sci. Technol. 2017, 14, 19–28. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, J.; Gao, C.; Yuan, S.; Wang, Z. Emerging advanced membranes for removal of volatile organic compounds during membrane distillation. Desalination 2024, 597, 118372. [Google Scholar] [CrossRef]
- Mobasser, S.; Wager, Y.; Dittrich, T.M. Indoor air purification of volatile organic compounds (VOCs) using activated carbon, zeolite, and organosilica sorbents. Ind. Eng. Chem. Res. 2022, 61, 6791–6801. [Google Scholar] [CrossRef]
- Wang, G.; Li, N.; Xing, X.; Sun, Y.; Zhang, Z.; Hao, Z. Gaseous adsorption of hexamethyldisiloxane on carbons: Isotherms, isosteric heats and kinetics. Chemosphere 2020, 247, 125862. [Google Scholar] [CrossRef]
- Darracq, G.; Couvert, A.; Couriol, C.; Amrane, A.; Thomas, D.; Dumont, E.; Andres, Y.; Le Cloirec, P. Silicone oil: An effective absorbent for the removal of hydrophobic volatile organic compounds. J. Chem. Technol. Biotechnol. 2010, 85, 309–313. [Google Scholar] [CrossRef]
- Montes, M.; Daugulis, A.J.; Veiga, M.C.; Kennes, C. Characterization of absorbent polymers for the removal of volatile hydrophobic pollutants from air. J. Chem. Technol. Biotechnol. 2011, 86, 47–53. [Google Scholar] [CrossRef]
- Muzenda, E. Solubility of organics in water and silicon oil: A comparative study. Int. J. Chem. Mol. Eng. 2011, 5, 551–554. [Google Scholar]
- Ono, T.; Sugimoto, T.; Shinkai, S.; Sada, K. Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents. Nat. Mater. 2007, 6, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.G.; Jung, N.; Kim, H.J.; Jeong, J.H. Analysis of properties of lipophilic gel integrated with grafted crosslinker for absorbing VOCs. J. Korean Soc. Atmos. Environ. 2019, 35, 27–35. [Google Scholar] [CrossRef]
- Hoshino, K.I.; Nakajima, T.; Matsuda, T.; Sakai, T.; Gong, J.P. Network elasticity of a model hydrogel as a function of swelling ratio: From shrinking to extreme swelling states. Soft Matter 2018, 14, 9693–9701. [Google Scholar] [CrossRef]
- Mencer, H.J.; Gomzi, Z. Swelling kinetics of polymer-solvent systems. Eur. Polym. J. 1994, 30, 33–36. [Google Scholar] [CrossRef]
- Jayaramudu, T.; Ko, H.U.; Kim, H.C.; Kim, J.W.; Kim, J. Swelling behavior of polyacrylamide–cellulose nanocrystal hydrogels: Swelling kinetics, temperature, and pH effects. Materials 2019, 12, 2080. [Google Scholar] [CrossRef]
- Han, S.R.; Ahn, Y.; Cho, S.; Jeong, H.; Ji, Y.; Jung, W.; Jeong, J.H. A Spike-like Self-Assembly of Polyaspartamide Integrated with Functionalized Nanoparticles. Polymers 2024, 16, 234. [Google Scholar] [CrossRef]
- Jeong, J.H.; Schmidt, J.J.; Cha, C.; Kong, H. Tuning responsiveness and structural integrity of a pH responsive hydrogel using a poly (ethylene glycol) cross-linker. Soft Matter 2010, 6, 3930–3938. [Google Scholar] [CrossRef]
- Lim, J.W.; Kim, H.J.; Kim, Y.; Shin, S.G.; Cho, S.; Jung, W.G.; Jeong, J.H. An active and soft hydrogel actuator to stimulate live cell clusters by self-folding. Polymers 2020, 12, 583. [Google Scholar] [CrossRef]
- Erceg, T.; Dapčević-Hadnađev, T.; Hadnađev, M.; Ristić, I. Swelling kinetics and rheological behaviour of microwave synthesized poly (acrylamide-co-acrylic acid) hydrogels. Colloid Polym. Sci. 2021, 299, 11–23. [Google Scholar] [CrossRef]
Sample | Feed a | DS b | Number c |
---|---|---|---|
PPA | 100/0 | - | - |
PPA-g-MA 1 | 90/10 | 6 | 12 |
PPA-g-MA 2 | 80/20 | 13 | 25 |
PPA-g-MA 3 | 70/30 | 17 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.; Jung, N.; Jeong, H.; Heo, E.; Cho, K.; Jeong, J. A Tunable Sponge-like Lipophilic Gel with Branched Poly(2-propyl aspartamide) Crosslinkers for Enhanced VOC Absorption. Gels 2025, 11, 286. https://doi.org/10.3390/gels11040286
Shin S, Jung N, Jeong H, Heo E, Cho K, Jeong J. A Tunable Sponge-like Lipophilic Gel with Branched Poly(2-propyl aspartamide) Crosslinkers for Enhanced VOC Absorption. Gels. 2025; 11(4):286. https://doi.org/10.3390/gels11040286
Chicago/Turabian StyleShin, Sunggyu, Naseul Jung, Hyewon Jeong, Eunjin Heo, Kyungsuk Cho, and Jaehyun Jeong. 2025. "A Tunable Sponge-like Lipophilic Gel with Branched Poly(2-propyl aspartamide) Crosslinkers for Enhanced VOC Absorption" Gels 11, no. 4: 286. https://doi.org/10.3390/gels11040286
APA StyleShin, S., Jung, N., Jeong, H., Heo, E., Cho, K., & Jeong, J. (2025). A Tunable Sponge-like Lipophilic Gel with Branched Poly(2-propyl aspartamide) Crosslinkers for Enhanced VOC Absorption. Gels, 11(4), 286. https://doi.org/10.3390/gels11040286