Progress in Polysaccharide-Based Hydrogels for Preventing Postoperative Adhesions: A Review
Abstract
:1. Introduction
2. Classification of Polysaccharide-Based Hydrogels
2.1. Cellulose-Based Hydrogels
2.2. Chitosan-Based Hydrogels
2.3. Sodium Alginate-Based Hydrogels
2.4. Hyaluronic Acid-Based Hydrogels
2.5. Other Polysaccharide-Based Hydrogels
3. Structure and Preparation Methods of Polysaccharide-Based Hydrogels
3.1. Homogeneous Polysaccharide-Based Hydrogels
3.1.1. Physical Crosslinking
- Hydrogen bond
- 2.
- Ionic interaction
- 3.
- Electrostatic interaction
- 4.
- Hydrophobic interaction
3.1.2. Chemical Crosslinking
- 5.
- Michael reaction
- 6.
- Schiff base reaction
- 7.
- Diels–Alder (DA) reaction
3.2. Janus Hydrogel
3.2.1. Unilateral Processing
3.2.2. Layer-By-Layer Method
3.2.3. One-Step Method
4. Application in Preventing Postoperative Adhesion
4.1. Peritoneal Adhesion
4.2. Intrauterine Adhesions
4.3. Tendon Adhesions
4.4. Pericardial Adhesions
4.5. Epidural Adhesions
5. Commercial Products
6. Conclusions and Future Outlook
- Firstly, the hydrogels used for postoperative anti-adhesion should have an appropriate degradation rate. An excessively slow rate can lead to additional inflammation and foreign body reactions, while a rapid rate may fail to deliver the desired antiadhesion effect. And the degradation rate of pure polysaccharide materials may not be suitable for the application of anti-adhesion hydrogels.
- Secondly, hydrogels must possess adequate mechanical strength to withstand the pressures in vivo and maintain their structure; however, polysaccharide materials generally lack these mechanical properties.
- Finally, although polysaccharide materials come from a wide range of sources, the cost of their large-scale modification is high. Therefore, their large-scale production may be limited, and this may increase the financial burden on patients.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akhlaghi, S.; Ebrahimnia, M.; Niaki, D.S.; Solhi, M.; Rabbani, S.; Haeri, A. Recent advances in the preventative strategies for postoperative adhesions using biomaterial-based membranes and micro/nano-drug delivery systems. J. Drug Deliv. Sci. Technol. 2023, 85, 104539. [Google Scholar] [CrossRef]
- Capella-Monsonís, H.; Kearns, S.; Kelly, J.; Zeugolis, D.I. Battling adhesions: From understanding to prevention. BMC Biomed. Eng. 2019, 1, 5. [Google Scholar] [CrossRef]
- Moris, D.; Chakedis, J.; Rahnemai-Azar, A.A.; Wilson, A.; Hennessy, M.M.; Athanasiou, A.; Beal, E.W.; Argyrou, C.; Felekouras, E.; Pawlik, T.M. Postoperative Abdominal Adhesions: Clinical Significance and Advances in Prevention and Management. J. Gastrointest. Surg. 2017, 21, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Fatehi Hassanabad, A.; Zarzycki, A.N.; Jeon, K.; Deniset, J.F.; Fedak, P.W.M. Post-Operative Adhesions: A Comprehensive Review of Mechanisms. Biomedicines 2021, 9, 867. [Google Scholar] [CrossRef]
- Stapleton, L.M.; Lucian, H.J.; Grosskopf, A.K.; Smith, A.A.A.; Totherow, K.P.; Woo, Y.J.; Appel, E.A. Dynamic Hydrogels for Prevention of Post-Operative Peritoneal Adhesions. Adv. Ther. 2021, 4, 2000242. [Google Scholar] [CrossRef]
- Ellis, H. The aetiology of post-operative abdominal adhesions an experimental study. Br. J. Surg. 1962, 50, 10–16. [Google Scholar] [CrossRef]
- Herrick, S.E.; Mutsaers, S.E.; Ozua, P.; Sulaiman, H.; Omer, A.; Boulos, P.; Foster, M.L.; Laurent, G.J. Human peritoneal adhesions are highly cellular, innervated, and vascularized. J. Pathol. 2000, 192, 67–72. [Google Scholar] [CrossRef]
- Hellebrekers, B.W.J.; Kooistra, T. Pathogenesis of postoperative adhesion formation. Br. J. Surg. 2011, 98, 1503–1516. [Google Scholar] [CrossRef]
- Ivarsson, M.I.; Bergström, M.; Eriksson, E.; Risberg, B.; Holmdahl, I. Tissue markers as predictors of postoperative adhesions. Br. J. Surg. 1998, 85, 1549–1554. [Google Scholar] [CrossRef]
- Holmdahl, L.; Eriksson, E.; Eriksson, B.I.; Risberg, B. Depression of peritoneal fibrinolysis during operation is a local response to trauma. Surgery 1998, 123, 539–544. [Google Scholar] [CrossRef]
- Holmdahl, L.; Kotseos, K.; Bergström, M.; Falk, P.; Ivarsson, M.-L.; Chegini, N. Overproduction of transforming growth factor-β1 (TGF-b1) is associated with adhesion formation and peritoneal fibrinolytic impairment. Surgery 2001, 129, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Molinas, C.R.; Mynbaev, O.; Pauwels, A.; Novak, P.; Koninckx, P.R. Peritoneal mesothelial hypoxia during pneumoperitoneum is a cofactor in adhesion formation in a laparoscopic mouse model. Fertil. Steril. 2001, 76, 560–567. [Google Scholar] [CrossRef]
- Diamond, M.P.; El-Hammady, E.; Munkarah, A.; Bieber, E.J.; Saed, G. Modulation of the expression of vascular endothelial growth factor in human fibroblasts. Fertil. Steril. 2005, 83, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Pismensky, S.V.; Kalzhanov, Z.R.; Eliseeva, M.Y.; Kosmas, I.P.; Mynbaev, O.A. Severe inflammatory reaction induced by peritoneal trauma is the key driving mechanism of postoperative adhesion formation. BMC Surg. 2011, 11, 30. [Google Scholar] [CrossRef]
- Hollander, J.E.; Singer, A.J. Laceration Management. Ann. Emerg. Med. 1999, 34, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Ghobril, C.; Grinstaff, M.W. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: A tutorial. Chem. Soc. Rev. 2015, 44, 1820–1835. [Google Scholar] [CrossRef]
- Ritchie, A.J.; Rocke, L.G. Staples versus sutures in the closure of scalp wounds: A prospective, double-blind, randomized trial. Injury 1989, 20, 217–218. [Google Scholar] [CrossRef]
- George, T.K.; Simpson, D.C. Skin wound closure with staples in the Accident and Emergency Department. J. R. Coll. Surg. Edinb. 1985, 30, 54–56. [Google Scholar]
- Lloyd, J.D.; Marque, M.J.; Kacprowicz, R.F. Closure Techniques. Emerg. Med. Clin. N. Am. 2007, 25, 73–81. [Google Scholar] [CrossRef]
- Kucukozkan, T.; Ersoy, B.; Uygur, D.; Gundogdu, C. Prevention of adhesions by sodium chromoglycate, dexamethasone, saline and aprotinin after pelvic surgery. ANZ J. Surg. 2004, 74, 1111–1115. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z.; Chen, Y.; Chen, F.; Sun, H.; Zhao, M.; Chen, Y.; Wang, Y.; Li, W.; Zeng, L.; et al. Elucidating the Novel Mechanism of Ligustrazine in Preventing Postoperative Peritoneal Adhesion Formation. Oxidative Med. Cell. Longev. 2022, 2022, 9226022. [Google Scholar] [CrossRef]
- Li, J.; Yu, H.; Kang, Y.; Niu, K.; Wang, M.; Jiang, Y.; Jiang, N.; Ding, Z.; Gan, Z.; Yu, Q. STING Membrane Prevents Post-Surgery Tissue Adhesion and Tumor Recurrence of Colorectal Cancer. Adv. Mater. 2024, 36, 2309655. [Google Scholar] [CrossRef]
- Fang, Y.; Huang, S.; Gong, X.; King, J.A.; Wang, Y.; Zhang, J.; Yang, X.; Wang, Q.; Zhang, Y.; Zhai, G.; et al. Salt sensitive purely zwitterionic physical hydrogel for prevention of postoperative tissue adhesion. Acta Biomater. 2023, 158, 239–251. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Jiao, Z.; Wang, Y.; Wang, Z.; Guo, M.; Li, G.; Wang, L.; Zhang, P. A rapid crosslinking injectable polygalacturonic acid barrier modified with zwitterion bottlebrush for preventing postoperative adhesion. Chem. Eng. J. 2024, 482, 148932. [Google Scholar] [CrossRef]
- Zeng, H.; Liu, X.; Zhang, Z.; Song, X.; Quan, J.; Zheng, J.; Shen, Z.; Ni, Y.; Liu, C.; Zhang, Y.; et al. Self-healing, injectable hydrogel based on dual dynamic covalent cross-linking against postoperative abdominal cavity adhesion. Acta Biomater. 2022, 151, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Sanjanwala, D.; Londhe, V.; Trivedi, R.; Bonde, S.; Sawarkar, S.; Kale, V.; Patravale, V. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int. J. Biol. Macromol. 2024, 256, 128488. [Google Scholar] [CrossRef] [PubMed]
- Vatanpour, V.; Yavuzturk Gul, B.; Zeytuncu, B.; Korkut, S.; İlyasoğlu, G.; Turken, T.; Badawi, M.; Koyuncu, I.; Saeb, M.R. Polysaccharides in fabrication of membranes: A review. Carbohydr. Polym. 2022, 281, 119041. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zheng, J.; Zeng, G.; Xu, H.; Lv, Y.; Liang, X.; Jin, L.; Jiang, X. Chitosan-crosslinked polyvinyl alcohol anti-swelling hydrogel designed to prevent abdominal wall adhesion. Mater. Today Bio. 2024, 24, 100931. [Google Scholar] [CrossRef]
- Wei, G.; Wang, Z.; Liu, R.; Zhou, C.; Li, E.; Shen, T.; Wang, X.; Wu, Y.; Li, X. A combination of hybrid polydopamine-human keratinocyte growth factor nanoparticles and sodium hyaluronate for the efficient prevention of postoperative abdominal adhesion formation. Acta Biomater. 2022, 138, 155–167. [Google Scholar] [CrossRef]
- Wu, X.; Guo, W.; Wang, L.; Xu, Y.; Wang, Z.; Yang, Y.; Yu, L.; Huang, J.; Li, Y.; Zhang, H.; et al. An Injectable Asymmetric-Adhesive Hydrogel as a GATA6+ Cavity Macrophage Trap to Prevent the Formation of Postoperative Adhesions after Minimally Invasive Surgery. Adv. Funct. Mater. 2022, 32, 2110066. [Google Scholar] [CrossRef]
- Wang, Y.; Kanie, K.; Takezawa, T.; Horikawa, M.; Kaneko, K.; Sugimoto, A.; Yamawaki-Ogata, A.; Narita, Y.; Kato, R. Bi-layered carboxymethyl cellulose-collagen vitrigel dual-surface adhesion-prevention membrane. Carbohydr. Polym. 2022, 285, 119223. [Google Scholar] [CrossRef] [PubMed]
- Popov, S.V.; Popova, G.Y.; Nikitina, I.R.; Markov, P.A.; Latkin, D.S.; Golovchenko, V.V.; Patova, O.g.A.; Krachkovsky, N.; Smirnov, V.V.; Istomina, E.A.; et al. Injectable hydrogel from plum pectin as a barrier for prevention of postoperative adhesion. J. Bioact. Compat. Polym. 2016, 31, 481–497. [Google Scholar] [CrossRef]
- Li, J.; Feng, X.; Liu, B.; Yu, Y.; Sun, L.; Liu, T.; Wang, Y.; Ding, J.; Chen, X. Polymer materials for prevention of postoperative adhesion. Acta Biomater. 2017, 61, 21–40. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; You, T.; Wang, K.; Xu, F. Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution. Carbohydr. Polym. 2015, 125, 85–91. [Google Scholar] [CrossRef]
- Zou, P.; Yao, J.; Cui, Y.-N.; Zhao, T.; Che, J.; Yang, M.; Li, Z.; Gao, C. Advances in Cellulose-Based Hydrogels for Biomedical Engineering: A Review Summary. Gels 2022, 8, 364. [Google Scholar] [CrossRef] [PubMed]
- Prusty, K.; Swain, S.K. Polypropylene oxide/polyethylene oxide-cellulose hybrid nanocomposite hydrogels as drug delivery vehicle. J. Appl. Polym. Sci. 2021, 138, 49921. [Google Scholar] [CrossRef]
- Tofanica, B.-M.; Belosinschi, D.; Volf, I. Gels, Aerogels and Hydrogels: A Challenge for the Cellulose-Based Product Industries. Gels 2022, 8, 497. [Google Scholar] [CrossRef]
- Zainal, S.H.; Mohd, N.H.; Suhaili, N.; Anuar, F.H.; Lazim, A.M.; Othaman, R. Preparation of cellulose-based hydrogel: A review. J. Mater. Res. Technol. 2021, 10, 935–952. [Google Scholar] [CrossRef]
- Wu, C.; Li, J.; Zhang, Y.-q.; Li, X.; Wang, S.-y.; Li, D.-q. Cellulose Dissolution, Modification, and the Derived Hydrogel: A Review. ChemSusChem 2023, 16, e202300518. [Google Scholar] [CrossRef]
- Shi, H.; Huo, H.; Yang, H.; Li, H.; Shen, J.; Wan, J.; Du, G.; Yang, L. Cellulose-Based Dual-Network Conductive Hydrogel with Exceptional Adhesion. Adv. Funct. Mater. 2024, 34, 2408560. [Google Scholar] [CrossRef]
- Alavi, M. Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications. e-Polymers 2019, 19, 103–119. [Google Scholar] [CrossRef]
- George, D.; Maheswari, P.U.; Sheriffa Begum, K.M.M.; Arthanareeswaran, G. Biomass-Derived Dialdehyde Cellulose Cross-linked Chitosan-Based Nanocomposite Hydrogel with Phytosynthesized Zinc Oxide Nanoparticles for Enhanced Curcumin Delivery and Bioactivity. J. Agric. Food Chem. 2019, 67, 10880–10890. [Google Scholar] [CrossRef]
- Negm, N.A.; Hefni, H.H.H.; Abd-Elaal, A.A.A.; Badr, E.A.; Abou Kana, M.T.H. Advancement on modification of chitosan biopolymer and its potential applications. Int. J. Biol. Macromol. 2020, 152, 681–702. [Google Scholar] [CrossRef] [PubMed]
- Gang, F.; Ma, C.; Guo, C.; Shi, R.; Xiao, Y. Integrated rapid-prototyping and strength-increasing all-in-one 3D printing of chitosan hydrogels. Mater. Lett. 2022, 323, 132542. [Google Scholar] [CrossRef]
- Thirupathi, K.; Raorane, C.J.; Ramkumar, V.; Ulagesan, S.; Santhamoorthy, M.; Raj, V.; Krishnakumar, G.S.; Phan, T.T.; Kim, S.-C. Update on Chitosan-Based Hydrogels: Preparation, Characterization, and Its Antimicrobial and Antibiofilm Applications. Gels 2022, 9, 35. [Google Scholar] [CrossRef]
- Song, R.; Zheng, J.; Liu, Y.; Tan, Y.; Yang, Z.; Song, X.; Yang, S.; Fan, R.; Zhang, Y.; Wang, Y. A natural cordycepin/chitosan complex hydrogel with outstanding self-healable and wound healing properties. Int. J. Biol. Macromol. 2019, 134, 91–99. [Google Scholar] [CrossRef]
- Liu, K.; Dong, X.; Wang, Y.; Wu, X.; Dai, H. Dopamine-modified chitosan hydrogel for spinal cord injury. Carbohydr. Polym. 2022, 298, 120047. [Google Scholar] [CrossRef]
- Mutch, A.L.; Yang, J.; Ferro, V.; Anitha, A.; Grøndahl, L. Sulfated Alginate for Biomedical Applications. Macromol. Biosci. 2024, 24, 2400237. [Google Scholar] [CrossRef] [PubMed]
- Ghiorghita, C.-A.; Platon, I.-V.; Lazar, M.M.; Dinu, M.V.; Aprotosoaie, A.C. Trends in polysaccharide-based hydrogels and their role in enhancing the bioavailability and bioactivity of phytocompounds. Carbohydr. Polym. 2024, 334, 122033. [Google Scholar] [CrossRef]
- Luan, Q.-Y.; Wang, Y.-S.; Zhang, Y.-X.; Hu, X.-T.; Chen, H.-H. Mechanism of the G/M ratio and zein in enhancing the mechanical and hydrophobic properties of sodium alginate films. Int. J. Biol. Macromol. 2024, 280, 136079. [Google Scholar] [CrossRef]
- Li, Z.; Lin, Z. Recent advances in polysaccharide-based hydrogels for synthesis and applications. Aggregate 2021, 2, e21. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Zhang, Q.; Liu, J.-C.; Yan, J.-N.; Wang, C.; Lai, B.; Zhang, L.-C.; Wu, H.-T. Construction and characterization of alginate/calcium β-hydroxy-β-methylbutyrate hydrogels: Effect of M/G ratios and calcium ion concentration. Int. J. Biol. Macromol. 2024, 273, 133162. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, D.; Chen, X.; Liu, M. Self-Cross-Linked Oxidized Sodium Alginate/Gelatin/Halloysite Hydrogel as Injectable, Adhesive, Antibacterial Dressing for Hemostasis. ACS Sustain. Chem. Eng. 2024, 12, 11739–11753. [Google Scholar] [CrossRef]
- Resmi, R.; Parvathy, J.; John, A.; Joseph, R. Injectable self-crosslinking hydrogels for meniscal repair: A study with oxidized alginate and gelatin. Carbohydr. Polym. 2020, 234, 115902. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, X.; Cheng, B.; Yin, M.; Hou, Z.; Li, X.; Liu, K.; Tie, C.; Yin, M. Degradation-Kinetics-Controllable and Tissue-Regeneration-Matchable Photocross-linked Alginate Hydrogels for Bone Repair. ACS Appl. Mater. Interfaces. 2022, 14, 21886–21905. [Google Scholar] [CrossRef] [PubMed]
- Mashaqbeh, H.; Al-Ghzawi, B.; BaniAmer, F. Exploring the Formulation and Approaches of Injectable Hydrogels Utilizing Hyaluronic Acid in Biomedical Uses. Adv. Pharm. Pharm. Sci. 2024, 2024, 3869387. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Zhang, R.; Zhang, C.; Xia, Y.; Jin, L. Advances in hyaluronic acid: Bioactivity, complexed biomaterials and biological application: A review. Asian J. Surg. 2025, 48, 49–61. [Google Scholar] [CrossRef]
- Kotla, N.G.; Mohd Isa, I.L.; Larrañaga, A.; Maddiboyina, B.; Swamy, S.K.; Sivaraman, G.; Vemula, P.K. Hyaluronic Acid-Based Bioconjugate Systems, Scaffolds, and Their Therapeutic Potential. Adv. Healthc. Mater. 2023, 12, 2203104. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, Y.; Li, J.; Wang, J.; Yu, Y.; Zhao, Y. Tailoring Hyaluronic Acid Hydrogels for Biomedical Applications. Adv. Funct. Mater. 2023, 33, 2306554. [Google Scholar] [CrossRef]
- Shi, W.; Hass, B.; Kuss, M.A.; Zhang, H.; Ryu, S.; Zhang, D.; Li, T.; Li, Y.-l.; Duan, B. Fabrication of versatile dynamic hyaluronic acid-based hydrogels. Carbohydr. Polym. 2020, 233, 115803. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Yang, J.; Chen, R.; Dong, Q.; Zhou, Y. Fast Self-Healing Hyaluronic Acid Hydrogel with a Double-Dynamic Network for Skin Wound Repair. ACS Appl. Mater. Interfaces 2024, 16, 37569–37580. [Google Scholar] [CrossRef]
- Iacob, A.-T.; Drăgan, M.; Ionescu, O.-M.; Profire, L.; Ficai, A.; Andronescu, E.; Confederat, L.G.; Lupașcu, D. An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics 2020, 12, 983. [Google Scholar] [CrossRef]
- Lin, H.; Han, R.; Wu, W. Glucans and applications in drug delivery. Carbohydr. Polym. 2024, 332, 121904. [Google Scholar] [CrossRef] [PubMed]
- Huo, M.; Wang, H.; Zhang, Y.; Cai, H.; Zhang, P.; Li, L.; Zhou, J.; Yin, T. Co-delivery of silybin and paclitaxel by dextran-based nanoparticles for effective anti-tumor treatment through chemotherapy sensitization and microenvironment modulation. J. Control Release 2020, 321, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Ling, J.; Sun, D.; Wu, G.; Ouyang, X.-k.; Wang, N.; Yang, G. Dextran-Based Antibacterial Hydrogel Dressings for Accelerating Infected Wound Healing by Reducing Inflammation Levels. Adv. Healthc. Mater. 2024, 13, 2400494. [Google Scholar] [CrossRef]
- Pantić, M.; Nowak, M.; Lavrič, G.; Knez, Ž.; Novak, Z.; Zizovic, I. Enhancing the properties and morphology of starch aerogels with nanocellulose. Food Hydrocoll. 2024, 156, 110345. [Google Scholar] [CrossRef]
- Sarder, R.; Piner, E.; Rios, D.C.; Chacon, L.; Artner, M.A.; Barrios, N.; Argyropoulos, D. Copolymers of starch, a sustainable template for biomedical applications: A review. Carbohydr. Polym. 2022, 278, 118973. [Google Scholar] [CrossRef]
- Xu, K.; Sun, X.; Chong, C.; Ren, L.; Tan, L.; Sun, H.; Wang, X.; Li, L.; Xia, J.; Zhang, R.; et al. Green Starch-Based Hydrogels with Excellent Injectability, Self-Healing, Adhesion, Photothermal Effect, and Antibacterial Activity for Promoting Wound Healing. ACS Appl. Mater. Interfaces 2024, 16, 2027–2040. [Google Scholar] [CrossRef]
- Lin, X.; Xing, X.; Li, S.; Wu, X.; Jia, Q.; Tu, H.; Bian, H.; Lu, A.; Zhang, L.; Yang, H.; et al. Anisotropic Hybrid Hydrogels Constructed via the Noncovalent Assembly for Biomimetic Tissue Scaffold. Adv. Funct. Mater. 2022, 32, 2112685. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, H.; Niu, X. A hydrogen-bonded curdlan-chitosan/polyvinyl alcohol edible dual functional hydrogel bandage against MRSA promotes wound healing. Int. J. Biol. Macromol. 2024, 259, 129351. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Chen, Y.; Li, D.; Zheng, Y.; Fu, X.; Yu, B.; Chen, S.; Ni, C.; Qi, H.; Zhou, W. Mechanically robust, transparent, conductive hydrogels based on hydrogen bonding, ionic coordination interactions and electrostatic interactions for light-curing 3D printing. Chem. Eng. J. 2024, 486, 150289. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, Y.; Wang, Q.; Zhou, X.; Yang, B.; Ji, F.; Dong, D.; Gao, L.; Cui, Y.; Yao, F. Physical Cross-Linking Starch-Based Zwitterionic Hydrogel Exhibiting Excellent Biocompatibility, Protein Resistance, and Biodegradability. ACS Appl. Mater. Interfaces 2016, 8, 15710–15723. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, B.; Dong, J.; Yang, D.; Tang, H.; Wen, L.; Li, J.; Huang, L.; Zhou, J. A tough and bioadhesive injectable hydrogel formed with maleimidyl alginate and pristine gelatin. Carbohydr. Polym. 2024, 334, 122011. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Yu, F.; Zhao, Y.X.; Mo, X.M.; Pan, J.F. In situ forming hydrogel of natural polysaccharides through Schiff base reaction for soft tissue adhesive and hemostasis. Int. J. Biol. Macromol. 2020, 147, 653–666. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Dai, Y.; Xin, L.; Zheng, X.; Ye, Z.; Zhang, S.; Ma, L. Minimally invasive delivery of human umbilical cord-derived mesenchymal stem cells by an injectable hydrogel via Diels–Alder click reaction for the treatment of intrauterine adhesions. Acta Biomater. 2024, 177, 77–90. [Google Scholar] [CrossRef]
- Yan, X.; Huang, H.; Bakry, A.M.; Wu, W.; Liu, X.; Liu, F. Advances in enhancing the mechanical properties of biopolymer hydrogels via multi-strategic approaches. Int. J. Biol. Macromol. 2024, 272, 132583. [Google Scholar] [CrossRef]
- Hu, H.; Xu, F.-J. Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomater. Sci. 2020, 8, 2084–2101. [Google Scholar] [CrossRef]
- Bi, S.; Pang, J.; Huang, L.; Sun, M.; Cheng, X.; Chen, X. The toughness chitosan-PVA double network hydrogel based on alkali solution system and hydrogen bonding for tissue engineering applications. Int. J. Biol. Macromol. 2020, 146, 99–109. [Google Scholar] [CrossRef]
- Li, X.; Peng, X.; Li, R.; Zhang, Y.; Liu, Z.; Huang, Y.; Long, S.; Li, H. Multiple Hydrogen Bonds–Reinforced Hydrogels with High Strength, Shape Memory, and Adsorption Anti-Inflammatory Molecules. Macromol. Rapid Commun. 2020, 41, 2000202. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, M.; Zhang, L.; He, B.; Chen, X.; Sun, J. Facile synthesis of self-healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond. Carbohydr. Polym. 2021, 256, 117580. [Google Scholar] [CrossRef]
- Su, J.; Li, J.; Liang, J.; Zhang, K.; Li, J. Hydrogel Preparation Methods and Biomaterials for Wound Dressing. Life 2021, 11, 1016. [Google Scholar] [CrossRef]
- Yuan, N.; Xu, L.; Xu, B.; Zhao, J.; Rong, J. Chitosan derivative-based self-healable hydrogels with enhanced mechanical properties by high-density dynamic ionic interactions. Carbohydr. Polym. 2018, 193, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chang, L.; Sun, P.; Cao, Z.; Chen, Y.; Liu, H. High-performance double-network ionogels enabled by electrostatic interaction. RSC Adv. 2020, 10, 7424–7431. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Duan, L.; Gao, G. Rapidly self-recoverable and fatigue-resistant hydrogels toughened by chemical crosslinking and hydrophobic association. Eur. Polym. J. 2017, 89, 185–194. [Google Scholar] [CrossRef]
- Fredrick, R.; Podder, A.; Viswanathan, A.; Bhuniya, S. Synthesis and characterization of polysaccharide hydrogel based on hydrophobic interactions. J. Appl. Polym. Sci. 2019, 136, 47665. [Google Scholar] [CrossRef]
- Nichifor, M. Role of Hydrophobic Associations in Self-Healing Hydrogels Based on Amphiphilic Polysaccharides. Polymers 2023, 15, 1065. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Shao, C.; Cui, C.; Xu, F.; Lei, J.; Yang, J. Autonomous Self-Healing Silk Fibroin Injectable Hydrogels Formed via Surfactant-Free Hydrophobic Association. ACS Appl. Mater. Interfaces 2020, 12, 1628–1639. [Google Scholar] [CrossRef]
- Mather, B.D.; Viswanathan, K.; Miller, K.M.; Long, T.E. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 2006, 31, 487–531. [Google Scholar] [CrossRef]
- Yang, J.-A.; Yeom, J.; Hwang, B.W.; Hoffman, A.S.; Hahn, S.K. In situ-forming injectable hydrogels for regenerative medicine. Prog. Polym. Sci. 2014, 39, 1973–1986. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Y.; Wu, G.; Zhu, Z.; Zheng, H.; Sun, X.; Heng, Y.; Pan, S.; Xiu, H.; Zhang, J.; et al. Hyaluronic Acid-Based Reactive Oxygen Species-Responsive Multifunctional Injectable Hydrogel Platform Accelerating Diabetic Wound Healing. Adv. Healthc. Mater. 2024, 13, 2302626. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Li, Q.; He, X.; Wang, X.; Wen, Y.; Zeng, L.; Yu, W.; Hu, P.; Chen, H. A multifunctional hydrogel based on nature polysaccharide fabricated by Schiff base reaction. Eur. Polym. J. 2023, 197, 112330. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Y.; Hsu, S.-h. Hydrogels Based on Schiff Base Linkages for Biomedical Applications. Molecules 2019, 24, 3005. [Google Scholar] [CrossRef]
- Lee, Y.M.; Lu, Z.W.; Wu, Y.C.; Liao, Y.J.; Kuo, C.Y. An injectable, chitosan-based hydrogel prepared by Schiff base reaction for anti-bacterial and sustained release applications. Int. J. Biol. Macromol. 2024, 269, 131808. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiong, Y. Application of “Click” Chemistry in Biomedical Hydrogels. ACS Omega 2022, 7, 36918–36928. [Google Scholar] [CrossRef]
- Nicolas, J.; Magli, S.; Rabbachin, L.; Sampaolesi, S.; Nicotra, F.; Russo, L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020, 21, 1968–1994. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, K.; Fan, C.; Zhao, X.; Gao, J.; Jing, W.; Zhang, X.; Li, J.; Li, Y.; Yang, J.; et al. An Ultrasoft Self-Fused Supramolecular Polymer Hydrogel for Completely Preventing Postoperative Tissue Adhesion. Adv. Mater. 2021, 33, 2008395. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, X.; Li, Y.; Liu, X.; Wang, S.; Lu, M.; Yan, X.; Deng, L.; Liu, S.; Wang, F.; et al. Self-Healing Hydrogel Embodied with Macrophage-Regulation and Responsive-Gene-Silencing Properties for Synergistic Prevention of Peritendinous Adhesion. Adv. Mater. 2022, 34, 2106564. [Google Scholar] [CrossRef]
- Freedman, B.R.; Uzun, O.; Luna, N.M.M.; Rock, A.; Clifford, C.; Stoler, E.; Östlund-Sholars, G.; Johnson, C.; Mooney, D.J. Degradable and Removable Tough Adhesive Hydrogels. Adv. Mater. 2021, 33, 2008553. [Google Scholar] [CrossRef]
- Wang, L.; Duan, L.; Liu, G.; Sun, J.; Shahbazi, M.-A.; Kundu, S.C.; Reis, R.L.; Xiao, B.; Yang, X. Bioinspired Polyacrylic Acid-Based Dressing: Wet Adhesive, Self-Healing, and Multi-Biofunctional Coacervate Hydrogel Accelerates Wound Healing. Adv. Sci. 2023, 10, 2207352. [Google Scholar] [CrossRef]
- Wang, H.; Yi, X.; Liu, T.; Liu, J.; Wu, Q.; Ding, Y.; Liu, Z.; Wang, Q. An Integrally Formed Janus Hydrogel for Robust Wet-Tissue Adhesive and Anti-Postoperative Adhesion. Adv. Mater. 2023, 35, 2300394. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Qin, Y.; Yang, Y.; Zhao, X.; Zhang, Z.; Zhang, Q.; Su, Y.; Zhang, Y.; Cheng, Y. Robust hydrogel adhesives for emergency rescue and gastric perforation repair. Bioact. Mater. 2023, 19, 703–716. [Google Scholar] [CrossRef]
- Cui, C.; Wu, T.; Chen, X.; Liu, Y.; Li, Y.; Xu, Z.; Fan, C.; Liu, W. A Janus Hydrogel Wet Adhesive for Internal Tissue Repair and Anti-Postoperative Adhesion. Adv. Funct. Mater. 2020, 30, 2005689. [Google Scholar] [CrossRef]
- Liang, W.; He, W.; Huang, R.; Tang, Y.; Li, S.; Zheng, B.; Lin, Y.; Lu, Y.; Wang, H.; Wu, D. Peritoneum-Inspired Janus Porous Hydrogel with Anti-Deformation, Anti-Adhesion, and Pro-Healing Characteristics for Abdominal Wall Defect Treatment. Adv. Mater. 2022, 34, 2108992. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Liu, C.; Lai, Y.; Wang, Y.; Liu, P.; Shen, J. An Adhesive/Anti-Adhesive Janus Tissue Patch for Efficient Closure of Bleeding Tissue with Inhibited Postoperative Adhesion. Adv. Sci. 2023, 10, 2301427. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Feng, J.; Feng, Z.; Liu, J.; Yang, Y.; Li, X.; Lei, M.; Guo, H.; Wei, Z.; Lv, Y.; et al. An endoscopically compatible fast-gelation powder forms Janus-adhesive hydrogel barrier to prevent postoperative adhesions. Proc. Natl. Acad. Sci. USA 2023, 120, e2219024120. [Google Scholar] [CrossRef]
- Yang, J.; Jia, J.; Wang, X.; Zhao, Y. Bioinspired Asymmetric Double-Layer Dressings for Stepwise Treatment of Hemorrhagic Wounds. ACS Mater. Lett. 2024, 6, 1130–1139. [Google Scholar] [CrossRef]
- Liu, H.; Liu, C.; Shao, D.; Li, W.; Hu, X.; Tian, J.; Li, L.; Ding, S.; Zhou, C.; Lu, L. A Tough Janus Hydrogel Patch with Strong Wet Adhesion and Self-Debonding for Oral Ulcer Treatment. Chem. Mat. 2024, 36, 4976–4989. [Google Scholar] [CrossRef]
- He, X.; Wang, S.; Zhou, J.; Zhang, D.; Xue, Y.; Yang, X.; Che, L.; Li, D.; Xiao, S.; Liu, S.; et al. Versatile and Simple Strategy for Preparing Bilayer Hydrogels with Janus Characteristics. ACS Appl. Mater. Interfaces 2022, 14, 4579–4587. [Google Scholar] [CrossRef]
- Deng, K.; Li, E.; Li, G.; Ren, Y.; Shen, T.; Jiang, Z.; Li, X.; Zhou, C. Research landscape of abdominal adhesions from 2004 to 2023: A bibliometric analysis. Heliyon 2024, 10, e30343. [Google Scholar] [CrossRef]
- Okabayashi, K.; Ashrafian, H.; Zacharakis, E.; Hasegawa, H.; Kitagawa, Y.; Athanasiou, T.; Darzi, A. Adhesions after abdominal surgery: A systematic review of the incidence, distribution and severity. Surg. Today 2014, 44, 405–420. [Google Scholar] [CrossRef]
- Tang, J.; Xiang, Z.; Bernards, M.T.; Chen, S. Peritoneal adhesions: Occurrence, prevention and experimental models. Acta Biomater. 2020, 116, 84–104. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wei, Y.; Bai, X.; Li, M.; Li, H.; Wang, L.; Zhang, S.; Li, X.; Zhao, T.; Liu, Y.; et al. Berberine prevents primary peritoneal adhesion and adhesion reformation by directly inhibiting TIMP-1. Acta Pharm. Sin. B 2020, 10, 812–824. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Wu, Y.; Li, H.; Yan, T.; Wei, X.; Wu, G.; He, J.; Huang, Y. Biodegradable N, O-carboxymethyl chitosan/oxidized regenerated cellulose composite gauze as a barrier for preventing postoperative adhesion. Carbohydr. Polym. 2019, 207, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Lin, S.; Liu, M.; Jiao, J.; Mi, H.; Sun, J.; Liu, Y.; Guo, R.; Liu, S.; Fu, H.; et al. An injectable and rapidly degraded carboxymethyl chitosan/polyethylene glycol hydrogel for postoperative antiadhesion. Chem. Eng. J. 2023, 463, 142283. [Google Scholar] [CrossRef]
- Li, B.; Jain, P.; Ma, J.; Smith, J.K.; Yuan, Z.; Hung, H.-C.; He, Y.; Lin, X.; Wu, K.; Pfaendtner, J.; et al. Trimethylamine N-oxide–derived zwitterionic polymers: A new class of ultralow fouling bioinspired materials. Sci. Adv. 2019, 5, eaaw9562. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, H.; Wu, X.; Yan, Z.; Tang, C.; Qin, Z.; Yao, M.; Che, P.; Yao, F.; Li, J. In Situ Clickable Purely Zwitterionic Hydrogel for Peritoneal Adhesion Prevention. Chem. Mat. 2020, 32, 6347–6357. [Google Scholar] [CrossRef]
- Zheng, L.; Sun, Z.; Li, C.; Wei, Z.; Jain, P.; Wu, K. Progress in biodegradable zwitterionic materials. Polym. Degrad. Stabil. 2017, 139, 1–19. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, H.; Yu, C.; Liu, B.; Liu, R.; Yang, Q.; Guo, B.; Li, X.; Yao, M.; Yao, F.; et al. Injectable Asymmetric Adhesive-Antifouling Bifunctional Hydrogel for Peritoneal Adhesion Prevention. Adv. Healthc. Mater. 2024, 13, 2303574. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Yang, J.; Wu, X.; Tian, Y.; Tang, H.; Li, N.; Liu, X.; Zhou, M.; Liu, J.; et al. A Laparoscopically Compatible Rapid-Adhesion Bioadhesive for Asymmetric Adhesion, Non-Pressing Hemostasis, and Seamless Seal. Adv. Healthc. Mater. 2024, 13, 2304059. [Google Scholar] [CrossRef]
- Berman, J.M. Intrauterine Adhesions. Semin. Reprod. Med. 2008, 26, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wong, Y.-M.; Cheong, Y.; Xia, E.; Li, T.-C. Asherman syndrome—One century later. Fertil. Steril. 2008, 89, 759–779. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Gan, L.; Wang, S.; Duan, H. A cohort study comparing the severity and outcome of intrauterine adhesiolysis for Asherman syndrome after first- or second-trimester termination of pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 238, 49–53. [Google Scholar] [CrossRef]
- Song, Y.-T.; Liu, P.-C.; Tan, J.; Zou, C.-Y.; Li, Q.-J.; Li-Ling, J.; Xie, H.-Q. Stem cell-based therapy for ameliorating intrauterine adhesion and endometrium injury. Stem Cell Res. Ther. 2021, 12, 556. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Bao, M.; Fan, X.; Huang, J.; Zhu, C.; Xia, W. EndMT: New findings on the origin of myofibroblasts in endometrial fibrosis of intrauterine adhesions. Reprod. Biol. Endocrinol. 2022, 20, 9. [Google Scholar] [CrossRef]
- Wei, X.; Li, H.; Chen, T.; Yang, X. Histological study of telocytes in mice intrauterine adhesion model and their positive effect on mesenchymal stem cells in vitro. Cell Biol. Int. 2024, 48, 647–664. [Google Scholar] [CrossRef]
- Salazar, C.A.; Isaacson, K.; Morris, S. A comprehensive review of Asherman’s syndrome: Causes, symptoms and treatment options. Curr. Opin. Obstet. Gynecol. 2017, 29, 249–256. [Google Scholar] [CrossRef]
- Wu, F.; Lei, N.; Yang, S.; Zhou, J.; Chen, M.; Chen, C.; Qiu, L.; Guo, R.; Li, Y.; Chang, L. Treatment strategies for intrauterine adhesion: Focus on the exosomes and hydrogels. Front. Bioeng. Biotechnol. 2023, 11, 1264006. [Google Scholar] [CrossRef]
- Ma, J.; Zhan, H.; Li, W.; Zhang, L.; Yun, F.; Wu, R.; Lin, J.; Li, Y. Recent trends in therapeutic strategies for repairing endometrial tissue in intrauterine adhesion. Biomater. Res. 2021, 25, 40. [Google Scholar] [CrossRef]
- Gharibeh, N.; Aghebati-Maleki, L.; Madani, J.; Pourakbari, R.; Yousefi, M.; Ahmadian Heris, J. Cell-based therapy in thin endometrium and Asherman syndrome. Stem Cell Res. Ther. 2022, 13, 33. [Google Scholar] [CrossRef]
- Yi, X.; Liu, F.; Gao, K.; Chen, F.; Wang, Y.; Li, H.; Wang, X.; Huang, Y.; Fu, H.; Zhou, W.; et al. Reconstructable Uterus-Derived Materials for Uterus Recovery toward Efficient Live Births. Adv. Mater. 2022, 34, e2106510. [Google Scholar] [CrossRef]
- Zhang, D.; Du, Q.; Li, C.; Ding, C.; Chen, J.; He, Y.; Duan, T.; Feng, Q.; Yu, Y.; Zhou, Q. Functionalized human umbilical cord mesenchymal stem cells and injectable HA/Gel hydrogel synergy in endometrial repair and fertility recovery. Acta Biomater. 2023, 167, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, C.; Xie, Y.; Chen, X.; Jiang, T.; Tian, J.; Hu, S.; Lu, Y. Application of Bioactive Hydrogels for Functional Treatment of Intrauterine Adhesion. Front. Bioeng. Biotechnol. 2021, 9, 760943. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Zhu, L.; Shen, J.; Li, W.; Wang, Y.; Qin, J. Self-healing PEG-poly(aspartic acid) hydrogel with rapid shape recovery and drug release. Colloids Surf. B 2020, 185, 110601. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Dai, C.; Fan, L.; Jiang, Y.; Liu, C.; Zhou, Z.; Guan, P.; Tian, Y.; Xing, J.; Li, X.; et al. Injectable Self-Healing Natural Biopolymer-Based Hydrogel Adhesive with Thermoresponsive Reversible Adhesion for Minimally Invasive Surgery. Adv. Funct. Mater. 2021, 31, 2007457. [Google Scholar] [CrossRef]
- Feng, L.; Wang, L.; Ma, Y.; Duan, W.; Martin-Saldaña, S.; Zhu, Y.; Zhang, X.; Zhu, B.; Li, C.; Hu, S.; et al. Engineering self-healing adhesive hydrogels with antioxidant properties for intrauterine adhesion prevention. Bioact. Mater. 2023, 27, 82–97. [Google Scholar] [CrossRef]
- Rahmati, M.; Mills, D.K.; Urbanska, A.M.; Saeb, M.R.; Venugopal, J.R.; Ramakrishna, S.; Mozafari, M. Electrospinning for tissue engineering applications. Prog. Mater. Sci. 2021, 117, 100721. [Google Scholar] [CrossRef]
- Lv, Y.; Cai, F.; Zhao, X.; Zhu, X.; Wei, F.; Zheng, Y.; Shi, X.; Yang, J. Bioinspired Microstructured Janus Bioadhesive for the Prevention of Abdominal and Intrauterine Adhesions. Adv. Funct. Mater. 2024, 34, 2314402. [Google Scholar] [CrossRef]
- Liu, C.; Yu, K.; Bai, J.; Tian, D.; Liu, G. Experimental study of tendon sheath repair via decellularized amnion to prevent tendon adhesion. PLoS ONE. 2018, 13, e0205811. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Y.; Yildirimer, L.; Xu, T.; Zhao, X. Advanced technology-driven therapeutic interventions for prevention of tendon adhesion: Design, intrinsic and extrinsic factor considerations. Acta Biomater. 2021, 124, 15–32. [Google Scholar] [CrossRef]
- Wang, S.; Sha, P.; Zhao, X.; Tao, Z.; Liu, S. Peritendinous adhesion: Therapeutic targets and progress of drug therapy. Comput. Struct. Biotechnol. J. 2024, 23, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Linderman, S.W.; Gelberman, R.H.; Thomopoulos, S.; Shen, H. Cell and Biologic-Based Treatment of Flexor Tendon Injuries. Oper. Tech. Orthop. 2016, 26, 206–215. [Google Scholar] [CrossRef]
- Lomas, A.J.; Ryan, C.N.M.; Sorushanova, A.; Shologu, N.; Sideri, A.I.; Tsioli, V.; Fthenakis, G.C.; Tzora, A.; Skoufos, I.; Quinlan, L.R.; et al. The past, present and future in scaffold-based tendon treatments. Adv. Drug Deliv. Rev. 2015, 84, 257–277. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Angele, P.; Järvinen, T.A.H.; Docheva, D. Rescue plan for Achilles: Therapeutics steering the fate and functions of stem cells in tendon wound healing. Adv. Drug Deliv. Rev. 2018, 129, 352–375. [Google Scholar] [CrossRef]
- Alaei, M.; Abdulhasan, J.-K.D.; Barjasteh, H.A.; Al-Asady, M.A.; Latifi, H.; Vahedi, E.; Avan, A.; Khazaei, M.; Ryzhikov, M.; Hassanian, S.M. Advancing Novel Strategies against Post-surgical Tendon Adhesion Bands, Exploring New Frontiers. Curr. Pharm. Design. 2024, 30, 1650–1658. [Google Scholar] [CrossRef]
- Wu, R.; Pang, S.; Lv, W.; Zou, J.; Li, Y.; Li, Y.; He, J.; Gu, H.; Wang, Y.; Guan, Y.; et al. Injectable pH-Responsive CI1040 Delayed-Release Hydrogel for the Treatment of Tendon Adhesion. Adv. Funct. Mater. 2024, 34, 2314731. [Google Scholar] [CrossRef]
- Zheng, W.; Song, J.; Zhang, Y.; Chen, S.; Ruan, H.; Fan, C. Metformin prevents peritendinous fibrosis by inhibiting transforming growth factor-β signaling. Oncotarget 2017, 8, 101784–101794. [Google Scholar] [CrossRef]
- Jie Li, Z.; Bing Luo, C.; Liang Wang, H.; Sun, J.; Qian Yang, Q.; Lang Zhou, Y. Metformin suppressed tendon injury-induced adhesion via hydrogel-nanoparticle sustained-release system. Int. J. Pharm. 2023, 642, 123190. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Hu, W.; Li, Y.; Li, J.; Kang, F.; Zhang, J.; Dong, S. Dual Dynamic Crosslinked Hydrogel Patch Embodied with Anti-Bacterial and Macrophage Regulatory Properties for Synergistic Prevention of Peritendinous Adhesion. Adv. Funct. Mater. 2024, 34, 2400660. [Google Scholar] [CrossRef]
- Bianco, V.; Kilic, A.; Gleason, T.G.; Aranda-Michel, E.; Habertheuer, A.; Wang, Y.; Navid, F.; Kacin, A.; Sultan, I. Reoperative Cardiac Surgery Is a Risk Factor for Long-Term Mortality. Ann. Thorac. Surg. 2020, 110, 1235–1242. [Google Scholar] [CrossRef]
- Alizzi, A.M.; Summers, P.; Boon, V.H.; Tantiongco, J.-P.; Thompson, T.; Leslie, B.J.; Williams, D.; Steele, M.; Bidstrup, B.P.; Diqer, A.-M.A. Reduction of Post-surgical Pericardial Adhesions Using a Pig Model. Heart Lung Circ. 2012, 21, 22–29. [Google Scholar] [CrossRef]
- Cannata, A.; Petrella, D.; Russo, C.F.; Bruschi, G.; Fratto, P.; Gambacorta, M.; Martinelli, L. Postsurgical Intrapericardial Adhesions: Mechanisms of Formation and Prevention. Ann. Thorac. Surg. 2013, 95, 1818–1826. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Policastro, G.M.; Burdick, A.; Lam, H.T.; Ungerleider, J.L.; Braden, R.L.; Huang, D.; Osborn, K.G.; Omens, J.H.; Madani, M.M.; et al. Preventing post-surgical cardiac adhesions with a catechol-functionalized oxime hydrogel. Nat. Commun. 2021, 12, 3764. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, Y.; Wu, T.; Zhao, X.; Yang, R.; Wang, H.; Liu, W. Combined intramyocardial injectable hydrogel and pericardial adhesive hydrogel patch therapy strategy to achieve gene/ion/gas delivery for improving cardiac function. Nano Today 2023, 50, 101861. [Google Scholar] [CrossRef]
- Daroz, L.R.D.; Lopes, J.B.; Dallan, L.A.O.; Campana-Filho, S.P.; Moreira, L.F.P.; Stolf, N.A.G. Prevenção de aderências pericárdicas pós-operatórias com uso de carboximetilquitosana termoestéril. Braz. J. Cardiovasc. Surg. 2008, 23, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.B.; Dallan, L.A.O.; Moreira, L.F.P.; Campana Filho, S.P.; Gutierrez, P.S.; Lisboa, L.A.F.; de Oliveira, S.A.; Stolf, N.A.G. Synergism Between Keratinocyte Growth Factor and Carboxymethyl Chitosan Reduces Pericardial Adhesions. Ann. Thorac. Surg. 2010, 90, 566–572. [Google Scholar] [CrossRef]
- Wang, L.; Chen, P.; Pan, Y.; Wang, Z.; Xu, J.; Wu, X.; Yang, Q.; Long, M.; Liu, S.; Huang, W.; et al. Injectable photocurable Janus hydrogel delivering hiPSC cardiomyocyte-derived exosome for post–heart surgery adhesion reduction. Sci. Adv. 2023, 9, eadh1753. [Google Scholar] [CrossRef]
- Santoso, M.R.; Ikeda, G.; Tada, Y.; Jung, J.H.; Vaskova, E.; Sierra, R.G.; Gati, C.; Goldstone, A.B.; von Bornstaedt, D.; Shukla, P.; et al. Exosomes From Induced Pluripotent Stem Cell-Derived Cardiomyocytes Promote Autophagy for Myocardial Repair. J. Am. Heart Assoc. 2020, 9, e014345. [Google Scholar] [CrossRef]
- Wan, Z.; Zhao, L.; Lu, F.; Gao, X.; Dong, Y.; Zhao, Y.; Wei, M.; Yang, G.; Xing, C.; Liu, L. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics. 2020, 10, 218–230. [Google Scholar] [CrossRef]
- Lewik, G.; Lewik, G.; Müller, L.S.; von Glinski, A.; Schulte, T.L.; Lange, T. Postoperative Epidural Fibrosis: Challenges and Opportunities—A Review. Spine Surg. Relat. Res. 2024, 8, 133–142. [Google Scholar] [CrossRef]
- Ding, Q.; Wei, Q.; Sheng, G.; Wang, S.; Jing, S.; Ma, T.; Zhang, R.; Wang, T.; Li, W.; Tang, X.; et al. The Preventive Effect of Decorin on Epidural Fibrosis and Epidural Adhesions After Laminectomy. Front. Pharmacol. 2021, 12, 774316. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sun, W.; Fu, D.; Shen, Y.; Chen, Y.Y.; Wang, L.L. Update on biomaterials for prevention of epidural adhesion after lumbar laminectomy. J. Orthop. Transl. 2018, 13, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Wu, H.; Kong, Q. Superhydrophilic PLGA-Graft-PVP/PC Nanofiber Membranes for the Prevention of Epidural Adhesion. Int. J. Nanomed. 2022, 17, 1423–1435. [Google Scholar] [CrossRef]
- Wang, S.; Shi, K.; Lu, J.; Sun, W.; Han, Q.; Che, L.; Zhang, D. Microsphere-Embedded Hydrogel Sustained-Release System to Inhibit Postoperative Epidural Fibrosis. ACS Appl. Bio Mater. 2021, 4, 5122–5131. [Google Scholar] [CrossRef]
- Hsu, D.Z.; Jou, I.M. 1,4-Butanediol diglycidyl ether-cross-linked hyaluronan inhibits fibrosis in rat primary tenocytes by down-regulating autophagy modulation. J. Mater. Sci. Mater. Med. 2016, 27, 84. [Google Scholar] [CrossRef]
- Lin, C.Y.; Peng, H.H.; Chen, M.H.; Sun, J.S.; Liu, T.Y.; Chen, M.H. In situ forming hydrogel composed of hyaluronate and polygalacturonic acid for prevention of peridural fibrosis. J. Mater. Sci. Mater. Med. 2015, 26, 168. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Z.; Ren, H.; Zou, Z.; Zhang, Y.; Qu, Y.; Chen, X.; Zhao, J.; He, C. A low-swelling hydrogel as a multirole sealant for efficient dural defect sealing and prevention of postoperative adhesion. Natl. Sci. Rev. 2024, 11, nwae160. [Google Scholar] [CrossRef] [PubMed]
- Beck, D.E. The role of Seprafilm bioresorbable membrane in adhesion prevention. Eur. J. Surg. Suppl. 1997, 577, 49–55. [Google Scholar]
- Diamond, M.P.; The Seprafilm Adhesion Study, G. Reduction of adhesions after uterine myomectomy by Seprafilm* membrane (HAL-F): A blinded, prospective, randomized, multicenter clinical study. Fertil. Steril. 1996, 66, 904–910. [Google Scholar] [CrossRef]
- Beck, D.E.; Cohen, Z.; Fleshman, J.W.; Kaufman, H.S.; Van Goor, H.; Wolff, B.G. A prospective, randomized, multicenter, controlled study of the safety of seprafilm® adhesion barrier in abdominopelvic surgery of the intestine. Dis. Colon. Rectum. 2003, 46, 1310–1319. [Google Scholar] [CrossRef]
- Becker, J.M.; Dayton, M.T.; Fazio, V.W.; Beck, D.E.; Stryker, S.J.; Wexner, S.D.; Wolff, B.G.; Roberts, P.L.; Smith, L.E.; Sweeney, S.A.; et al. Prevention of postoperative abdominal adhesions by a sodium hyaluronate- based bioresorbable membrane: A prospective, randomized, double-blind multicenter study. J. Am. Coll. Surg. 1996, 183, 297–306. [Google Scholar] [PubMed]
- Bristow, R.E.; Montz, F.J. Prevention of adhesion formation after radical oophorectomy using a sodium hyaluronate-carboxymethylcellulose (HA-CMC) barrier. Gynecol. Oncol. 2005, 99, 301–308. [Google Scholar] [CrossRef]
- Arslan, E.; Talih, T.; Oz, B.; Halaclar, B.; Caglayan, K.; Sipahi, M. Comparison of lovastatin and hyaluronic acid/carboxymethyl cellulose on experimental created peritoneal adhesion model in rats. Int. J. Surg. 2014, 12, 120–124. [Google Scholar] [CrossRef]
- Kusuki, I.; Suganuma, I.; Ito, F.; Akiyama, M.; Sasaki, A.; Yamanaka, K.; Tatsumi, H.; Kitawaki, J. Usefulness of Moistening Seprafilm Before Use in Laparoscopic Surgery. Surg. Laparosc. Endosc. Pct Tech. 2014, 24, e13–e15. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, C.; Liang, Y.; Shi, J.; Yu, Q.; Liu, S.; Yu, D.; Liu, H. Advanced postoperative tissue antiadhesive membranes enabled with electrospun nanofibers. Biomater. Sci. 2024, 12, 1643–1661. [Google Scholar] [CrossRef]
- Ward, B.C.; Panitch, A. Abdominal Adhesions: Current and Novel Therapies. J. Surg. Res. 2011, 165, 91–111. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, K.E.; Schwartz, H.E.; Roda, N.; Thornton, M.; Kobak, W.; diZerega, G.S. Effect of oxiplex films (PEO/CMC) on adhesion formation and reformation in rabbit models and on peritoneal infection in a rat model. Fertil. Steril. 2000, 73, 831–838. [Google Scholar] [CrossRef]
- Fuchs, N.; Smorgick, N.; Ben Ami, I.; Vaknin, Z.; Tovbin, Y.; Halperin, R.; Pansky, M. Intercoat (Oxiplex/AP Gel) for Preventing Intrauterine Adhesions After Operative Hysteroscopy for Suspected Retained Products of Conception: Double-Blind, Prospective, Randomized Pilot Study. J. Minim. Invasive Gynecol. 2014, 21, 126–130. [Google Scholar] [CrossRef]
- Young, P.; Johns, A.; Templeman, C.; Witz, C.; Webster, B.; Ferland, R.; Diamond, M.P.; Block, K.; diZerega, G. Reduction of postoperative adhesions after laparoscopic gynecological surgery with Oxiplex/AP Gel: A pilot study. Fertil. Steril. 2005, 84, 1450–1456. [Google Scholar] [CrossRef]
Polysaccharide | Structure | Advantages | Limitations |
---|---|---|---|
Cellulose | β-(1→4) linked d-glucose unit | Biocompatibility Biodegradability Cheap Renewability Good mechanical strength | Low solubility in water and most organic solvents Lack of antimicrobial activity |
Chitosan | β-(1→4) linked D-glucosamine and N-acetyl-D-glucosamine units | Antimicrobial Antioxidant Adhesive potential Biodegradability Biocompatibility | Low solubility in water Limited mechanical strength |
Alginate | 1,4-β-D-mannouronic acid (M) and 1,4-α-L-gulonuronic acid (G) connected by a 1–4 glucosidic bond | Non-toxicity Biocompatibility Easy gelation Non-immunogenicity Cheap | Insufficient mechanical properties Low biological activity Slow degradation |
Hyaluronic acid | N-acetyl-d-glucose linked by various (1,3) and (1,4) glycosidic linkages and amine and D-glucuronic acid residues | Water retention ability Biocompatibility Biodegradation The target capacity to numerous cells | High enzymatic vulnerability Weak mechanical strength |
Dextran | α-1,6-linked glucose with 1,2, 1,3, 1,4-branch linkages | Swelling capacity Biocompatibility Biodegradability Non-toxicity | Uncontrolled hydration rate |
Starch | Glucan composed of D-glucopyranose units linked by α-1,4- and α-1,6-glycosidic bonds | Biocompatibility Biodegradability Non-toxicity Low cost | Poor homogeneity Poor mechanical performance |
Products | Components | Target | Properties |
---|---|---|---|
Seprafilm® | Carboxymethyl cellulose Hyaluronic acid | Abdominal Pelvic cavity | Degradable Immune to blood interference Safe Inconvenient |
Interceed® | Oxidized regenerated cellulose | Pelvic cavity | Strong adhesion Degradable Flexible Reduced effect on blood |
Oxiplex/AP® | Carboxymethylcellulose sodium Polyethylene oxide | Uterine cavity Abdomen | Transparent May cause edema, congestion, and other problems Strong adhesion Suitable for laparoscopic surgery |
BaiFeiMi | Modified chitosan | Abdomen | Good biocompatibility Rapidly forms film upon contact with bodily fluids Degradable |
Nachitin | Chitosan | Abdomen | Good coagulation activity Antimicrobial Degradable Cases of conjunctivitis, fever, and other adverse reactions reported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Liu, J.; Lin, J.; Zhuang, K.; Shan, Y.; Tiwari, S.; Jiang, L.; Zhang, J. Progress in Polysaccharide-Based Hydrogels for Preventing Postoperative Adhesions: A Review. Gels 2025, 11, 188. https://doi.org/10.3390/gels11030188
Chen M, Liu J, Lin J, Zhuang K, Shan Y, Tiwari S, Jiang L, Zhang J. Progress in Polysaccharide-Based Hydrogels for Preventing Postoperative Adhesions: A Review. Gels. 2025; 11(3):188. https://doi.org/10.3390/gels11030188
Chicago/Turabian StyleChen, Mengyao, Jialin Liu, Jianhong Lin, Kai Zhuang, Yudong Shan, Sandip Tiwari, Lei Jiang, and Jiantao Zhang. 2025. "Progress in Polysaccharide-Based Hydrogels for Preventing Postoperative Adhesions: A Review" Gels 11, no. 3: 188. https://doi.org/10.3390/gels11030188
APA StyleChen, M., Liu, J., Lin, J., Zhuang, K., Shan, Y., Tiwari, S., Jiang, L., & Zhang, J. (2025). Progress in Polysaccharide-Based Hydrogels for Preventing Postoperative Adhesions: A Review. Gels, 11(3), 188. https://doi.org/10.3390/gels11030188