Solvent-Free Ion-Conductive Xerogels with High Conductivity and Adhesion Enable Multimodal Sensing
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of PEM-Li ICXGs
4.3. Mechanical Property Testing
4.4. Adhesion Testing
4.5. Electrical Conductivity Test
4.6. Strain-Sensing Performance Test
4.7. Antibacterial Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.B.; Ma, Y.J.; Huang, Y.G. Material innovation and mechanics design for substrates and encapsulation of flexible electronics: A review. Mater. Horiz. 2021, 8, 383–400. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.Y.; Shen, Y.Y.; Zhu, F.B.; Yin, J.; Qian, J.; Fu, J.Z.; Wu, Z.L.; Zheng, Q. Programmed Deformations of 3D-Printed Tough Physical Hydrogels with High Response Speed and Large Output Force. Adv. Funct. Mater. 2018, 28, 1803366. [Google Scholar] [CrossRef]
- Cui, W.; Zheng, Y.; Zhu, R.J.; Mu, Q.F.; Wang, X.Y.; Wang, Z.S.; Liu, S.Q.; Li, M.; Ran, R. Strong Tough Conductive Hydrogels via the Synergy of Ion-Induced Cross-Linking and Salting-Out. Adv. Funct. Mater. 2022, 32, 2204823. [Google Scholar] [CrossRef]
- Yang, Y.R.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Lin, Y.; Shen, S.T.; Du, Z.H.; Lin, Z.Q.; Zhou, P.P.; Huang, H.L.; Lyu, X.L.; Zou, Z.G. Intrinsic Anti-Freezing, Tough, and Transparent Hydrogels for Smart Optical and Multi-Modal Sensing Applications. Adv. Mater. 2025, 37, 2413856. [Google Scholar] [CrossRef]
- Pi, M.H.; Qin, S.H.; Wen, S.H.; Wang, Z.S.; Wang, X.Y.; Li, M.; Lu, H.L.; Meng, Q.D.; Cui, W.; Ran, R. Rapid gelation of tough and anti-swelling hydrogels under mild conditions for underwater communication. Adv. Funct. Mater. 2023, 33, 2210188. [Google Scholar] [CrossRef]
- Xie, Z.X.; Yuan, F.Y.; Liu, J.Q.; Tian, L.F.; Chen, B.H.; Fu, Z.Q.; Mao, S.Z.; Jin, T.T.; Wang, Y.; He, X.; et al. Octopus-inspired sensorized soft arm for environmental interaction. Sci. Robot. 2023, 8, eadh7852. [Google Scholar] [CrossRef]
- Xue, J.T.; Zou, Y.; Deng, Y.L.; Li, Z. Bioinspired sensor system for health care and human-machine interaction. EcoMat 2022, 4, e12209. [Google Scholar] [CrossRef]
- Lacour, S.P.; Courtine, G.; Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 2016, 1, 16063. [Google Scholar] [CrossRef]
- Feiner, R.; Dvir, T. Tissue-electronics interfaces: From implantable devices to engineered tissues. Nat. Rev. Mater. 2018, 3, 17076. [Google Scholar] [CrossRef]
- Bodelón, G.; Montes-García, V.; López-Puente, V.; Hill, E.H.; Hamon, C.; Sanz-Ortiz, M.N.; Rodal-Cedeira, S.; Costas, C.; Celiksoy, S.; Pérez-Juste, I.; et al. Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nat. Mater. 2016, 15, 1203. [Google Scholar] [PubMed]
- Zong, S.Y.; Lv, H.; Liu, C.J.; Zhu, L.W.; Duan, J.F.; Jiang, J.X. Mussel inspired Cu-tannic autocatalytic strategy for rapid self-polymerization of conductive and adhesive hydrogel sensors with extreme environmental tolerance. Chem. Eng. J. 2023, 465, 142831. [Google Scholar] [CrossRef]
- McCoul, D.; Hu, W.L.; Gao, M.M.; Mehta, V.; Pei, Q.B. Recent Advances in Stretchable and Transparent Electronic Materials. Adv. Electron. Mater. 2016, 2, 1500407. [Google Scholar] [CrossRef]
- Zhang, A.Q.; Lieber, C.M. Nano-bioelectronics. Chem. Rev. 2016, 116, 215–257. [Google Scholar]
- Zheng, S.Y.; Mao, S.H.; Yuan, J.F.; Wang, S.B.; He, X.M.; Zhang, X.N.; Du, C.; Zhang, D.; Wu, Z.L.; Yang, J.T. Molecularly Engineered Zwitterionic Hydrogels with High Toughness and Self-Healing Capacity for Soft Electronics Applications. Chem. Mater. 2021, 33, 8418–8429. [Google Scholar] [CrossRef]
- Yuk, H.; Wu, J.J.; Zhao, X.H. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 2022, 7, 935–952. [Google Scholar] [CrossRef]
- Tordi, P.; Ridi, F.; Samori, P.; Bonini, M. Cation-Alginate Complexes and Their Hydrogels: A Powerful Toolkit for the Development of Next-Generation Sustainable Functional Materials. Adv. Funct. Mater. 2025, 35, 2416390. [Google Scholar]
- Boufidis, D.; Garg, R.; Angelopoulos, E.; Cullen, D.K.; Vitale, F. Bio-inspired electronics: Soft, biohybrid, and "living" neural interfaces. Nat. Commun. 2025, 16, 1861. [Google Scholar]
- Afanasenkau, D.; Kalinina, D.; Lyakhovetskii, V.; Tondera, C.; Gorsky, O.; Moosavi, S.; Pavlova, N.; Merkulyeva, N.; Kalueff, A.V.; Minev, I.R.; et al. Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. Nat. Biomed. Eng. 2020, 4, 1010–1022. [Google Scholar]
- Liu, Z.Y.; Jiang, Q.; Bisoyi, H.K.; Zhu, G.Q.; Nie, Z.Z.; Jiang, K.; Yang, H.; Li, Q. Multifunctional Ionic Conductive Anisotropic Elastomers with Self-Wrinkling Microstructures by In Situ Phase Separation. ACS Appl. Mater. Interfaces 2023, 15, 28546–28554. [Google Scholar] [CrossRef]
- Fang, Z.Y.; Wang, L.; Liang, C.Y.; Qiu, J.H.; Zhang, T.Y.; Xu, D.H.; Qi, D.P.; Luan, S.F.; Shi, H.C. Bioinspired Ionic Elastomer with Skin-Like Piezo-Ionic Dynamics Enabled by a Self-Confined Multi-Interaction Network. Adv. Funct. Mater. 2024, Early View, 2418583. [Google Scholar]
- Yuan, Y.X.; Zhou, J.L.; Lu, G.Q.; Sun, J.X.; Tang, L.Q. Highly Stretchable, Transparent, and Self-Adhesive Ionic Conductor for High-Performance Flexible Sensors. ACS Appl. Polym. Mater. 2021, 3, 1610–1617. [Google Scholar]
- Kong, L.Y.; Li, W.W.; Zhang, T.H.; Ma, H.H.; Cao, Y.Q.; Wang, K.X.; Zhou, Y.L.; Shamim, A.; Zheng, L.; Wang, X.W.; et al. Wireless Technologies in Flexible and Wearable Sensing: From Materials Design, System Integration to Applications. Adv. Mater. 2024, 36, 2400333. [Google Scholar]
- Shi, L.; Jia, K.; Gao, Y.Y.; Yang, H.; Ma, Y.M.; Lu, S.Y.; Gao, G.X.; Bu, H.T.; Lu, T.Q.; Ding, S.J. Highly Stretchable and Transparent Ionic Conductor with Novel Hydrophobicity and Extreme-Temperature Tolerance. Research 2020, 2020, 2505619. [Google Scholar] [PubMed]
- Wang, C.; Li, W.X.; Li, D.B.; Zhao, X.X.; Li, Y.; Zhang, Y.L.; Qi, X.; Wu, M.; Fan, L.Z. High-Performance Solid-State Lithium Metal Batteries of Garnet/Polymer Composite Thin-Film Electrolyte with Domain-Limited Ion Transport Pathways. ACS Nano 2024, 18, 32175–32185. [Google Scholar]
- Guo, Y.; Qu, X.X.; Hu, Z.Y.; Zhu, J.J.; Niu, W.W.; Liu, X.K.J. Highly elastic and mechanically robust polymer electrolytes with high ionic conductivity and adhesiveness for high-performance lithium metal. Mater. Chem. A 2021, 9, 13597–13607. [Google Scholar]
- Wang, Z.W.; Cui, H.J.; Liu, M.D.; Grage, S.L.; Hoffmann, M.; Sedghamiz, E.; Wenzel, W.; Levkin, P.A. Tough, Transparent, 3D-Printable, and Self-Healing Poly(ethylene glycol)-Gel (PEGgel). Adv. Mater. 2022, 34, 2107791. [Google Scholar]
- Stephan, A.M.; Nahm, K.S. Review on composite polymer electrolytes for lithium batteries. Polymer 2006, 47, 5952–5964. [Google Scholar]
- Manthiram, A.; Yu, X.W.; Wang, S.F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar]
- Mendes-Felipe, C.; Barbosa, J.C.; Gonçalves, R.; Miranda, D.; Costa, C.M.; Vilas-Vilela, J.L.; Lanceros-Mendez, S.J. Lithium bis(trifluoromethanesulfonyl)imide blended in polyurethane acrylate photocurable solid polymer electrolytes for lithium-ion batteries. Energy Chem. 2021, 62, 485–496. [Google Scholar]
- Xue, N.X.; Wang, W.; Chen, Z.X.; Heng, Y.; Yuan, Z.D.; Xu, R.J.; Lei, C.H.J. Electrochemically stable poly (vinylidene fluoride)-polyurethane polymer gel electrolytes with polar β-phase in lithium batteries. Electroanal. Chem. 2022, 907, 116026. [Google Scholar]
- Tian, M.; Yan, B.Y.; Yao, Y.; Zhang, L.Q.; Nishi, T.; Ning, N.Y.J. Largely improved actuation strain at low electric field of dielectric elastomer by combining disrupting hydrogen bonds with ionic conductivity. Mater. Chem. C 2014, 2, 8388–8397. [Google Scholar]
- Zhuo, Y.Z.; Xia, Z.J.; Qi, Y.; Sumigawa, T.; Wu, J.Y.; Sesták, P.; Lu, Y.A.; Håkonsen, V.; Li, T.; Wang, F.; et al. Simultaneously Toughening and Stiffening Elastomers with Octuple Hydrogen Bonding. Adv. Mater. 2021, 33, 2008523. [Google Scholar]
- Chen, J.; Gao, Y.Y.; Shi, L.; Yu, W.; Sun, Z.J.; Zhou, Y.F.; Liu, S.; Mao, H.; Zhang, D.Y.; Lu, T.Q.; et al. Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability. Nat.Commun. 2022, 13, 4868. [Google Scholar] [PubMed]
- Xiang, H.; Li, X.X.; Wu, B.H.; Sun, S.T.; Wu, P.Y. Highly Damping and Self-Healable Ionic Elastomer from Dynamic Phase Separation of Sticky Fluorinated Polymers. Adv. Mater. 2023, 35, 2209581. [Google Scholar]
- Shi, P.R.; Wang, Y.F.; Wan, K.N.; Zhang, C.; Liu, T.X. A Waterproof Ion-Conducting Fluorinated Elastomer with 6000% Stretchability, Superior Ionic Conductivity, and Harsh Environment Tolerance. Adv. Funct. Mater. 2022, 32, 2112293. [Google Scholar]
- Cao, Y.; Morrissey, T.G.; Acome, E.; Allec, S.I.; Wong, B.M.; Keplinger, C.; Wang, C. A Transparent, Self-Healing, Highly Stretchable Ionic Conductor. Adv. Mater. 2017, 29, 1605099. [Google Scholar]
- Zhang, H.; Zhang, R.; Yuan, C. Modelling constrained recovery of UV-curable shape memory polymer toward 4D printing. Chem. Bio Eng. 2024, 1, 715–724. [Google Scholar]
- Zhang, B.; Dong, P.; Yuan, S.; Zhang, Y.; Zhang, Y.; Wang, Y. Manganese-based oxide cathode materials for aqueous zinc-ion batteries: Materials, mechanism, challenges, and strategies. Chem. Bio Eng. 2024, 1, 113–132. [Google Scholar]
- Wang, L.L.; Wang, X.; Feng, S.Y.; Li, L. Dynamic Boronic Ester Cross-Linked Polymers with Tunable Properties via Side-Group Engineering. Polymers 2024, 16, 3567. [Google Scholar] [CrossRef]
- Ma, H.; Liu, Z.Y.; Lu, X.Q.; Zhang, S.T.; Tang, C.L.; Cheng, Y.F.; Zhang, H.; Liu, G.L.; Sui, C.; Ding, C.B.; et al. 3D printed multi-coupled bioinspired skin-electronic interfaces with enhanced adhesion for monitoring and treatment. Acta Biomater. 2024, 187, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.B.; Olson, K.R.; Karny, A.; Mecham, S.J.; DeSimone, J.M.; Balsara, N.P.J. Effect of Anion Size on Conductivity and Transference Number of Perfluoroether Electrolytes with Lithium Salts. Electrochem. Soc. 2017, 164, A3511. [Google Scholar] [CrossRef]
- Yang, H.; Wu, N.Q. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review. Energy Sci. Eng. 2022, 10, 1643–1671. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Gu, K.; Yao, J.; Shao, Z.; Chen, X. Boronic ester-based self-healing hydrogels formed by using intermolecular BN coordination. ACS Appl. Mater. Interfaces 2021, 13, 29008–29020. [Google Scholar] [CrossRef]
- Zhu, H.; Cheng, Y.; Li, S.; Xu, M.; Yang, X.; Li, T.; Song, H.S. Stretchable and recyclable gelatin Ionogel based ionic skin with extensive temperature tolerant, self-healing, UV-shielding, and sensing capabilities. Int. J. Biol. Macromol. 2023, 244, 125417. [Google Scholar] [CrossRef]
- Han, S.; Zhang, R.; Han, L.; Zhao, C.; Yan, X.; Dai, M. An antifatigue and self-healable ionic polyurethane/ionic liquid composite as the channel layer for a low energy cost synaptic transistor. Eur. Polym. J. 2022, 174, 111292. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, Q.; Qi, X.; Zhang, N.; Huang, T.; Yang, J.; Wang, Y. Silicon-based dielectric elastomer with amino-complexed hybrids towards high actuation performance. Nano Mater. Sci. 2024, 6, 576–586. [Google Scholar] [CrossRef]
- Braganza, C.O.; Philamore, H.; Conn, A.T. Sustainable Fabrication of Biodegradable Soft Robotic Actuators. In Proceedings of the 8th IEEE RAS International Conference on Soft Robotics, Lausanne, Switzerland, 23–26 April 2025. [Google Scholar]
- Thomas, M.; Jose, S.J. Electrospun membrane of PVA and functionalized agarose with polymeric ionic liquid and conductive carbon for efficient dye sensitized solar cell. Photochem. Photobiol. A Chem. 2022, 425, 113666. [Google Scholar] [CrossRef]
- Patel, V.; Das, E.; Bhargava, A.; Deshmukh, S.; Modi, A.; Srivastava, R. Ionogels for flexible conductive substrates and their application in biosensing. Int. J. Biol. Macromol. 2024, 254, 127736. [Google Scholar] [CrossRef]
- Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16042. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Wang, Q.; Han, Y.; Tan, Y. Boronic ester-based self-healing hydrogels formed by using intermolecular BN coordination. Polymer 2020, 202, 122624. [Google Scholar] [CrossRef]
- Inverardi, N.; Toselli, M.; Scalet, G.; Messori, M.; Auricchio, F.; Pandini, S. Stress-free two-way shape memory effect of poly (ethylene glycol)/poly (ε-caprolactone) semicrystalline networks. Macromolecules 2022, 55, 8533–8547. [Google Scholar] [CrossRef]
- Golitsyn, Y.; Pulst, M.; Samiullah, M.H.; Busse, K.; Kressler, J.; Reichert, D. Crystallization in PEG networks: The importance of network topology and chain tilt in crystals. Polymer 2019, 165, 72–82. [Google Scholar]
- Webber, M.J.; Tibbitt, M.W. Dynamic and reconfigurable materials from reversible network interactions. Nat. Rev. Mater. 2022, 7, 541–556. [Google Scholar]
- Denissen, W.; Winne, J.M.; Du Prez, F.E. Vitrimers: Permanent organic networks with glass-like fluidity. Chem. Sci. 2016, 7, 30–38. [Google Scholar]
- Si, M.J.; Jian, X.F.; Xie, Y.; Zhou, J.H.; Jian, W.; Lin, J.; Luo, Y.F.; Hu, J.Y.; Wang, Y.J.; Zhang, D.; et al. A Highly Damping, Crack-Insensitive and Self-Healable Binder for Lithium-Sulfur Battery by Tailoring the Viscoelastic Behavior. Adv. Energy Mater. 2024, 14, 2303991. [Google Scholar]
- Nakamura, S.; Tsuji, Y.; Yoshizawa, K. Role of Hydrogen-Bonding and OH-π Interactions in the Adhesion of Epoxy Resin on Hydrophilic Surfaces. Acs Omega 2020, 5, 26211–26219. [Google Scholar]
- Abe, T.; Yamamoto, S.; Tanaka, K. Effect of interfacial local conformation of polymer chains on adhesion strength. Polym. Chem. 2024, 15, 4425–4432. [Google Scholar]
- Ren, X.C.; Pei, K.; Peng, B.Y.; Zhang, Z.C.; Wang, Z.R.; Wang, X.Y.; Chan, P.K.L. A Low-Operating-Power and Flexible Active-Matrix Organic-Transistor Temperature-Sensor Array. Adv. Mater. 2016, 28, 4832–4838. [Google Scholar] [CrossRef]
- Tordi, P.; Tamayo, A.; Jeong, Y.; Bonini, M.; Samorì, P. Multiresponsive Ionic Conductive Alginate/Gelatin Organohydrogels with Tunable Functions. Adv. Funct. Mater. 2024, 34, 2410663. [Google Scholar] [CrossRef]
- Chen, D.W.; Bai, H.Y.; Zhu, H.Y.; Zhang, S.W.; Wang, W.; Dong, W.F. Anti-freezing, tough, and stretchable ionic conductive hydrogel with multi-crosslinked double-network for a flexible strain sensor. Chem. Eng. J. 2024, 480, 148192. [Google Scholar] [CrossRef]
- Wang, Z.W.; Chen, J.; Wang, L.F.; Gao, G.R.; Zhou, Y.; Wang, R.; Xu, T.; Yin, J.B.; Fu, J. Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels. Mater. Chem. B 2019, 7, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.D.; Wang, Y.H.; Zhang, Q.S.; Wang, H.X.; Duan, X.R.; Yan, J.; Xia, Z.P.; Wang, R.; Shou, W.; Li, X.P.; et al. Ultra-stretchable and anti-freezing ionic conductive hydrogels as high performance strain sensors and flexible triboelectric nanogenerator in extreme environments. Nano Energy 2024, 126, 149633. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zhang, J.C.; Ji, Y.; Cao, J.W.; Xu, S.; Luo, P.; Liu, J.P.; Ma, L.A.; Gao, G.L.; Wu, Y.D.; et al. Self-healing polyurethane elastomers with dynamic crosslinked networks for complex structure 3D printing. Chem. Eng. J. 2025, 507, 160193. [Google Scholar] [CrossRef]
- Zheng, Z.Q.; Xu, Q.M.; Guo, J.N.; Qin, J.; Mao, H.L.; Wang, B.; Yan, F. Structure–Antibacterial Activity Relationships of Imidazolium-Type Ionic Liquid Monomers, Poly(ionic liquids) and Poly(ionic liquid) Membranes: Effect of Alkyl Chain Length and Cations. ACS Appl. Mater. Interfaces 2016, 8, 12684–12692. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Zhou, Y.; Zhang, X.; Pan, P.; Yang, J.; Yu, C. Solvent-Free Ion-Conductive Xerogels with High Conductivity and Adhesion Enable Multimodal Sensing. Gels 2025, 11, 242. https://doi.org/10.3390/gels11040242
Zhu Y, Zhou Y, Zhang X, Pan P, Yang J, Yu C. Solvent-Free Ion-Conductive Xerogels with High Conductivity and Adhesion Enable Multimodal Sensing. Gels. 2025; 11(4):242. https://doi.org/10.3390/gels11040242
Chicago/Turabian StyleZhu, Yicheng, Yichen Zhou, Xing Zhang, Pengju Pan, Jinjun Yang, and Chengtao Yu. 2025. "Solvent-Free Ion-Conductive Xerogels with High Conductivity and Adhesion Enable Multimodal Sensing" Gels 11, no. 4: 242. https://doi.org/10.3390/gels11040242
APA StyleZhu, Y., Zhou, Y., Zhang, X., Pan, P., Yang, J., & Yu, C. (2025). Solvent-Free Ion-Conductive Xerogels with High Conductivity and Adhesion Enable Multimodal Sensing. Gels, 11(4), 242. https://doi.org/10.3390/gels11040242