Enhancing Postharvest Quality of Blackberries: Impact of Sonicated and Microwave-Assisted Pasteurized Edible Coating Gels at Different Storage Temperatures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Sonicated Edible Coating Gel on Weight Loss (%)
2.2. Effect of Sonicated Edible Coating Gel on Decay (%)
2.3. Effect of Sonicated Edible Coating Gel on pH
2.4. Effect of Sonicated Edible Coating Gel on Titratable Acidity (TA)
2.5. Effect of Sonicated Edible Coating Gel on TSS
2.6. Effect of Sonicated Edible Coating Gel on TSS/TA
2.7. Effect of Sonicated Edible Coating Gel on Total Flavonoid Content (TFC)
2.8. Effect of Sonicated Edible Coating Gel on Total Flavanols (TFls)
2.9. Effect of Sonicated Edible Coating Gel on Total Phenolic Content (TPC)
2.10. Effect of Sonicated Edible Coating Gel on Total Antioxidant Activity
2.11. Effect of Sonicated Edible Coating Gel on DPPH Radical Scavenging Activity
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Development of Sonicated and MAP Coating Gel
4.3. Treatment Plan
Economic Feasibility Analysis
4.4. Postharvest Quality Attributes
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
S | Sonicated |
MAP | Microwave-assisted pasteurized |
SMAP | Sonicated and microwave-assisted pasteurized |
CPEO | Citrus peel essential oil |
C | Control |
B | Blanched |
B+SMAP | Blanched + coated |
CMC | Carboxy methyl cellulose |
GAE | Gallic acid equivalent |
CE | Catechin equivalent |
AAE | Ascorbic acid equivalent |
RSA | Radical scavenging activity |
ANOVA | Analysis of variance |
HSD | Honestly significant difference |
p | Probability |
TSS | Total soluble solids |
TA | Titratable acidity |
TFC | Total flavonoid content |
TPC | Total phenolic content |
TFls | Total flavanols |
GRAS | Generally recognized as safe |
USFDA | United States Food and Drug Administration |
References
- King, A.J.; Burke, L.M.; Halson, S.L.; Hawley, J.A. The challenge of maintaining metabolic health during a global pandemic. Sports Med. 2020, 50, 1233–1241. [Google Scholar] [CrossRef]
- Junior, T.K.; de Moura, C.; do Carmo, M.A.V.; Azevedo, L.; Esmerino, L.A.; Tardivo, R.C.; Kilpeläinen, P.; Granato, D. Chemical composition, antioxidant, antimicrobial and cytotoxic/cytoprotective activity of non-polar extracts of grape (Vitis labrusca cv. bordeaux) and blackberry (Rubus fruticosus) seeds. Molecules 2021, 26, 4057. [Google Scholar] [CrossRef]
- Robinson, J.A.; Bierwirth, J.E.; Greenspan, P.; Pegg, R.B. Blackberry polyphenols: Review of composition, quantity, and health impacts from in vitro and in vivo studies. J. Food Bioact. 2020, 9, 40–51. [Google Scholar] [CrossRef]
- Urfalı, M.; Yılmaz, C. Identification of Quality Characteristics of Different Blackberry Varieties under Bursa-Kestel Ecological Conditions. Int. J. Agric. For. Life Sci. 2024, 8, 1–4. [Google Scholar]
- Paczkowska-Walendowska, M.; Gościniak, A.; Szymanowska, D.; Szwajgier, D.; Baranowska-Wójcik, E.; Szulc, P.; Dreczka, D.; Simon, M.; Cielecka-Piontek, J. Blackberry leaves as new functional food? Screening antioxidant, anti-inflammatory and microbiological activities in correlation with phytochemical analysis. Antioxidants 2021, 10, 1945. [Google Scholar] [CrossRef] [PubMed]
- Badenes, M.L.; Byrne, D.H. Fruit Breeding; Springer Science & Business Media: Berlin, Germany, 2012; Volume 8. [Google Scholar]
- Chizk, T.M. Multiomic Explorations of Fruit Texture and Postharvest Quality in Blackberry and Muscadine Grape. Ph.D. Thesis, University of Arkansas, Fayetteville, AR, USA, 2023. [Google Scholar]
- Lawrence, B.; Melgar, J.C. Harvest, handling, and storage recommendations for improving postharvest quality of blackberry cultivars. HortTechnology 2018, 28, 578–583. [Google Scholar] [CrossRef]
- Batool, M.; Bashir, O.; Amin, T.; Wani, S.M.; Masoodi, F.; Jan, N.; Bhat, S.A.; Gul, A. Effect of oxalic acid and salicylic acid treatments on the post-harvest life of temperate grown apricot varieties (Prunus armeniaca) during controlled atmosphere storage. Food Sci. Technol. Int. 2022, 28, 557–569. [Google Scholar] [CrossRef] [PubMed]
- García-Pastor, M.E.; Zapata, P.J.; Castillo, S.; Martínez-Romero, D.; Valero, D.; Serrano, M.; Guillén, F. Preharvest salicylate treatments enhance antioxidant compounds, color and crop yield in low pigmented-table grape cultivars and preserve quality traits during storage. Antioxidants 2020, 9, 832. [Google Scholar] [CrossRef]
- Kumar, S.; Baghel, M.; Yadav, A.; Dhakar, M.K. Postharvest biology and technology of berries. In Postharvest Biology and Technology of Temperate Fruits; Springer: Cham, Switzerland, 2018; pp. 349–370. [Google Scholar]
- Shah, H.M.S.; Singh, Z.; Kaur, J.; Hasan, M.U.; Woodward, A.; Afrifa-Yamoah, E. Trends in maintaining postharvest freshness and quality of Rubus berries. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4600–4643. [Google Scholar] [CrossRef] [PubMed]
- Nian, L.; Wang, M.; Sun, X.; Zeng, Y.; Xie, Y.; Cheng, S.; Cao, C. Biodegradable active packaging: Components, preparation, and applications in the preservation of postharvest perishable fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2024, 64, 2304–2339. [Google Scholar] [CrossRef]
- Shehata, N.; Sayed, E.T.; Abdelkareem, M.A. Recent progress in environmentally friendly geopolymers: A review. Sci. Total Environ. 2021, 762, 143166. [Google Scholar] [PubMed]
- Sheikh, M.; Safiuddin, A.; Khan, Z.; Rizvi, R.; Mahmood, I. Antibacterial and antifungal potential of some medicinal plants against certain phytopathogenic micro-organisms. Arch. Phytopathol. Plant Prot. 2013, 46, 1070–1080. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar]
- Laranjo, M.; Fernandez-Leon, A.M.; Potes, M.; Agulheiro-Santos, A.; Elias, M. Use of essential oils in food preservation. In Antimicrobial Research: Novel Bioknowledge and Educational Programs; Formatex Research Center: Badajoz, Spain, 2017. [Google Scholar]
- Bora, H.; Kamle, M.; Mahato, D.K.; Tiwari, P.; Kumar, P. Citrus essential oils (CEOs) and their applications in food: An overview. Plants 2020, 9, 357. [Google Scholar] [CrossRef]
- López-Palestina, C.U.; Aguirre-Mancilla, C.L.; Raya-Pérez, J.C.; Ramírez-Pimentel, J.G.; Gutiérrez-Tlahque, J.; Hernández-Fuentes, A.D. The effect of an edible coating with tomato oily extract on the physicochemical and antioxidant properties of garambullo (Myrtillocactus geometrizans) fruits. Agronomy 2018, 8, 248. [Google Scholar] [CrossRef]
- Vargas-Torrico, M.F.; Aguilar-Méndez, M.A.; Ronquillo-de Jesús, E.; Jaime-Fonseca, M.R.; von Borries-Medrano, E. Preparation and characterization of gelatin-carboxymethylcellulose active film incorporated with pomegranate (Punica granatum L.) peel extract for the preservation of raspberry fruit. Food Hydrocoll. 2024, 150, 109677. [Google Scholar] [CrossRef]
- Azmi, N.A.N.; Elgharbawy, A.A.; Motlagh, S.R.; Samsudin, N.; Salleh, H.M. Nanoemulsions: Factory for food, pharmaceutical and cosmetics. Processes 2019, 7, 617. [Google Scholar] [CrossRef]
- Kobayashi, D.; Hiwatashi, R.; Asakura, Y.; Matsumoto, H.; Shimada, Y.; Otake, K.; Shono, A. Effects of operational conditions on preparation of oil in water emulsion using ultrasound. Phys. Procedia 2015, 70, 1043–1047. [Google Scholar]
- Thakur, P.; Sonawane, S.; Potoroko, I.; Sonawane, S.H. Recent advances in ultrasound-assisted synthesis of nano-emulsions and their industrial applications. Curr. Pharm. Biotechnol. 2021, 22, 1748–1758. [Google Scholar]
- Khezerlou, A.; Zolfaghari, H.; Forghani, S.; Abedi-Firoozjah, R.; Alizadeh Sani, M.; Negahdari, B.; Jalalvand, M.; Ehsani, A.; McClements, D.J. Combining non-thermal processing techniques with edible coating materials: An innovative approach to food preservation. Coatings 2023, 13, 830. [Google Scholar] [CrossRef]
- Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 2018, 84, 312–320. [Google Scholar]
- Wang, Z.; Zhang, N.; Wang, H.-y.; Sui, S.-y.; Sun, X.-x.; Ma, Z.-s. The effects of ultrasonic/microwave assisted treatment on the properties of soy protein isolate/titanium dioxide films. LWT-Food Sci. Technol. 2014, 57, 548–555. [Google Scholar]
- Anantheswaran, R.C.; Ramaswamy, H.S. Bacterial destruction and enzyme inactivation during microwave heating. In Handbook of Microwave Technology for Food Application; CRC Press: Boca Raton, FL, USA, 2001; pp. 191–214. [Google Scholar]
- Tong, C.H. Effect of microwaves on biological and chemical systems. Microw. World-N. Y. 1996, 17, 14–23. [Google Scholar]
- Gomma, A.I. An Investigation of Effects of Microwave Treatment on the Structure, Enzymatic Hydrolysis, and Nutraceutical Properties of β-Lactoglobulin. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 2010. [Google Scholar]
- van Boekel, M.; Fogliano, V.; Pellegrini, N.; Stanton, C.; Scholz, G.; Lalljie, S.; Somoza, V.; Knorr, D.; Jasti, P.R.; Eisenbrand, G. A review on the beneficial aspects of food processing. Mol. Nutr. Food Res. 2010, 54, 1215–1247. [Google Scholar]
- Benlloch-Tinoco, M.; Igual, M.; Rodrigo, D.; Martinez-Navarrete, N. Comparison of microwaves and conventional thermal treatment on enzymes activity and antioxidant capacity of kiwifruit puree. Innov. Food Sci. Emerg. Technol. 2013, 19, 166–172. [Google Scholar] [CrossRef]
- Ando, Y.; Maeda, Y.; Mizutani, K.; Wakatsuki, N.; Hagiwara, S.; Nabetani, H. Impact of blanching and freeze-thaw pretreatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT-Food Sci. Technol. 2016, 71, 40–46. [Google Scholar]
- Xiao, H.-W.; Pan, Z.; Deng, L.-Z.; El-Mashad, H.M.; Yang, X.-H.; Mujumdar, A.S.; Gao, Z.-J.; Zhang, Q. Recent developments and trends in thermal blanching–A comprehensive review. Inf. Process. Agric. 2017, 4, 101–127. [Google Scholar]
- Wang, J.; Mujumdar, A.S.; Deng, L.Z.; Gao, Z.J.; Xiao, H.W.; Raghavan, G.S.V. High-humidity hot air impingement blanching alters texture, cell-wallpolysaccharides, water status and distribution of seedless grape. Carbohydr. Polym. 2018, 194, 9–17. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, M.Y.; Shon, J.C.; Kwon, Y.S.; Liu, K.-H.; Lee, C.H.; Ku, K.-M. Untargeted and targeted metabolomics analyses of blackberries–understanding postharvest red drupelet disorder. Food Chem. 2019, 300, 125169. [Google Scholar]
- Nayak, B.; Liu, R.H.; Tang, J. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains—A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 887–918. [Google Scholar] [CrossRef]
- Valero, D.; Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M. Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol. Technol. 2013, 77, 1–6. [Google Scholar]
- Gardesh, A.S.K.; Badii, F.; Hashemi, M.; Ardakani, A.Y.; Maftoonazad, N.; Gorji, A.M. Effect of nanochitosan based coating on climacteric behavior and postharvest shelf-life extension of apple cv. Golab Kohanz. LWT 2016, 70, 33–40. [Google Scholar] [CrossRef]
- Arrubla Vélez, J.P.; Guerrero Álvarez, G.E.; Vargas Soto, M.C.; Cardona Hurtado, N.; Pinzón, M.I.; Villa, C.C. Aloe vera gel edible coating for shelf life and antioxidant proprieties preservation of Andean blackberry. Processes 2021, 9, 999. [Google Scholar] [CrossRef]
- Patil, V.; Shams, R.; Dash, K.K. Techno-functional characteristics, and potential applications of edible coatings: A comprehensive review. J. Agric. Food Res. 2023, 14, 100886. [Google Scholar] [CrossRef]
- Vilaplana, R.; Guerrero, K.; Guevara, J.; Valencia-Chamorro, S. Chitosan coatings to control soft mold on fresh blackberries (Rubus glaucus Benth.) during postharvest period. Sci. Hortic. 2020, 262, 109049. [Google Scholar]
- Kocira, A.; Kozłowicz, K.; Panasiewicz, K.; Staniak, M.; Szpunar-Krok, E.; Hortyńska, P. Polysaccharides as edible films and coatings: Characteristics and influence on fruit and vegetable quality—A review. Agronomy 2021, 11, 813. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Vargas, M.; González-Martínez, C.; Chiralt, A.; Chafer, M. Use of essential oils in bioactive edible coatings: A review. Food Eng. Rev. 2011, 3, 1–16. [Google Scholar]
- Persico, P.; Ambrogi, V.; Carfagna, C.; Cerruti, P.; Ferrocino, I.; Mauriello, G. Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polym. Eng. Sci. 2009, 49, 1447–1455. [Google Scholar]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J. Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control 2008, 19, 1130–1138. [Google Scholar]
- Ojagh, S.M.; Rezaei, M.; Razavi, S.H.; Hosseini, S.M.H. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem. 2010, 120, 193–198. [Google Scholar]
- Aşik, E.; Candoğan, K. Effects of chitosan coatings incorporated with garlic oil on quality characteristics of shrimp. J. Food Qual. 2014, 37, 237–246. [Google Scholar] [CrossRef]
- Durmus, M. The effects of nanoemulsions based on citrus essential oils (orange, mandarin, grapefruit, and lemon) on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets at 4 ± 2 C. J. Food Saf. 2020, 40, e12718. [Google Scholar] [CrossRef]
- Kujur, A.; Kiran, S.; Dubey, N.; Prakash, B. Microencapsulation of Gaultheria procumbens essential oil using chitosan-cinnamic acid microgel: Improvement of antimicrobial activity, stability and mode of action. LWT 2017, 86, 132–138. [Google Scholar]
- Álvarez-Paino, M.; Muñoz-Bonilla, A.; Fernández-García, M. Antimicrobial polymers in the nano-world. Nanomaterials 2017, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Controlling and predicting droplet size of nanoemulsions: Scaling relations with experimental validation. Soft Matter 2016, 12, 1452–1458. [Google Scholar]
- Prakash, B.; Kujur, A.; Yadav, A.; Kumar, A.; Singh, P.P.; Dubey, N. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 2018, 89, 1–11. [Google Scholar] [CrossRef]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z.; Opara, U.L. Postharvest factors affecting vitamin C content of citrus fruits: A review. Sci. Hortic. 2017, 218, 95–104. [Google Scholar]
- Miranda, M.; Bai, J.; Pilon, L.; Torres, R.; Casals, C.; Solsona, C.; Teixidó, N. Fundamentals of edible coatings and combination with biocontrol agents: A strategy to improve postharvest fruit preservation. Foods 2024, 13, 2980. [Google Scholar] [CrossRef]
- Padmaja, N.; Bosco, S.J.D.; Rao, J.S. Physico chemical analysis of sapota (Manilkara zapota) coated by edible aloe vera gel. Int. J. Appl. Sci. Biotechnol. 2015, 3, 20–25. [Google Scholar]
- De Bruno, A.; Gattuso, A.; Ritorto, D.; Piscopo, A.; Poiana, M. Effect of edible coating enriched with natural antioxidant extract and bergamot essential oil on the shelf life of strawberries. Foods 2023, 12, 488. [Google Scholar] [CrossRef]
- Gol, N.B.; Patel, P.R.; Rao, T.R. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 2013, 85, 185–195. [Google Scholar]
- Bilawal, A.; Hashmi, M.S.; Zareen, S.; Amir, M.N.; Khan, I. Effect of edible gum coating, glycerin and calcium lactate application on the postharvest quality of guava fruit. Int. J. Adv. Res 2017, 1, 23–27. [Google Scholar]
- Ullah, A.; Abbasi, N.A.; Shafique, M.; Qureshi, A.A. Influence of edible coatings on biochemical fruit quality and storage life of bell pepper cv. “Yolo Wonder”. J. Food Qual. 2017, 2017, 2142409. [Google Scholar] [CrossRef]
- Bersaneti, G.T.; Prudencio, S.H.; Mali, S.; Celligoi, M.A.P.C. Assessment of a new edible film biodegradable based on starch-nystose to increase quality and the shelf life of blackberries. Food Biosci. 2021, 42, 101173. [Google Scholar] [CrossRef]
- Ascencio-Arteaga, A.; Luna-Suárez, S.; Cárdenas-Valdovinos, J.G.; Oregel-Zamudio, E.; Oyoque-Salcedo, G.; Ceja-Díaz, J.A.; Angoa-Pérez, M.V.; Mena-Violante, H.G. Shelf life of blackberry fruits (Rubus fruticosus) with edible coatings based on candelilla wax and guar gum. Horticulturae 2022, 8, 574. [Google Scholar] [CrossRef]
- Rodríguez, M.C.; Yépez, C.V.; González, J.H.G.; Ortega-Toro, R. Effect of a multifunctional edible coating based on cassava starch on the shelf life of Andean blackberry. Heliyon 2020, 6, e03974. [Google Scholar]
- Villegas, C.; Albarracín, W. Edible coating application and effect on blackberry (Rubus glaucus Benth) shelf life. Vitae 2016, 23, 202–209. [Google Scholar]
- Khaliq, G.; Mohamed, M.T.M.; Ali, A.; Ding, P.; Ghazali, H.M. Effect of gum arabic coating combined with calcium chloride on physico-chemical and qualitative properties of mango (Mangifera indica L.) fruit during low temperature storage. Sci. Hortic. 2015, 190, 187–194. [Google Scholar] [CrossRef]
- Kraśniewska, K.; Ścibisz, I.; Gniewosz, M.; Mitek, M.; Pobiega, K.; Cendrowski, A. Effect of pullulan coating on postharvest quality and shelf-life of highbush blueberry (Vaccinium corymbosum L.). Materials 2017, 10, 965. [Google Scholar] [CrossRef]
- Silva, S.P.; Ribeiro, S.C.; Teixeira, J.A.; Silva, C.C. Application of an alginate-based edible coating with bacteriocin-producing Lactococcus strains in fresh cheese preservation. LWT 2022, 153, 112486. [Google Scholar] [CrossRef]
- Oliveira, N.L.; Alexandre, A.C.S.; Silva, S.H.; de Abreu Figueiredo, J.; Rodrigues, A.A.; de Resende, J.V. Drying efficiency and quality preservation of blackberries (Rubus spp. variety Tupy) in the near and mid-infrared-assisted freeze-drying. Food Chem. Adv. 2023, 3, 100550. [Google Scholar] [CrossRef]
- Shigematsu, E.; Dorta, C.; Rodrigues, F.J.; Cedran, M.F.; Giannoni, J.A.; Oshiiwa, M.; Mauro, M.A. Edible coating with probiotic as a quality factor for minimally processed carrots. J. Food Sci. Technol. 2018, 55, 3712–3720. [Google Scholar] [CrossRef]
- Afifah, N.; Ratnawati, L.; Darmajana, D. Evaluation of plasticizer addition in composite edible coating on quality of fresh-cut mangoes during storage. IOP Conf. Ser. Earth Environ. Sci. 2019, 251, 012029. [Google Scholar]
- Gupta, N.; Jawandha, S.K. Influence of maturity stage on fruit quality during storage of ‘Earli Grande’ peaches. Not. Sci. Biol. 2010, 2, 96–99. [Google Scholar] [CrossRef]
- Khalifa, I.; Barakat, H.; El-Mansy, H.A.; Soliman, S.A. Improving the shelf-life stability of apple and strawberry fruits applying chitosan-incorporated olive oil processing residues coating. Food Packag. Shelf Life 2016, 9, 10–19. [Google Scholar]
- Riaz, A.; Aadil, R.M.; Amoussa, A.M.O.; Bashari, M.; Abid, M.; Hashim, M.M. Application of chitosan-based apple peel polyphenols edible coating on the preservation of strawberry (Fragaria ananassa cv. Hongyan) fruit. J. Food Process. Preserv. 2021, 45, e15018. [Google Scholar]
- Hadadinejad, M.; Ghasemi, K.; Mohammadi, A.A. Effect of storage temperature and packaging material on shelf life of thornless blackberry. Int. J. Hortic. Sci. Technol. 2018, 5, 265–275. [Google Scholar]
- Retamal-Salgado, J.; Adaos, G.; Cedeño-García, G.; Ospino-Olivella, S.C.; Vergara-Retamales, R.; Lopéz, M.D.; Olivares, R.; Hirzel, J.; Olivares-Soto, H.; Betancur, M. Preharvest applications of oxalic acid and salicylic acid increase fruit firmness and polyphenolic content in blueberry (Vaccinium corymbosum L.). Horticulturae 2023, 9, 639. [Google Scholar] [CrossRef]
- Jiang, F.; Lopez, A.; Jeon, S.; de Freitas, S.T.; Yu, Q.; Wu, Z.; Labavitch, J.M.; Tian, S.; Powell, A.L.; Mitcham, E. Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking. Hortic. Res. 2019, 6, 17. [Google Scholar] [CrossRef]
- Shirzad, H.; Alirezalu, A.; Alirezalu, K.; Yaghoubi, M.; Ghorbani, B.; Pateiro, M.; Lorenzo, J.M. Effect of Aloysia citrodora essential oil on biochemicals, antioxidant characteristics, and shelf life of strawberry fruit during storage. Metabolites 2021, 11, 256. [Google Scholar] [CrossRef]
- Erbas, D.; Mertoglu, K.; Eskimez, I.; Polat, M.; Koyuncu, M.A.; Durul, M.S.; Bulduk, I.; Kaki, B.; Esatbeyoglu, T. Preharvest salicylic acid and oxalic acid decrease bioactive and quality loss in blackberry (cv. Chester) fruits during cold storage. J. Food Biochem. 2024, 2024, 4286507. [Google Scholar] [CrossRef]
- Cortés-Rodríguez, M.; Villegas-Yépez, C.; González, J.H.G.; Rodríguez, P.E.; Ortega-Toro, R. Development and evaluation of edible films based on cassava starch, whey protein, and bees wax. Heliyon 2020, 6, e04884. [Google Scholar] [CrossRef]
- Khodaei, N.; Nguyen, M.M.; Mdimagh, A.; Bayen, S.; Karboune, S. Compositional diversity and antioxidant properties of essential oils: Predictive models. LWT 2021, 138, 110684. [Google Scholar] [CrossRef]
- Ali, L.; Alsanius, B.W.; Rosberg, A.K.; Svensson, B.; Nielsen, T.; Olsson, M.E. Effects of nutrition strategy on the levels of nutrients and bioactive compounds in blackberries. Eur. Food Res. Technol. 2012, 234, 33–44. [Google Scholar] [CrossRef]
- Galgano, F. Biodegradable packaging and edible coating for fresh-cut fruits and vegetables. Ital. J. Food Sci. 2015, 27, 1A. [Google Scholar]
- Farahmandfar, R.; Asnaashari, M.; Pourshayegan, M.; Maghsoudi, S.; Moniri, H. Evaluation of antioxidant properties of lemon verbena (Lippia citriodora) essential oil and its capacity in sunflower oil stabilization during storage time. Food Sci. Nutr. 2018, 6, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Indiarto, R.; Izzati, A.N.; Djali, M. Post-harvest handling technologies of tropical fruits: A review. Int. J. 2020, 8, 3951–3957. [Google Scholar] [CrossRef]
- Islam, M.; Saha, T.; Monalisa, K.; Hoque, M. Effect of starch edible coating on drying characteristics and antioxidant properties of papaya. J. Food Meas. Charact. 2019, 13, 2951–2960. [Google Scholar] [CrossRef]
- Panahirad, S.; Naghshiband-Hassani, R.; Mahna, N. Pectin-based edible coating preserves antioxidative capacity of plum fruit during shelf life. Food Sci. Technol. Int. 2020, 26, 583–592. [Google Scholar] [CrossRef]
- Tumbarski, Y.D.; Todorova, M.M.; Topuzova, M.G.; Georgieva, P.I.; Petkova, N.T.; Ivanov, I.G. Postharvest biopreservation of fresh blueberries by propolis-containing edible coatings under refrigerated conditions. Curr. Res. Nutr. Food Sci. 2022, 10, 99. [Google Scholar] [CrossRef]
- Noreña, C.Z.; Rigon, R.T. Effect of blanching on enzyme activity and bioactive compounds of blackberry. Braz. Arch. Biol. Technol. 2018, 61, e18180018. [Google Scholar]
- Rahman, M.U.; Sajid, M.; Rab, A.; Ali, S.; Shahid, M.O.; Alam, A.; Israr, M.; Ahmad, I. Impact of calcium chloride concentrations and storage duration on quality attributes of peach (Prunus persica). Russ. Agric. Sci. 2016, 42, 130–136. [Google Scholar]
- Qureshi, T.M.; Nadeem, M.; Hussain, S.; Riaz, M.N. Influence of ultrasonic treatment on the quality of jujube (Zizyphus mauritiana Lamk.) extract cultivars. J. Agric. Crop Res. 2016, 4, 100–109. [Google Scholar]
- Acharya, K. Simplified methods for microtiter based analysis of in vitro antioxidant activity. Asian J. Pharm. (AJP) 2017, 11, 327–335. [Google Scholar]
Sr No | Ingredient | Quantity Used | Price per Package ($) | Cost for 1 L ($) |
---|---|---|---|---|
1 | Carboxymethyl cellulose | 5 g/L | 21.20/Lb | 0.23 |
2 | Glycerol | 7.5 mL | 157/500 mL | 2.36 |
3 | Tween-80 | 2 mL | 87.40/500 mL | 0.35 |
4 | Citrus peel essential oil | 5 mL/L | 22.20/500 mL | 0.22 |
5 | Distilled water | 1 L | 1.37/gal | 0.36 |
6 | Overhead charges | 0.70 | ||
Total cost for making 1 L coating gel | 4.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadeem, M.; Leaks, K.; Abdullah, A.; Adamson Felix, J.S.; Shahid, M.A. Enhancing Postharvest Quality of Blackberries: Impact of Sonicated and Microwave-Assisted Pasteurized Edible Coating Gels at Different Storage Temperatures. Gels 2025, 11, 243. https://doi.org/10.3390/gels11040243
Nadeem M, Leaks K, Abdullah A, Adamson Felix JS, Shahid MA. Enhancing Postharvest Quality of Blackberries: Impact of Sonicated and Microwave-Assisted Pasteurized Edible Coating Gels at Different Storage Temperatures. Gels. 2025; 11(4):243. https://doi.org/10.3390/gels11040243
Chicago/Turabian StyleNadeem, Muhammad, KeAndre Leaks, Ahmed Abdullah, Julia Sage Adamson Felix, and Muhammad Adnan Shahid. 2025. "Enhancing Postharvest Quality of Blackberries: Impact of Sonicated and Microwave-Assisted Pasteurized Edible Coating Gels at Different Storage Temperatures" Gels 11, no. 4: 243. https://doi.org/10.3390/gels11040243
APA StyleNadeem, M., Leaks, K., Abdullah, A., Adamson Felix, J. S., & Shahid, M. A. (2025). Enhancing Postharvest Quality of Blackberries: Impact of Sonicated and Microwave-Assisted Pasteurized Edible Coating Gels at Different Storage Temperatures. Gels, 11(4), 243. https://doi.org/10.3390/gels11040243