Techno-Functional Properties and Applications of Inulin in Food Systems
Abstract
1. Introduction
2. Chemical Structure of Inulin
3. Sources of Inulin in Plants
4. Extraction and Isolation of Inulin
4.1. Conventional Inulin Production Process
4.2. Non-Conventional Extraction Techniques of Inulin
4.2.1. Ultrasound-Assisted Extraction (UAE)
4.2.2. Microwave-Assisted Extraction (MAE)
4.2.3. Enzyme-Assisted Extraction (EAE)
4.2.4. Pulsed-Electric Field Assisted Extraction (PEFAE)
4.2.5. Supercritical Fluid Extraction (SFE)
5. Physicochemical Properties and Gelation Behavior of Inulin
5.1. Solubility
5.2. Sweetness
5.3. Physicochemical Stability
5.4. Gelation Mechanisms and Rheological Behavior
5.4.1. The Inulin Particle–Gel Model
5.4.2. Key Processing Parameters Affecting Inulin Gelation
5.4.3. Role of Processing Methodologies
6. Technological Applications of Inulin in Food Systems
6.1. As Fat Replacer and Texture Modifier
6.2. As Sugar Replacer
6.3. As Fiber Enrichment
6.4. Other Applications of Inulin in the Food Industry
7. Nutritional and Health Benefits of Inulin
7.1. Prebiotic Effect
7.2. Reduction in Risk of Gastrointestinal Diseases
7.3. Enhancement of Mineral Absorption
7.4. Regulation of Food Intake and Appetite
7.5. Effect on Lipid Metabolism
7.6. Effect on Glycemic Control and Insulin Sensitivity
7.7. Stimulation of the Immune System
7.8. Protection Against Oxidative Stress
8. Conclusions and Future Prospective
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 2,2′-Azino-bis(3-ethylBenzoThiazoline-6-Sulfonic acid) |
AMPK/LSD1 | AMP-activated protein kinase/lysine-specific demethylase 1 axis |
CRC | ColoRectal Cancer |
DM | Dry Matter |
DP | Degree of Polymerization |
DPPH | 2,2-DiPhenyl-1-PicrylHydrazyl |
EAE | Enzyme-Assisted Extraction |
EFSA | European Food Safety Authority |
FOS | FructoOligoSaccharideS |
FRAP | Ferric Reducing Antioxidant Power |
FTIR | Fourier-Transform Infrared Spectroscopy |
FW | Fresh Weight |
GI | Glycemic Index |
GLP-1 | Glucagon-Like Peptide-1 |
GPR41/43 | G-Protein-coupled receptors 41 and 43 |
GRAS | Generally Recognized As Safe |
HDL | High-Density Lipoprotein |
HHP | High Hydrostatic Pressure |
HOMA-IR | Homeostatic Model Assessment of Insulin Resistance |
HWE | Hot-Water Extraction |
HbA1c | Glycated Hemoglobin |
IBD | Inflammatory Bowel Disease |
IBS | Irritable Bowel Syndrome |
IQF | Individually Quick Frozen |
ITFs | Inulin-Type Fructans |
JAP | Jerusalem Artichoke Powder |
LDH | Lactate Dehydrogenase |
LDL | Low-Density Lipoprotein |
MAE | Microwave-Assisted Extraction |
MDA | MalonDiAldehyde |
MW | Molecular Weight |
NK | Natural Killer (cells) |
PEFAE | Pulsed-Electric Field Assisted Extraction |
PI3K/Akt | PhosphoInositide 3-Kinase/Protein Kinase B Pathway |
PYY | Peptide YY |
SFE | Supercritical Fluid Extraction |
SCFAs | Short-Chain Fatty Acids |
TAG | TriAcylGlycerols |
TGF-β | Transforming Growth Factor Beta |
Tg | Glass Transition Temperature |
UAE | Ultrasound-Assisted Extraction |
VGI | Volumetric Gel Index |
WHO | World Health Organization |
XOS | Xylooligosaccharides |
XRD | X-Ray Diffraction |
References
- Onyeaka, H.; Nwaiwu, O.; Obileke, K.; Miri, T.; Al-Sharify, Z.T. Global nutritional challenges of reformulated food: A review. Food Sci. Nutr. 2023, 11, 2483–2499. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Rashid, S. Functional and Therapeutic Potential of Inulin: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kheto, A.; Bist, Y.; Awana, A.; Kaur, S.; Kumar, Y.; Sehrawat, R. Utilization of Inulin as a Functional Ingredient in Food: Processing, Physicochemical Characteristics, Food Applications, and Future Research Directions. Food Chem. Adv. 2023, 3, 100443. [Google Scholar] [CrossRef]
- Bhanja, A.; Sutar, P.P.; Mishra, M. Inulin-A Polysaccharide: Review on Its Functional and Prebiotic Efficacy. J. Food Biochem. 2022, 46, e14386. [Google Scholar] [CrossRef]
- Hughes, R.L.; Alvarado, D.A.; Swanson, K.S.; Holscher, H.D. The Prebiotic Potential of Inulin-Type Fructans: A Systematic Review. Adv. Nutr. 2022, 13, 492–529. [Google Scholar] [CrossRef]
- Mensink, M.A.; Frijlink, H.W.; Van Der Voort Maarschalk, K.; Hinrichs, W.L.J. Inulin, a Flexible Oligosaccharide. II: Review of Its Pharmaceutical Applications. Carbohydr. Polym. 2015, 134, 418–428. [Google Scholar] [CrossRef]
- Apolinário, A.C.; De Lima Damasceno, B.P.G.; De Macêdo Beltrão, N.E.; Pessoa, A.; Converti, A.; Da Silva, J.A. Inulin-Type Fructans: A Review on Different Aspects of Biochemical and Pharmaceutical Technology. Carbohydr. Polym. 2014, 101, 368–378. [Google Scholar] [CrossRef]
- Qin, Y.Q.; Wang, L.Y.; Yang, X.Y.; Xu, Y.J.; Fan, G.; Fan, Y.G.; Ren, J.N.; An, Q.; Li, X. Inulin: Properties and Health Benefits. Food Funct. 2023, 14, 2948–2968. [Google Scholar] [CrossRef]
- Kelly, G. Inulin-Type Prebiotics—A Review: Part I. Altern. Med. Rev. 2008, 13, 315–329. [Google Scholar]
- Li, J.; Liu, F.; Luo, Y.; Wijeyesekera, A.; Wang, S.; Chen, X.; Lv, Y.; Jin, J.; Sheng, H.; Wang, G.; et al. Differential Effects of Inulin and Fructooligosaccharides on Gut Microbiota Composition and Glycemic Metabolism in Overweight/Obese and Healthy Individuals: A Randomized, Double-Blind Clinical Trial. BMC Med. 2025, 23, 372. [Google Scholar] [CrossRef]
- Wouters, R. Inulin. In Food Stabilisers, Thickeners and Gelling Agents; Imeson, A., Ed.; Wiley-Blackwell: Oxford, UK, 2009; pp. 180–197. ISBN 978-1-4051-3267-1. [Google Scholar]
- Gupta, N.; Jangid, A.K.; Pooja, D.; Kulhari, H. Inulin: A Novel and Stretchy Polysaccharide Tool for Biomedical and Nutritional Applications. Int. J. Biol. Macromol. 2019, 132, 852–863. [Google Scholar] [CrossRef]
- Rezende, E.S.V.; Lima, G.C.; Naves, M.M.V. Dietary Fibers as Beneficial Microbiota Modulators: A Proposal Classification by Prebiotic Categories. Nutrition 2021, 89, 111217. [Google Scholar] [CrossRef]
- Roberfroid, M.B. Introducing Inulin-Type Fructans. Br. J. Nutr. 2005, 93, S13–S25. [Google Scholar] [CrossRef] [PubMed]
- Arcia, P.L.; Costell, E.; Tárrega, A. Inulin Blend as Prebiotic and Fat Replacer in Dairy Desserts: Optimization by Response Surface Methodology. J. Dairy. Sci. 2011, 94, 2192–2200. [Google Scholar] [CrossRef] [PubMed]
- Jackson, P.P.J.; Wijeyesekera, A.; Rastall, R.A. Inulin-Type Fructans and Short-Chain Fructooligosaccharides—Their Role within the Food Industry as Fat and Sugar Replacers and Texture Modifiers—What Needs to Be Considered! Food Sci. Nutr. 2023, 11, 17–38. [Google Scholar] [CrossRef]
- Nikolić, I.; Šoronja-Simović, D.; Zahorec, J.; Dokić, L.; Lončarević, I.; Stožinić, M.; Petrović, J. Polysaccharide-Based Fat Replacers in the Functional Food Products. Processes 2024, 12, 2701. [Google Scholar] [CrossRef]
- Meyer, D.; Bayarri, S.; Tárrega, A.; Costell, E. Inulin as Texture Modifier in Dairy Products. Food Hydrocoll. 2011, 25, 1881–1890. [Google Scholar] [CrossRef]
- Bayarri, S.; Chuliá, I.; Costell, E. Comparing λ-Carrageenan and an Inulin Blend as Fat Replacers in Carboxymethyl Cellulose Dairy Desserts. Rheological and Sensory Aspects. Food Hydrocoll. 2010, 24, 578–587. [Google Scholar]
- Berizi, E.; Shekarforoush, S.S.; Mohammadinezhad, S.; Hosseinzadeh, S.; Farahnaki, A. The use of inulin as fat replacer and its effect on texture and sensory properties of emulsion type sausages. Iran. J. Vet. Res. 2017, 18, 253. [Google Scholar]
- Samakradhamrongthai, R.S.; Jannu, T.; Supawan, T.; Khawsud, A.; Aumpa, P.; Renaldi, G. Inulin Application on the Optimization of Reduced-Fat Ice Cream Using Response Surface Methodology. Food Hydrocoll. 2021, 119, 106873. [Google Scholar] [CrossRef]
- Sangsuriyawong, A.; Suwanmongkol, P.; Peasura, N.; Kornsakkaya, N.; Disnil, S.; Sinchaipanit, P.; Nirmal, N. Preparation of Fat-Free Mulberry Ice Cream by Using Inulin and Whey Protein Isolate as a Fat Substitute. eFood 2024, 5, e70006. [Google Scholar] [CrossRef]
- Karimi, R.; Azizi, M.H.; Ghasemlou, M.; Vaziri, M. Application of Inulin in Cheese as Prebiotic, Fat Replacer and Texturizer: A Review. Carbohydr. Polym. 2015, 119, 85–100. [Google Scholar] [CrossRef]
- Jayarathna, G.N.; Jayasena, D.D.; Mudannayake, D.C. Garlic Inulin as a Fat Replacer in Vegetable Fat Incorporated Low-Fat Chicken Sausages. Food Sci. Anim. Resour. 2022, 42, 295–312. [Google Scholar] [CrossRef]
- Mahmood, A.; Napi, N.N.M.; Mohamad, N.J. The Effect of Inulin Substitution as A Fat Replacer on Physicochemical and Sensory Properties of Muffins. Pertanika J. Trop. Agric. Sci. 2024, 47, 495–508. [Google Scholar] [CrossRef]
- Akram, W.; Mishra, N.; Haider, T. (Eds.) Inulin for Pharmaceutical Applications: A Versatile Biopolymer; Springer International Publishing: Singapore, 2025; ISBN 978-981-97905-6-2. [Google Scholar]
- Gomes, A.; Costa, A.L.R.; Fasolin, L.H.; Silva, E.K. Rheological Properties, Microstructure, and Encapsulation Efficiency of Inulin-Type Dietary Fiber-Based Gelled Emulsions at Different Concentrations. Carbohydr. Polym. 2025, 347, 122742. [Google Scholar] [CrossRef]
- Karimi, I.; Ghowsi, M.; Mohammed, L.J.; Haidari, Z.; Nazari, K.; Schiöth, H.B. Inulin as a Biopolymer; Chemical Structure, Anticancer Effects, Nutraceutical Potential and Industrial Applications: A Comprehensive Review. Polymers 2025, 17, 412. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, V.M.; Giarnetti, M.; Summo, C.; Pasqualone, A.; Minervini, F.; Caponio, F. Production and Characterization of Emulsion Filled Gels Based on Inulin and Extra Virgin Olive Oil. Food Hydrocoll. 2015, 45, 30–40. [Google Scholar] [CrossRef]
- Getachew, M.; Atnaf, A.; Kiflu, M.; Tizie, S.B.; Nibret, G.; Belay, W.Y. Inulin-Based Colon Targeted Drug Delivery Systems: Advancing Site-Specific Therapeutics. Discov. Mater. 2025, 5, 114. [Google Scholar] [CrossRef]
- Mefleh, M.; Pasqualone, A.; Caponio, F.; De Angelis, D.; Natrella, G.; Summo, C.; Faccia, M. Spreadable Plant-Based Cheese Analogue with Dry-Fractioned Pea Protein and Inulin–Olive Oil Emulsion-Filled Gel. J. Sci. Food Agric. 2022, 102, 5478–5487. [Google Scholar] [CrossRef]
- Difonzo, G.; Noviello, M.; De Angelis, D.; Porfido, C.; Terzano, R.; Caponio, F. Emulsion Filled Gels Based on Inulin and Dry-Fractionated Pulse Proteins to Produce Low-Fat Baked Goods. LWT 2024, 207, 116620. [Google Scholar] [CrossRef]
- De Abreu Figueiredo, J.; Andrade Teixeira, M.; Henrique Campelo, P.; Maria Teixeira Lago, A.; Pereira de Souza, T.; Irene Yoshida, M.; Rodrigues de Oliveira, C.; Paula Aparecida Pereira, A.; Maria Pastore, G.; Aparecido Sanches, E.; et al. Encapsulation of Camu-Camu Extracts Using Prebiotic Biopolymers: Controlled Release of Bioactive Compounds and Effect on Their Physicochemical and Thermal Properties. Food Res. Int. 2020, 137, 109563. [Google Scholar] [CrossRef]
- Cui, L.H.; Yan, C.G.; Li, H.S.; Kim, W.S.; Hong, L.; Kang, S.K.; Choi, Y.J.; Cho, C.S. A New Method of Producing a Natural Antibacterial Peptide by Encapsulated Probiotics Internalized with Inulin Nanoparticles as Prebiotics. J. Microbiol. Biotechnol. 2018, 28, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, M.; Laurie-Martínez, L.; Vergara, D.; Campos-Vega, R.; Rubilar, M.; Shene, C. Effect of Three Polysaccharides (Inulin, and Mucilage from Chia and Flax Seeds) on the Survival of Probiotic Bacteria Encapsulated by Spray Drying. Appl. Sci. 2020, 10, 4623. [Google Scholar] [CrossRef]
- Meral, H.D.; Özcan, F.Ş.; Özcan, N.; Bozkurt, F.; Sağdiç, O. Determination of Prebiotic Activity and Probiotic Encapsulation Ability of Inulin Type Fructans Obtained from Inula Helenium Roots. J. Food Sci. 2024, 89, 5335–5349. [Google Scholar] [CrossRef] [PubMed]
- Scialabba, C.; Licciardi, M.; Mauro, N.; Rocco, F.; Ceruti, M.; Giammona, G. Inulin-Based Polymer Coated SPIONs as Potential Drug Delivery Systems for Targeted Cancer Therapy. Eur. J. Pharm. Biopharm. 2014, 88, 695–705. [Google Scholar] [CrossRef]
- Hou, Y.; Jin, J.; Duan, H.; Liu, C.; Chen, L.; Huang, W.; Gao, Z.; Jin, M. Targeted Therapeutic Effects of Oral Inulin-Modified Double-Layered Nanoparticles Containing Chemotherapeutics on Orthotopic Colon Cancer. Biomaterials 2022, 283, 121440. [Google Scholar] [CrossRef]
- Kesharwani, S.S.; Dachineni, R.; Bhat, G.J.; Tummala, H. Hydrophobically Modified Inulin-Based Micelles: Transport Mechanisms and Drug Delivery Applications for Breast Cancer. J. Drug Deliv. Sci. Technol. 2019, 54, 101254. [Google Scholar] [CrossRef]
- Guimarães, J.T.; Alcântara, N.E.; Vieira, G.P.; Balthazar, C.F.; Mársico, E.T.; Oliveira, C.A.F.; Prudêncio, E.S.; Branco, V.N.C.; Freitas, M.Q.; Cruz, A.G. Prebiotic Ice Cream without Additives: The Influence of Degree of Inulin Polymerization on Product Manufacturing. Food Res. Int. 2025, 221, 117279. [Google Scholar] [CrossRef]
- Inguglia, E.S.; Song, Z.; Kerry, J.P.; O’Sullivan, M.G.; Hamill, R.M. Addressing Clean Label Trends in Commercial Meat Processing: Strategies, Challenges and Insights from Consumer Perspectives. Foods 2023, 12, 2062. [Google Scholar] [CrossRef]
- Wichienchot, S.; Bin, W.R.; Ishak, W. Prebiotics and dietary fibers from food processing by-products. In Food Processing By-Products and Their Utilization; Wiley Online Library: Hoboken, NJ, USA, 2017; pp. 137–174. [Google Scholar]
- Souza, M.A.d.; Vilas-Boas, I.T.; Leite-da-Silva, J.M.; Abrahão, P.D.N.; Teixeira-Costa, B.E.; Veiga-Junior, V.F. Polysaccharides in Agro-Industrial Biomass Residues. Polysaccharides 2022, 3, 95–120. [Google Scholar] [CrossRef]
- Difonzo, G.; de Gennaro, G.; Caponio, G.R.; Vacca, M.; dal Poggetto, G.; Allegretta, I.; Immirzi, B.; Pasqualone, A. Inulin from Globe Artichoke Roots: A Promising Ingredient for the Production of Functional Fresh Pasta. Foods 2022, 11, 3032. [Google Scholar] [CrossRef]
- Redondo-Cuenca, A.; Herrera-Vázquez, S.E.; Condezo-Hoyos, L.; Gómez-Ordóñez, E.; Rupérez, P. Inulin Extraction from Common Inulin-Containing Plant Sources. Ind. Crops Prod. 2021, 170, 113726. [Google Scholar] [CrossRef]
- Cavini, S.; Guzzetti, L.; Givoia, F.; Regonesi, M.E.; Di Gennaro, P.; Magoni, C.; Campone, L.; Labra, M.; Bruni, I. Artichoke (Cynara cardunculus var. scolymus L.) by-Products as a Source of Inulin: How to Valorise an Agricultural Supply Chain Extracting an Added-Value Compound. Nat. Prod. Res. 2022, 36, 2140–2144. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Faqih, M.N.; Wang, S.S. Factors Affecting Gel Formation of Inulin. Carbohydr. Polym. 2001, 46, 135–145. [Google Scholar] [CrossRef]
- Leyva-Porras, C.; Saavedra–Leos, M.Z.; López-Pablos, A.L.; Soto-Guerrero, J.J.; Toxqui-Terán, A.; Fozado-Quiroz, R.E. Chemical, Thermal and Physical Characterization of Inulin for Its Technological Application Based on the Degree of Polymerization. J. Food Process Eng. 2017, 40, 12333. [Google Scholar] [CrossRef]
- Morreale, F.; Benavent-Gil, Y.; Rosell, C.M. Inulin Enrichment of Gluten Free Breads: Interaction between Inulin and Yeast. Food Chem. 2019, 278, 545–551. [Google Scholar] [CrossRef]
- Flamm, G.; Glinsmann, W.; Kritchevsky, D.; Prosky, L.; Roberfroid, M. Inulin and Oligofructose as Dietary Fiber: A Review of the Evidence. Crit. Rev. Food Sci. Nutr. 2001, 41, 353–362. [Google Scholar] [CrossRef]
- Illippangama, A.U.; Jayasena, D.D.; Jo, C.; Mudannayake, D.C. Inulin as a Functional Ingredient and Their Applications in Meat Products. Carbohydr. Polym. 2022, 275, 118706. [Google Scholar] [CrossRef]
- Teferra, T.F. Possible Actions of Inulin as Prebiotic Polysaccharide: A Review. Food Front. 2021, 2, 407–416. [Google Scholar] [CrossRef]
- Van Laere, A.; Van Den Ende, W. Inulin Metabolism in Dicots: Chicory as a Model System. Plant Cell Environ. 2002, 25, 803–813. [Google Scholar] [CrossRef]
- Li, W.; Zhang, J.; Yu, C.; Li, Q.; Dong, F.; Wang, G.; Gu, G.; Guo, Z. Extraction, Degree of Polymerization Determination and Prebiotic Effect Evaluation of Inulin from Jerusalem artichoke. Carbohydr. Polym. 2015, 121, 315–319. [Google Scholar] [CrossRef]
- Luo, D.; Li, Y.; Xu, B.; Ren, G.; Li, P.; Li, X.; Han, S.; Liu, J. Effects of Inulin with Different Degree of Polymerization on Gelatinization and Retrogradation of Wheat Starch. Food Chem. 2017, 229, 35–43. [Google Scholar] [CrossRef]
- Schaafsma, G.; Slavin, J.L. Significance of Inulin Fructans in the Human Diet. Compr. Rev. Food Sci. Food Saf. 2015, 14, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Niness, K.R. Nutritional and Health Benefits of Inulin and Oligofructose Inulin and Oligofructose: What Are They? J. Nutr. 1999, 129, 1402S–1406S. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.M.; Capriles, V.D.; Conti-Silva, A.C. Inulin as an Ingredient for Improvement of Glycemic Response and Sensory Acceptance of Breakfast Cereals. Food Hydrocoll. 2021, 114, 106582. [Google Scholar] [CrossRef]
- Woldemariam, H.W.; Admassu Emire, S.; Getachew Teshome, P.; Toepfl, S.; Aganovic, K. Physicochemical, Functional, Oxidative Stability and Rheological Properties of Red Pepper (Capsicum annuum L.) Powder and Paste. Int. J. Food Prop. 2021, 24, 1416–1437. [Google Scholar] [CrossRef]
- Totaro, M.P.; Miccolis, M.; De Angelis, D.; Natrella, G.; Caponio, F.; Summo, C.; Faccia, M. Optimization of the Rheological Properties of Fat Replacers Based on Inulin at Different Degrees of Polymerization and Their Application in Beef Burgers. Foods 2025, 14, 2127. [Google Scholar] [CrossRef]
- Li, J.; Cui, H.; Xu, X.; Li, J.; Lu, M.; Guan, X.; Zhu, D.; Liu, H. Effect of Fat Replacement by Inulin on the Physicochemical Properties and Sensory Attributes of Low-Fat Margarine. Food Hydrocoll. 2022, 133, 107868. [Google Scholar] [CrossRef]
- Mudannayake, D.C.; Jayasena, D.D.; Wimalasiri, K.M.S.; Ranadheera, C.S.; Ajlouni, S. Inulin Fructans—Food Applications and Alternative Plant Sources: A Review. Int. J. Food Sci. Technol. 2022, 57, 5764–5780. [Google Scholar] [CrossRef]
- Saeed, M.; Yasmin, I.; Pasha, I.; Randhawa, M.A.; Khan, M.I.; Shabbir, M.A.; Khan, W.A. Potential application of inulin in food industry: A review. Pak. J. Food Sci. 2015, 25, 110–116. [Google Scholar]
- Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Sharif, H.R.; Shakeel, A.; Ansari, A.; Niazi, S. Inulin: Properties, Health Benefits and Food Applications. Carbohydr. Polym. 2016, 147, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; He, J.; Liu, G.; Barba, F.J.; Koubaa, M.; Ding, L.; Bals, O.; Grimi, N.; Vorobiev, E. Recent Insights for the Green Recovery of Inulin from Plant Food Materials Using Non-Conventional Extraction Technologies: A Review. Innov. Food Sci. Emerg. Technol. 2016, 33, 1–9. [Google Scholar] [CrossRef]
- Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe Artichoke: A Functional Food and Source of Nutraceutical Ingredients. J. Funct. Foods 2009, 1, 131–144. [Google Scholar] [CrossRef]
- Garcia-Castello, E.M.; Mayor, L.; Calvo-Ramirez, A.; Ruiz-Melero, R.; Rodriguez-Lopez, A.D. Response Surface Optimization of Inulin and Polyphenol Extraction from Artichoke (Cynara scolymus (L.)) Solid Wastes. Appl. Sci. 2022, 12, 7957. [Google Scholar] [CrossRef]
- Zeaiter, Z.; Regonesi, M.E.; Cavini, S.; Labra, M.; Sello, G.; Di Gennaro, P. Extraction and Characterization of Inulin-Type Fructans from Artichoke Wastes and Their Effect on the Growth of Intestinal Bacteria Associated with Health. Biomed Res. Int. 2019, 2019, 1083952. [Google Scholar] [CrossRef]
- Soto-Maldonado, C.; Zúñiga-Hansen, M.E.; Olivares, A. Data of Co-Extraction of Inulin and Phenolic Compounds from Globe Artichoke Discards, Using Different Conditioning Conditions of the Samples and Extraction by Maceration. Data Brief 2020, 31, 105986. [Google Scholar] [CrossRef]
- Lara-Fiallos, M.V.; Leiker Bastidas-Delgado, E.A.; Dayana Montalvo-Villacreses, E.T.; Rosario Espín-Valladares, E.C.; Núñez-Pérez, J.; Amaury Pérez Martínez, E.; Santiago Vispo, N.; José, S.; Yachay, P.; Hortensia Rodríguez Cabrera, E.; et al. Optimization of Crude Inulin Extraction from Garlic (Allium sativum L.) Agro-Industrial Waste Using the Response Surface Methodology. Rev. Educ. Madr. 2021, 392, 2–31. [Google Scholar]
- Lopes, S.M.S.; Krausová, G.; Carneiro, J.W.P.; Gonçalves, J.E.; Gonçalves, R.A.C.; de Oliveira, A.J.B. A New Natural Source for Obtainment of Inulin and Fructo-Oligosaccharides from Industrial Waste of Stevia Rebaudiana Bertoni. Food Chem. 2017, 225, 154–161. [Google Scholar] [CrossRef]
- Akram, H.; Zafar, H.; Abbasi, B.H. The Chicory Root (Cichorium intybus Var. Sativum) Frontier: Pioneering Biotechnological Advancements. Phytochem. Rev. 2025, 1–25. [Google Scholar] [CrossRef]
- Teferra, T.F. Direct and Indirect Actions of Inulin as Prebiotic Polysaccharide: A Review. Nutrition 2019, 3, 1–15. [Google Scholar]
- Vishwakarma, M.; Sahu, K.K.; Gautam, L.; Parihar, S.; Akram, W.; Haider, T. Extraction and Purification of Inulin. In Inulin for Pharmaceutical Applications: A Versatile Biopolymer; Springer Nature: Singapore, 2025; pp. 21–51. [Google Scholar]
- Lunawat, A.K.; Vishwakarma, N.; Raikwar, S. Future Prospects in Inulin Research. In Inulin for Pharmaceutical Applications: A Versatile Biopolymer; Springer Nature: Singapore, 2025; pp. 325–341. [Google Scholar]
- Anderson-Dekkers, I.; Nouwens-Roest, M.; Peters, B.; Vaughan, E. Inulin. In Handbook of Hydrocolloids; Elsevier: Amsterdam, The Netherlands, 2021; pp. 537–562. [Google Scholar]
- Zhang, Y.; Liu, R.; Song, B.; Li, L.; Shi, R.; Ma, X.; Zhang, L.; Li, X. Recent Advances in Inulin Polysaccharides Research: Extraction, Purification, Structure, and Bioactivities. Chem. Biol. Technol. Agric. 2024, 11, 136. [Google Scholar] [CrossRef]
- Qiu, Z.; Qiao, Y.; Zhang, B.; Sun-Waterhouse, D.; Zheng, Z. Bioactive Polysaccharides and Oligosaccharides from Garlic (Allium sativum L.): Production, Physicochemical and Biological Properties, and Structure–Function Relationships. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3033–3095. [Google Scholar] [CrossRef]
- Ahmed, J.; Thomas, L.; Mulla, M. High-pressure treatment of hummus in selected packaging materials: Influence on texture, rheology, and microstructure. J. Food Process Eng. 2020, 43, e13425. [Google Scholar] [CrossRef]
- Williams, C.M.; Jackson, K.G. Inulin and Oligofructose: Effects on Lipid Metabolism from Human Studies. Br. J. Nutr. 2002, 87, S261–S264. [Google Scholar] [CrossRef] [PubMed]
- Glibowski, P.; Bukowska, A. The Effect of PH, Temperature and Heating Time on Inulin Chemical Stability. Acta Sci. Pol. Technol. Aliment. 2011, 10, 189–196. [Google Scholar]
- Du, M.; Cheng, X.; Qian, L.; Huo, A.; Chen, J.; Sun, Y. Extraction, Physicochemical Properties, Functional Activities and Applications of Inulin Polysaccharide: A Review. Plant Foods Human Nutr. 2023, 78, 243–252. [Google Scholar] [CrossRef]
- Lante, A.; Canazza, E. Insight on extraction and preservation of biological activity of cereal β-D-glucans. Appl. Sci. 2023, 13, 11080. [Google Scholar] [CrossRef]
- Cisneros, M.; Canazza, E.; Mihaylova, D.; Lante, A. The Effectiveness of Extracts of Spent Grape Pomaces in Improving the Oxidative Stability of Grapeseed Oil. Appl. Sci. 2024, 14, 10184. [Google Scholar] [CrossRef]
- Mason, T.J.; Paniwnyk, L.; Lorimer, J.P. The uses of ultrasound in food technology. Ultrason. Sonochem. 1996, 3, S253–S260. [Google Scholar] [CrossRef]
- Lingyun, W.; Jianhua, W.; Xiaodong, Z.; Da, T.; Yalin, Y.; Chenggang, C.; Tianhua, F.; Fan, Z. Studies on the Extracting Technical Conditions of Inulin from Jerusalem artichoke Tubers. J. Food Eng. 2007, 79, 1087–1093. [Google Scholar] [CrossRef]
- Milani, E.; Koocheki, A.; Golimovahhed, Q.A. Extraction of Inulin from Burdock Root (Arctium lappa) Using High Intensity Ultrasound. Int. J. Food Sci. Technol. 2011, 46, 1699–1704. [Google Scholar] [CrossRef]
- Singh, M.; Rani, H.; Chopra, H.K. Extraction, Optimization, Purification and Characterization of Inulin from Chicory Roots Using Conventional and Greener Extraction Techniques. Int. J. Biol. Macromol. 2025, 306, 141385. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Lante, A. Environmentally Friendly Techniques for the Recovery of Polyphenols from Food By-Products and Their Impact on Polyphenol Oxidase: A Critical Review. Appl. Sci. 2022, 12, 1923. [Google Scholar] [CrossRef]
- Petkova, N.; Hambarliyska, I.; Ivanov, I.; Ognyanov, M.; Nikolova, K.; Ibryamova, S.; Ignatova-Ivanova, T. Physicochemical, Functional, and Antibacterial Properties of Inulin-Type Fructans Isolated from Dandelion (Taraxacum officinale) Roots by “Green” Extraction Techniques. Appl. Sci. 2025, 15, 4091. [Google Scholar] [CrossRef]
- Hong Geow, C.; Ching Tan, M.; Pin Yeap, S.; Ling Chin, N.; Geow, C.H.; Tan, M.C.; Yeap, S.P.; Chin, N.L. A Review on Extraction Techniques and Its Future Applications in Industry. Eur. J. Lipid Sci. Technol. 2021, 123, 2000302. [Google Scholar] [CrossRef]
- Demirci, K.; Zungur-Bastıoğlu, A.; Görgüç, A.; Bayraktar, B.; Yılmaz, S.; Yılmaz, F.M. Microwave Irradiation, Evolutionary Algorithm and Ultrafiltration Can Be Exploited in Process Intensification for High-Purity and Advanced Inulin Powder Production. Chem. Eng. Process.-Process Intensif. 2023, 194, 109565. [Google Scholar] [CrossRef]
- Viera-Alcaide, I.; Hamdi, A.; Guillén-Bejarano, R.; Rodríguez-Arcos, R.; Espejo-Calvo, J.A.; Jiménez-Araujo, A. Asparagus Roots: From an Agricultural By-Product to a Valuable Source of Fructans. Foods 2022, 11, 652. [Google Scholar] [CrossRef] [PubMed]
- Mudannayake, D.C.; Meegahawaththa, W.K.; Illippangama, A.U.; Pitawala, H.M.J.C.; Wimalasiri, K.M.S.; Silva, K.F.S.T. Extraction, Purification and Structural Characterization of Inulin-Type Fructans from Different Selected Asparagus Species. Bioact. Carbohydr. Diet. Fibre 2025, 34, 100486. [Google Scholar] [CrossRef]
- Santo Domingo, C.; Otálora González, C.; Navarro, D.; Stortz, C.; Rojas, A.M.; Gerschenson, L.N.; Fissore, E.N. Enzyme Assisted Extraction of Pectin and Inulin Enriched Fractions Isolated from Microwave Treated Cynara Cardunculus Tissues. Int. J. Food Sci. Technol. 2020, 56, 242–249. [Google Scholar] [CrossRef]
- Duda, Ł.; Budryn, G.; Olszewska, M.A.; Rutkowska, M.; Kruczkowska, W.; Grabowska, K.; Kołat, D.; Jaśkiewicz, A.; Pasieka, Z.W.; Kłosiński, K.K. Evaluation of Inulin and Polyphenol Content and the Cytotoxicity of Cichorium intybus L. var. foliosum Root Extracts Obtained by Pectinase- and Pressure-Assisted Extraction. Nutrients 2025, 17, 1040. [Google Scholar]
- Rivera, A.; Pozo, M.; Sánchez-Moreno, V.E.; Vera, E.; Jaramillo, L.I. Pulsed Electric Field-Assisted Extraction of Inulin from Ecuadorian Cabuya (Agave americana). Molecules 2024, 29, 3428. [Google Scholar] [CrossRef] [PubMed]
- Loginova, K.V.; Shynkaryk, M.V.; Lebovka, N.I.; Vorobiev, E. Acceleration of Soluble Matter Extraction from Chicory with Pulsed Electric Fields. J. Food Eng. 2010, 96, 374–379. [Google Scholar] [CrossRef]
- Zhu, Z.; Bals, O.; Grimi, N.; Vorobiev, E. Pilot Scale Inulin Extraction from Chicory Roots Assisted by Pulsed Electric Fields. Int. J. Food Sci. Technol. 2012, 47, 1361–1368. [Google Scholar] [CrossRef]
- Singh, M.; Rani, H.; Chopra, H.K. Comparative Study of Supercritical Fluid and Soxhlet Extraction of Inulin from Chicory Root (Cichorium intybus L.): Optimization, Characterization, and Antioxidant Activity. Charact. Antioxid. Act. 2025. [Google Scholar] [CrossRef]
- Bisht, A.; Sahu, S.C.; Kumar, A.; Maqsood, S.; Barwant, M.M.; Jaiswal, S.G. Recent Advances in Conventional and Innovative Extraction Techniques for Recovery of High-Added Value Compounds for Food Additives and Nutraceuticals. Food Phys. 2025, 2, 100047. [Google Scholar] [CrossRef]
- Bhadange, Y.A.; Carpenter, J.; Saharan, V.K. A Comprehensive Review on Advanced Extraction Techniques for Retrieving Bioactive Components from Natural Sources. ACS Omega 2024, 9, 31274–31297. [Google Scholar] [CrossRef]
- Cooper, P.D.; Carter, M. Anti-Complementary Action of Polymorphic “Solubility Forms” of Particulate Inulin. Mol. Immunol. 1986, 23, 895–901. [Google Scholar] [CrossRef]
- Cooper, P.D.; Petrovsky, N. Delta Inulin: A Novel, Immunologically Active, Stable Packing Structure Comprising β-D-[2→1] Poly(Fructo-Furanosyl) α-d-Glucose Polymers. Glycobiology 2011, 21, 595–606. [Google Scholar] [CrossRef]
- Cooper, P.D.; Barclay, T.G.; Ginic-Markovic, M.; Petrovsky, N. The Polysaccharide Inulin Is Characterized by an Extensive Series of Periodic Isoforms with Varying Biological Actions. Glycobiology 2013, 23, 1164–1174. [Google Scholar] [CrossRef]
- Wan, X.; Guo, H.; Liang, Y.; Zhou, C.; Liu, Z.; Li, K.; Niu, F.; Zhai, X.; Wang, L. The Physiological Functions and Pharmaceutical Applications of Inulin: A Review. Carbohydr. Polym. 2020, 246, 116589. [Google Scholar] [CrossRef]
- Beccard, S.; Bernard, J.; Wouters, R.; Gehrich, K.; Zielbauer, B.; Mezger, M.; Vilgis, T.A. Alteration of the Structural Properties of Inulin Gels. Food Hydrocoll. 2019, 89, 302–310. [Google Scholar] [CrossRef]
- Bchir, B.; Sadin, N.; Ronkart, S.N.; Blecker, C. Effect of powder properties on the physicochemical and rheological characteristics of gelation inulin–water systems. Colloid Polym. Sci. 2019, 297, 849–860. [Google Scholar] [CrossRef]
- Iriondo-DeHond, M.; Blázquez-Duff, J.M.; del Castillo, M.D.; Miguel, E. Nutritional Quality, Sensory Analysis and Shelf Life Stability of Yogurts Containing Inulin-Type Fructans and Winery Byproducts for Sustainable Health. Foods 2020, 9, 1199. [Google Scholar] [CrossRef]
- Villegas, B.; Carbonell, I.; Costell, E. Inulin Milk Beverages: Sensory Differences in Thickness and Creaminess Using R-Index Analysis of the Ranking Sata. J. Sens. Stud. 2007, 22, 377–393. [Google Scholar] [CrossRef]
- Franck, A. Technological Functionality of Inulin and Oligofructose. Br. J. Nutr. 2002, 87, S287–S291. [Google Scholar] [CrossRef] [PubMed]
- Melilli, M.G.; Buzzanca, C.; Di Stefano, V. Quality Characteristics of Cereal-Based Foods Enriched with Different Degree of Polymerization Inulin: A Review. Carbohydr. Polym. 2024, 332, 121918. [Google Scholar] [CrossRef] [PubMed]
- Boeckner, L.S.; Schnepf, M.I.; Tungland, B.C. Inulin: A Review of Nutritional and Health Implications. Adv. Food Nutr. Res. 2001, 43, 1–63. [Google Scholar] [PubMed]
- Glibowski, P. Effect of Thermal and Mechanical Factors on Rheological Properties of High Performance Inulin Gels and Spreads. J. Food Eng. 2010, 99, 106–113. [Google Scholar] [CrossRef]
- Leyva-Porras, C.; López-Pablos, A.L.; Alvarez-Salas, C.; Pérez-Urizar, J.; Saavedra-Leos, Z. Physical Properties of Inulin and Technological Applications. In Polysaccharides; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 1–22. [Google Scholar]
- Ronkart, S.; Blecker, C.; Fougnies, C.; Van Herck, J.C.; Wouters, J.; Paquot, M. Determination of Physical Changes of Inulin Related to Sorption Isotherms: An X-Ray Diffraction, Modulated Differential Scanning Calorimetry and Environmental Scanning Electron Microscopy Study. Carbohydr. Polym. 2006, 63, 210–217. [Google Scholar] [CrossRef]
- Araujo-Díaz, S.B.; Leyva-Porras, C.; Aguirre-Bañuelos, P.; Álvarez-Salas, C.; Saavedra-Leos, Z. Evaluation of the Physical Properties and Conservation of the Antioxidants Content, Employing Inulin and Maltodextrin in the Spray Drying of Blueberry Juice. Carbohydr. Polym. 2017, 167, 317–325. [Google Scholar] [CrossRef]
- Zimeri, J.E.; Kokini, J.L. The Effect of Moisture Content on the Crystallinity and Glass Transition Temperature of Inulin. Carbohydr. Polym. 2002, 48, 299–304. [Google Scholar] [CrossRef]
- Ronkart, S.N.; Paquot, M.; Fougnies, C.; Deroanne, C.; Blecker, C.S. Effect of Water Uptake on Amorphous Inulin Properties. Food Hydrocoll. 2009, 23, 922–927. [Google Scholar] [CrossRef]
- Bot, A.; Erle, U.; Vreeker, R.; Agterof, W.G.M. Influence of Crystallisation Conditions on the Large Deformation Rheology of Inulin Gels. Food Hydrocoll. 2004, 18, 547–556. [Google Scholar] [CrossRef]
- Joshi, B.; Beccard, S.; Vilgis, T.A. Fractals in Crystallizing Food Systems. Curr. Opin. Food Sci. 2018, 21, 39–45. [Google Scholar] [CrossRef]
- Barclay, T.; Ginic-Markovic, M.; Cooper, P.; Petrovsky, N. Inulin-a Versatile Polysaccharide with Multiple Pharmaceutical and Food Chemical Uses. Int. J. Pharm. Excip. 2016, 1, 27–50. [Google Scholar]
- Kim, Y.; Wang, S.S. Kinetic Study of Thermally Induced Inulin Gel. J. Food Sci. 2001, 66, 991–997. [Google Scholar] [CrossRef]
- Kumar, R.; Manjunatha, S.; Kathiravan, T.; Vijayalakshmi, S.; Nadanasabapathi, S.; Raju, P.S. Rheological Characteristics of Inulin Solution at Low Concentrations: Effect of Temperature and Solid Content. J. Food Sci. Technol. 2015, 52, 5611–5620. [Google Scholar]
- Glibowski, P.; Wasko, A. Effect of Thermochemical Treatment on the Structure of Inulin and Its Gelling Properties. Int. J. Food Sci. Technol. 2008, 43, 2075–2082. [Google Scholar] [CrossRef]
- Han, K.; Nam, J.; Xu, J.; Sun, X.; Huang, X.; Animasahun, O.; Achreja, A.; Jeon, J.H.; Pursley, B.; Kamada, N.; et al. Generation of Systemic Antitumour Immunity via the in Situ Modulation of the Gut Microbiome by an Orally Administered Inulin Gel. Nat. Biomed. Eng. 2021, 5, 1377–1388. [Google Scholar] [CrossRef]
- Chiavaro, E.; Vittadini, E.; Corradini, C. Physicochemical Characterization and Stability of Inulin Gels. Eur. Food Res. Technol. 2007, 225, 85–94. [Google Scholar] [CrossRef]
- Xu, J.; Kenar, J.A. Rheological and Micro-Rheological Properties of Chicory Inulin Gels. Gels 2024, 10, 171. [Google Scholar] [CrossRef]
- Krystyjan, M.; Ciesielski, W.; Khachatryan, G.; Sikora, M.; Tomasik, P. Structure, Rheological, Textural and Thermal Properties of Potato Starch—Inulin Gels. LWT 2015, 60, 131–136. [Google Scholar] [CrossRef]
- Yamamoto, K. Food Processing by High Hydrostatic Pressure. Biosci. Biotechnol. Biochem. 2017, 81, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Ayala, J.E.; Soler, A.; Mendez-Montealvo, G.; Velazquez, G. Supramolecular Structure and Technofunctional Properties of Starch Modified by High Hydrostatic Pressure (HHP): A Review. Carbohydr. Polym. 2022, 291, 119609. [Google Scholar] [CrossRef] [PubMed]
- Florowska, A.; Hilal, A.; Florowski, T.; Mrozek, P.; Wroniak, M. Sodium Alginate and Chitosan as Components Modifying the Properties of Inulin Hydrogels. Gels 2022, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Florowska, A.; Hilal, A.; Florowski, T.; Wroniak, M. Addition of Selected Plant-Derived Proteins as Modifiers of Inulin Hydrogels Properties. Foods 2020, 9, 845. [Google Scholar] [CrossRef]
- Ji, X.; Chen, J.; Jin, X.; Chen, J.; Ding, Y.; Shi, M.; Guo, X.; Yan, Y. Effect of Inulin on Thermal Properties, Pasting, Rheology, and In Vitro Digestion of Potato Starch. Starch-Stärke 2023, 75, 2200217. [Google Scholar] [CrossRef]
- Tárrega, A.; Costell, E. Effect of Inulin Addition on Rheological and Sensory Properties of Fat-Free Starch-Based Dairy Desserts. Int. Dairy. J. 2006, 16, 1104–1112. [Google Scholar] [CrossRef]
- Liang, X.; Lin, D.; Zhang, W.; Chen, S.; Ding, H.; Zhong, H.J. Progress in the Preparation and Application of Inulin-Based Hydrogels. Polymers 2024, 16, 1492. [Google Scholar] [CrossRef]
- Florowska, A.; Florowski, T.; Kruszewski, B.; Janiszewska-Turak, E.; Bykowska, W.; Ksibi, N. Thermal and Modern, Non-Thermal Method Induction as a Factor of Modification of Inulin Hydrogel Properties. Foods 2023, 12, 4254. [Google Scholar] [CrossRef]
- Alvarez-Sabatel, S.; Marañón, I.M.D.; Arboleya, J.C. Impact of High Pressure Homogenisation (HPH) on Inulin Gelling Properties, Stability and Development during Storage. Food Hydrocoll. 2015, 44, 333–344. [Google Scholar] [CrossRef]
- Florowska, A.; Florowski, T.; Sokołowska, B.; Adamczak, L.; Szymańska, I. Effects of Pressure Level and Time Treatment of High Hydrostatic Pressure (HHP) on Inulin Gelation and Properties of Obtained Hydrogels. Foods 2021, 10, 2524. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Luo, D.; Yue, C.; Zhang, T.; Li, P.; Xu, Y.; Xu, B.; Xiang, J. Effect of Ultrasound Treatment on the Physicochemical and Structural Properties of Long-Chain Inulin. LWT 2022, 154, 112578. [Google Scholar] [CrossRef]
- Bourouis, I.; Pang, Z.; Liu, X. Recent Advances on Uses of Protein and/or Polysaccharide as Fat Replacers: Textural and Tribological Perspectives: A Review. J. Agric. Food Res. 2023, 11, 100519. [Google Scholar] [CrossRef]
- Syan, V.; Kaur, J.; Sharma, K.; Patni, M.; Rasane, P.; Singh, J.; Bhadariya, V. An Overview on the Types, Applications and Health Implications of Fat Replacers. J. Food Sci. Technol. 2024, 61, 27–38. [Google Scholar] [CrossRef]
- Schwab, U.; Lauritzen, L.; Tholstrup, T.; Haldorssoni, T.; Riserus, U.; Uusitupa, M.; Becker, W. Effect of the Amount and Type of Dietary Fat on Cardiometabolic Risk Factors and Risk of Developing Type 2 Diabetes, Cardiovascular Diseases, and Cancer: A Systematic Review. Food Nutr. Res. 2014, 58, 25145. [Google Scholar] [CrossRef]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Karaca, O.B.; Güven, M.; Yasar, K.; Kaya, S.; Kahyaoglu, T. The Functional, Rheological and Sensory Characteristics of Ice Creams with Various Fat Replacers. Int. J. Dairy. Technol. 2009, 62, 93–99. [Google Scholar] [CrossRef]
- Kip, P.; Meyer, D.; Jellema, R.H. Inulins Improve Sensoric and Textural Properties of Low-Fat Yoghurts. Int. Dairy. J. 2006, 16, 1098–1103. [Google Scholar] [CrossRef]
- Wan, C.; Cheng, Q.; Zeng, M.; Huang, C. Recent Progress in Emulsion Gels: From Fundamentals to Applications. Soft Matter 2023, 19, 1282–1292. [Google Scholar] [CrossRef]
- Dhal, S.; Pal, A.; Gramza-Michalowska, A.; Kim, D.; Mohanty, B.; Sagiri, S.S.; Pal, K. Formulation and Characterization of Emulgel-Based Jelly Candy: A Preliminary Study on Nutraceutical Delivery. Gels 2023, 9, 466. [Google Scholar] [CrossRef]
- Ren, Y.; Huang, L.; Zhang, Y.; Li, H.; Zhao, D.; Cao, J.; Liu, X.; Ren, Y.; Huang, L.; Zhang, Y.; et al. Application of Emulsion Gels as Fat Substitutes in Meat Products. Foods 2022, 11, 1950. [Google Scholar] [CrossRef]
- Nourbehesht, N.; Shekarchizadeh, H.; Soltanizadeh, N. Investigation of Stability, Consistency, and Oil Oxidation of Emulsion Filled Gel Prepared by Inulin and Rice Bran Oil Using Ultrasonic Radiation. Ultrason. Sonochem. 2018, 42, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Glisic, M.; Baltic, M.; Glisic, M.; Trbovic, D.; Jokanovic, M.; Parunovic, N.; Dimitrijevic, M.; Suvajdzic, B.; Boskovic, M.; Vasilev, D. Inulin-Based Emulsion-Filled Gel as a Fat Replacer in Prebiotic- and PUFA-Enriched Dry Fermented Sausages. Int. J. Food Sci. Technol. 2019, 54, 787–797. [Google Scholar] [CrossRef]
- Paciulli, M.; Littardi, P.; Carini, E.; Paradiso, V.M.; Castellino, M.; Chiavaro, E. Inulin-Based Emulsion Filled Gel as Fat Replacer in Shortbread Cookies: Effects during Storage. LWT 2020, 133, 109888. [Google Scholar] [CrossRef]
- Liu, J.; Huang, G.; Li, R.; Ho, C.-T.; Huang, Q. Edible 3D Printed Emulsion Gels: Effects of Inulin on Sensory Characteristics and Mechanical Properties. Curr. Res. Food Sci. 2025, 11, 101154. [Google Scholar] [CrossRef]
- E.U. Regulation No 1924/2006 of the European parliament and of the council of 20 December 2006 on nutrition and health claims made on foods. In Official Journal of the European Union; European Union: Brussels, Belgium, 1924; Volume 404, pp. 9–25.
- Paglarini, C.d.S.; Vidal, V.A.S.; Ozaki, M.M.; Ribeiro, A.P.B.; Bernardinelli, O.D.; Câmara, A.K.F.I.; Herrero, A.M.; Ruiz-Capillas, C.; Sabadini, E.; Pollonio, M.A.R. Inulin Gelled Emulsion as a Fat Replacer and Fiber Carrier in Healthier Bologna Sausage. Food Sci. Technol. Int. 2022, 28, 3–14. [Google Scholar] [CrossRef]
- García, M.L.; Cáceres, E.; Selgas, M.D. Effect of Inulin on the Textural and Sensory Properties of Mortadella, a Spanish Cooked Meat Product. Int. J. Food Sci. Technol. 2006, 41, 1207–1215. [Google Scholar] [CrossRef]
- Rodriguez Furlán, L.T.; Padilla, A.P.; Campderrós, M.E. Development of Reduced Fat Minced Meats Using Inulin and Bovine Plasma Proteins as Fat Replacers. Meat Sci. 2014, 96, 762–768. [Google Scholar] [CrossRef]
- Tiwari, A.; Sharma, H.K.; Kumar, N.; Kaur, M. The Effect of Inulin as a Fat Replacer on the Quality of Low-Fat Ice Cream. Int. J. Dairy. Technol. 2015, 68, 374–380. [Google Scholar] [CrossRef]
- Gomez-Betancur, A.M.; Carmona-Tamayo, R.; Martínez-Álvarez, O.L.; Casanova-Yepes, H.; Torres-Oquendo, J.D. Effect of Fat Substitution Using Long-Chain Inulin and Fortification with Microencapsulated Calcium in the Rheological and Sensory Properties of Yogurt Mousse. J. Food Process Eng. 2022, 45, e13433. [Google Scholar]
- Wongkaew, M.; Tinpovong, B.; Inpramoon, A.; Chaimongkol, P.; Chailangka, A.; Thomya, S.; Salee, N. Functional Low-Fat Goat Feta Cheese Formulated with Dietary Fiber as a Fat Replacer: Physicochemical, Textural, and Sensory Interactions. Dairy 2025, 6, 31. [Google Scholar] [CrossRef]
- Moghiseh, N.; Arianfar, A.; Salehi, E.A.; Rafe, A. Effect of Inulin/Kefiran Mixture on the Rheological and Structural Properties of Mozzarella Cheese. Int. J. Biol. Macromol. 2021, 191, 1079–1086. [Google Scholar] [CrossRef]
- Kant, R.; Chakraborty, C.; Rout, P.; Roy, T.; Dutta, S. A Comprehensive Evaluation of Inulin and Whey Protein Concentrate as Fat Replacers in Low-Fat Paneer: Physicochemical, Textural and Sensory Studies. Food Humanit. 2024, 2, 100240. [Google Scholar] [CrossRef]
- Colla, K.; Costanzo, A.; Gamlath, S. Fat Replacers in Baked Food Products. Foods 2018, 7, 192. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-García, J.; Puig, A.; Salvador, A.; Hernando, I. Optimization of a Sponge Cake Formulation with Inulin as Fat Replacer: Structure, Physicochemical, and Sensory Properties. J. Food Sci. 2012, 77, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Zahn, S.; Pepke, F.; Rohm, H. Effect of Inulin as a Fat Replacer on Texture and Sensory Properties of Muffins. Int. J. Food Sci. Technol. 2010, 45, 2531–2537. [Google Scholar] [CrossRef]
- Mohammadi, F.; Shiri, A.; Tahmouzi, S.; Mollakhalili-Meybodi, N.; Nematollahi, A. Application of Inulin in Bread: A Review of Technological Properties and Factors Affecting Its Stability. Food Sci. Nutr. 2023, 11, 639–650. [Google Scholar]
- Sirbu, A.; Arghire, C. Functional Bread: Effect of Inulin-Type Products Addition on Dough Rheology and Bread Quality. J. Cereal Sci. 2017, 75, 220–227. [Google Scholar] [CrossRef]
- Padalino, L.; Costa, C.; Conte, A.; Melilli, M.G.; Sillitti, C.; Bognanni, R.; Raccuia, S.A.; Del Nobile, M.A. The Quality of Functional Whole-Meal Durum Wheat Spaghetti as Affected by Inulin Polymerization Degree. Carbohydr. Polym. 2017, 173, 84–90. [Google Scholar] [CrossRef]
- Tavares Filho, E.R.; Pimentel, T.C.; Silva, R.; Praxedes, C.I.S.; Oliveira, J.M.S.; Prudêncio, E.S.; Felix, P.H.C.; Neta, M.T.S.L.; Silva, P.H.F.; Mársico, E.T.; et al. Inulin or Xylooligosaccharide Addition to Dulce de Leche Affects Consumers’ Sensory Experience and Emotional Response. Food Res. Int. 2025, 200, 115492. [Google Scholar]
- Narala, V.R.; Orlovs, I.; Jugbarde, M.A.; Masin, M. Inulin as a Fat Replacer in Pea Protein Vegan Ice Cream and Its Influence on Textural Properties and Sensory Attributes. Appl. Food Res. 2022, 2, 100066. [Google Scholar] [CrossRef]
- Singh, P.; Ban, Y.G.; Kashyap, L.; Siraree, A.; Singh, J. Sugar and Sugar Substitutes: Recent Developments and Future Prospects. In Sugar and Sugar Derivatives: Changing Consumer Preferences; Springer: Berlin/Heidelberg, Germany, 2020; pp. 39–75. [Google Scholar]
- Van der Sman, R.G.M.; Jurgens, A.; Smith, A.; Renzetti, S. Universal Strategy for Sugar Replacement in Foods? Food Hydrocoll. 2022, 133, 107966. [Google Scholar] [CrossRef]
- Tsatsaragkou, K.; Methven, L.; Chatzifragkou, A.; Rodriguez-Garcia, J. The Functionality of Inulin as a Sugar Replacer in Cakes and Biscuits; Highlighting the Influence of Differences in Degree of Polymerisation on the Properties of Cake Batter and Product. Foods 2021, 10, 951. [Google Scholar] [CrossRef] [PubMed]
- Bosetti, C.; Gallus, S.; Talamini, R.; Montella, M.; Franceschi, S.; Negri, E.; La Vecchia, C. Artificial Sweeteners and the Risk of Gastric, Pancreatic, and Endometrial Cancers in Italy. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2235–2238. [Google Scholar]
- Debras, C.; Deschasaux-Tanguy, M.; Chazelas, E.; Sellem, L.; Druesne-Pecollo, N.; Esseddik, Y.; de Edelenyi, F.S.; Agaësse, C.; de Sa, A.; Lutchia, R.; et al. Artificial Sweeteners and Risk of Type 2 Diabetes in the Prospective NutriNet-Santé Cohort. Diabetes Care 2023, 46, 1681–1690. [Google Scholar] [CrossRef]
- Praveena, S.M.; Cheema, M.S.; Guo, H.R. Non-Nutritive Artificial Sweeteners as an Emerging Contaminant in Environment: A Global Review and Risks Perspectives. Ecotoxicol. Environ. Saf. 2019, 170, 699–707. [Google Scholar] [CrossRef]
- Debras, C.; Chazelas, E.; Srour, B.; Druesne-Pecollo, N.; Esseddik, Y.; de Edelenyi, F.S.; Agaësse, C.; De Sa, A.; Lutchia, R.; Gigandet, S.; et al. Artificial Sweeteners and Cancer Risk: Results from the NutriNet-Santé Population-Based Cohort Study. PLoS Med. 2022, 19, e1003950. [Google Scholar]
- Debras, C.; Chazelas, E.; Sellem, L.; Porcher, R.; Druesne-Pecollo, N.; Esseddik, Y.; De Edelenyi, F.S.; Agaësse, C.; De Sa, A.; Lutchia, R.; et al. Artificial Sweeteners and Risk of Cardiovascular Diseases: Results from the Prospective NutriNet-Santé Cohort. BMJ 2022, 378, e071204. [Google Scholar]
- Meyer, D. Inulin for Product Development of Low GI Products to Support Weight Management. In Dietary Fibre Components and Functions; Wageningen Academic: Wageningen, The Netherlands, 2007; pp. 257–269. [Google Scholar]
- Kalyani Nair, K.; Kharb, S.; Thompkinson, D.K. Inulin Dietary Fiber with Functional and Health Attributes—A Review. Food Rev. Int. 2010, 26, 189–203. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Huang, H.; Zhang, C.; Zuo, H.X.; Xu, P.; Niu, Y.M.; Wu, S.S. Inulin-type fructans supplementation improves glycemic control for the prediabetes and type 2 diabetes populations: Results from a GRADE-assessed systematic review and dose–response meta-analysis of 33 randomized controlled trials. J. Transl. Med. 2019, 17, 410. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, T.; Zhang, Q.; Xu, L.; Xiao, X. Dietary Supplementation with Inulin Modulates the Gut Microbiota and Improves Insulin Sensitivity in Prediabetes. Int. J. Endocrinol. 2021, 2021, 5579369. [Google Scholar] [CrossRef] [PubMed]
- Guess, N.D.; Dornhorst, A.; Oliver, N.; Frost, G.S. A Randomised Crossover Trial: The Effect of Inulin on Glucose Homeostasis in Subtypes of Prediabetes. Ann. Nutr. Metab. 2016, 68, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Harastani, R.; James, L.J.; Ghosh, S.; Rosenthal, A.J.; Woolley, E. Reformulation of Muffins Using Inulin and Green Banana Flour: Physical, Sensory, Nutritional and Shelf-Life Properties. Foods 2021, 10, 1883. [Google Scholar] [CrossRef]
- Berk, B.; Cosar, S.; Mazı, B.G.; Oztop, M.H. Textural, Rheological, Melting Properties, Particle Size Distribution, and NMR Relaxometry of Cocoa Hazelnut Spread with Inulin-Stevia Addition as Sugar Replacer. J. Texture Stud. 2024, 55, e12834. [Google Scholar] [CrossRef]
- Cascone, G.; Crescente, G.; Sorrentino, A.; Volpe, M.G.; Moccia, S. Physicochemical Characterization of a Functional Chestnut Sweet Cream Enriched with Carotenoids and Fiber. LWT 2023, 177, 114583. [Google Scholar] [CrossRef]
- Çetin Babaoğlu, H.; Arslan Tontul, S.; Akin, N. Fiber Enrichment of Sourdough Bread by Inulin Rich Jerusalem artichoke Powder. J. Food Process Preserv. 2021, 45, e15928. [Google Scholar] [CrossRef]
- Cassani, L.; Tomadoni, B.; Moreira, M.R.; Ponce, A.; Agüero, M.V. Optimization of Inulin:Oligofructose Proportion and Non-Thermal Processing to Enhance Microbiological and Sensory Properties of Fiber-Enriched Strawberry Juice. LWT 2017, 80, 446–455. [Google Scholar] [CrossRef]
- Silva, E.K.; Arruda, H.S.; Eberlin, M.N.; Pastore, G.M.; Meireles, M.A.A. Effects of Supercritical Carbon Dioxide and Thermal Treatment on the Inulin Chemical Stability and Functional Properties of Prebiotic-Enriched Apple Juice. Food Res. Int. 2019, 125, 108561. [Google Scholar] [CrossRef]
- Silva, E.K.; Bargas, M.A.; Arruda, H.S.; Vardanega, R.; Pastore, G.M.; Angela Meireles, M.A. Supercritical CO2 Processing of a Functional Beverage Containing Apple Juice and Aqueous Extract of Pfaffia Glomerata Roots: Fructooligosaccharides Chemical Stability after Non-Thermal and Thermal Treatments. Molecules 2020, 25, 3911. [Google Scholar] [CrossRef]
- Strieder, M.M.; Arruda, H.S.; Pastore, G.M.; Silva, E.K. Inulin-Type Dietary Fiber Stability after Combined Thermal, Mechanical, and Chemical Stresses Related to Ultrasound Processing of Prebiotic Apple Beverage. Food Hydrocoll. 2023, 139, 108489. [Google Scholar] [CrossRef]
- Gomes, W.F.; Tiwari, B.K.; Rodriguez, Ó.; de Brito, E.S.; Fernandes, F.A.N.; Rodrigues, S. Effect of Ultrasound Followed by High Pressure Processing on Prebiotic Cranberry Juice. Food Chem. 2017, 218, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Guerra, L.; Ureta, M.; Romanini, D.; Woitovich, N.; Gómez-Zavaglia, A.; Clementz, A. Enzymatic Synthesis of Fructooligosaccharides: From Carrot Discards to Prebiotic Juice. Food Res. Int. 2023, 170, 112991. [Google Scholar] [CrossRef] [PubMed]
- Almeida, F.D.L.; Gomes, W.F.; Cavalcante, R.S.; Tiwari, B.K.; Cullen, P.J.; Frias, J.M.; Bourke, P.; Fernandes, F.A.N.; Rodrigues, S. Fructooligosaccharides Integrity after Atmospheric Cold Plasma and High-Pressure Processing of a Functional Orange Juice. Food Res. Int. 2017, 102, 282–290. [Google Scholar] [CrossRef]
- Prieto-Santiago, V.; Aguiló-Aguayo, I.; Mestres, M.; Schorn-García, D.; Ezenarro, J.; Rico, D.; Martín-Diana, A.B.; Anguera, M.; Abadias, M. Effects of Lacticaseibacillus casei Fermentation on the Physicochemical, Nutritional, Volatile, and Sensory Profile of Synbiotic Peach and Grape Juice during Refrigerated Storage. Appl. Food Res. 2025, 5, 101002. [Google Scholar] [CrossRef]
- Han, Y.J.; Tra Tran, T.T.; Man Le, V.V. Corn Snack with High Fiber Content: Effects of Different Fiber Types on the Product Quality. LWT 2018, 96, 1–6. [Google Scholar] [CrossRef]
- Sharma, P.; Pasha, T.Y.; Aparna, T.N.; Singaram, G.; Shirsat, M.K.; Kumar, V.; Tiwari, G. Inulin: A Versatile Polymer for Drug Delivery System. In Inulin for Pharmaceutical Applications: A Versatile Biopolymer; Springer Nature: Singapore, 2025; pp. 53–72. [Google Scholar]
- Afinjuomo, F.; Abdella, S.; Youssef, S.H.; Song, Y.; Garg, S. Inulin and Its Application in Drug Delivery. Pharmaceuticals 2021, 14, 855. [Google Scholar] [CrossRef]
- Dagni, A.; Jarjini, S.; Sakoui, S.; Elmakssoudi, A.; Elemer, S.; Vodnar, D.C.; Szabo, K.; Fetea, F.; Pop, O.L.; Suharoschi, R.; et al. Innovative Encapsulation of Dysphania Ambrosioides Essential Oil and α-Terpinene with Gum Arabic and Inulin: Enhancing Antibacterial Activity, Stability, and Bioavailability. Int. J. Biol. Macromol. 2025, 303, 140643. [Google Scholar] [CrossRef]
- Ahmed, J.; Al-Jassar, S.; Thomas, L.; Mulla, M.; Jacob, H. Cinnamon Essential Oil/Inulin Inclusion Complexes: Physicochemical, Rheological, Thermal, Morphological, and Antimicrobial Properties. J. Food Process Eng. 2024, 47, e14537. [Google Scholar] [CrossRef]
- Widianto, R.; Puangpraphant, S. Encapsulation of Betacyanin Extract from Red Dragon Fruit Peel with Maltodextrin and Inulin: Storage Stability and Simulated Gastrointestinal Digestion. Food Biosci. 2024, 61, 104566. [Google Scholar] [CrossRef]
- Wyspiańska, D.; Kucharska, A.Z.; Sokół-Łętowska, A.; Kolniak-Ostek, J. Effect of Microencapsulation on Concentration of Isoflavones during Simulated in Vitro Digestion of Isotonic Drink. Food Sci. Nutr. 2019, 7, 805–816. [Google Scholar] [CrossRef]
- Bayraktar, B.; Zungur-Bastıoğlu, A.; Yılmaz, F.M.; Demirci, K.; Görgüç, A. Enhancing the Freezing Tolerance of Beef Meat by Inulin Impregnation under Different Freezing and Thawing Conditions. J. Food Meas. Charact. 2024, 18, 8504–8518. [Google Scholar] [CrossRef]
- Görgüç, A.; Yılmaz, F.M. The Efficacy of Inulin as a Cryoprotectant Agent on the Nutritional and Quality Characteristics of Frozen Sour Cherry Subjected to Different Freezing Treatments. Proceedings 2024, 91, 273. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, L.; Huang, Q.; Xiong, S.; Yin, T.; Liu, Z. Water Migration, Ice Crystal Formation, and Freeze-Thaw Stability of Silver Carp Surimi as Affected by Inulin under Different Additive Amounts and Polymerization Degrees. Food Hydrocoll. 2022, 124, 107267. [Google Scholar] [CrossRef]
- Juszczak, L.; Witczak, T.; Ziobro, R.; Korus, J.; Cieślik, E.; Witczak, M. Effect of Inulin on Rheological and Thermal Properties of Gluten-Free Dough. Carbohydr. Polym. 2012, 90, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Drabińska, N.; Zieliński, H.; Krupa-Kozak, U. Technological Benefits of Inulin-Type Fructans Application in Gluten-Free Products—A Review. Trends Food Sci. Technol. 2016, 56, 149–157. [Google Scholar] [CrossRef]
- Santini, A.; Bevilacqua, A.; Adhikari, K.; Amaral, J.S.; Campbell, K.; Jacquier, J.-C.; Jambrak, A.R.; Torres-Pérez, R.; Martínez-García, E.; Maravilla Siguero-Tudela, M.; et al. Enhancing Gluten-Free Bread Production: Impact of Hydroxypropyl Methylcellulose, Psyllium Husk Fiber, and Xanthan Gum on Dough Characteristics and Bread Quality. Foods 2024, 13, 1691. [Google Scholar] [CrossRef] [PubMed]
- Belorio, M.; Gómez, M. Effect of Hydration on Gluten-Free Breads Made with Hydroxypropyl Methylcellulose in Comparison with Psyllium and Xanthan Gum. Foods 2020, 9, 1548. [Google Scholar] [CrossRef]
- Encina-Zelada, C.R.; Cadavez, V.; Teixeira, J.A.; Gonzales-Barron, U. Optimization of Quality Properties of Gluten-Free Bread by a Mixture Design of Xanthan, Guar, and Hydroxypropyl Methyl Cellulose Gums. Foods 2019, 8, 156. [Google Scholar] [CrossRef]
- Cappa, C.; Barbosa-Cánovas, G.V.; Lucisano, M.; Mariotti, M. Effect of High Pressure Processing on the Baking Aptitude of Corn Starch and Rice Flour. LWT 2016, 73, 20–27. [Google Scholar] [CrossRef]
- Sciarini, L.S.; Bustos, M.C.; Vignola, M.B.; Paesani, C.; Salinas, C.N.; Pérez, G.T. A Study on Fibre Addition to Gluten Free Bread: Its Effects on Bread Quality and in Vitro Digestibility. J. Food Sci. Technol. 2017, 54, 244–252. [Google Scholar] [CrossRef]
- Burešová, I.; Šebestíková, R.; Šebela, J.; Adámková, A.; Zvonková, M.; Skowronková, N.; Mlček, J. The Effect of Inulin Addition on Rice Dough and Bread Characteristics. Appl. Sci. 2024, 14, 2882. [Google Scholar] [CrossRef]
- Škara, N.; Novotni, D.; Čukelj, N.; Smerdel, B.; Ćurić, D. Combined Effects of Inulin, Pectin and Guar Gum on the Quality and Stability of Partially Baked Frozen Bread. Food Hydrocoll. 2013, 30, 428–436. [Google Scholar] [CrossRef]
- Yazici, G.N.; Yilmaz, I.; Taspinar, T.; Ozer, M.S. Application of Inulin in Pasta: The Influence on Technological and Nutritional Properties and on Human Health—A Review. Biol. Life Sci. Forum 2023, 26, 88. [Google Scholar] [CrossRef]
- Gasparre, N.; Rosell, C.M. Role of Hydrocolloids in Gluten Free Noodles Made with Tiger Nut Flour as Non-Conventional Powder. Food Hydrocoll. 2019, 97, 105194. [Google Scholar] [CrossRef]
- Hajas, L.; Benedek, C.; Csajbókné Csobod, É.; Juhász, R. Development of Protein- and Fiber-Enriched, Sugar-Free Lentil Cookies: Impact of Whey Protein, Inulin, and Xylitol on Physical, Textural, and Sensory Characteristics. Foods 2022, 11, 3819. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Gibson, Y.; Roberfroid, M.B. Dietary Modulation of the Human Colonie Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Sheng, W.; Ji, G.; Zhang, L. Immunomodulatory Effects of Inulin and Its Intestinal Metabolites. Front. Immunol. 2023, 14, 1224092. [Google Scholar] [CrossRef]
- Yin, P.; Du, T.; Yi, S.; Zhang, C.; Yu, L.; Tian, F.; Chen, W.; Zhai, Q. Response Differences of Gut Microbiota in Oligofructose and Inulin Are Determined by the Initial Gut Bacteroides/Bifidobacterium Ratios. Food Res. Int. 2023, 174, 113598. [Google Scholar] [CrossRef]
- Riva, A.; Rasoulimehrabani, H.; Cruz-Rubio, J.M.; Schnorr, S.L.; von Baeckmann, C.; Inan, D.; Nikolov, G.; Herbold, C.W.; Hausmann, B.; Pjevac, P.; et al. Identification of Inulin-Responsive Bacteria in the Gut Microbiota via Multi-Modal Activity-Based Sorting. Nat. Commun. 2023, 14, 8210. [Google Scholar] [CrossRef]
- Wu, L.; Liu, H.-B.; Wang, X.-W.; Tao, Z.-N.; Qu, Z.-P.; Lei, C.-B.; Liu, Y.-Y.; Dai, L. Longitudinal Profiling of the Human Gut Microbiome Reveals Temporal and Personalized Responses to Inulin. iMetaOmics 2025, 2, e70029. [Google Scholar] [CrossRef] [PubMed]
- Oliero, M.; Alaoui, A.A.; McCartney, C.; Santos, M.M. Colorectal Cancer and Inulin Supplementation: The Good, the Bad, and the Unhelpful. Gastroenterol. Rep. 2024, 12, goae058. [Google Scholar]
- Qamar, T.R.; Syed, F.; Nasir, M.; Rehman, H.; Zahid, M.N.; Liu, R.H.; Iqbal, S. Novel Combination of Prebiotics Galacto-Oligosaccharides and Inulin-Inhibited Aberrant Crypt Foci Formation and Biomarkers of Colon Cancer in Wistar Rats. Nutrients 2016, 8, 465. [Google Scholar] [CrossRef] [PubMed]
- Hijová, E.; Szabadosova, V.; Štofilová, J.; Hrčková, G. Chemopreventive and Metabolic Effects of Inulin on Colon Cancer Development. J. Vet. Sci. 2013, 14, 387–393. [Google Scholar] [CrossRef]
- Pool-Zobel, B.L. Inulin-Type Fructans and Reduction in Colon Cancer Risk: Review of Experimental and Human Data. Br. J. Nutr. 2005, 93, S73–S90. [Google Scholar] [CrossRef]
- Ali, M.S.; Hussein, R.M.; Gaber, Y.; Hammam, O.A.; Kandeil, M.A. Modulation of JNK-1/β-Catenin Signaling by: Lactobacillus Casei, Inulin and Their Combination in 1,2-Dimethylhydrazine-Induced Colon Cancer in Mice. RSC Adv. 2019, 9, 29368–29383. [Google Scholar]
- Pattananandecha, T.; Sirilun, S.; Duangjitcharoen, Y.; Sivamaruthi, B.S.; Suwannalert, P.; Peerajan, S.; Chaiyasut, C. Hydrolysed Inulin Alleviates the Azoxymethane-Induced Preneoplastic Aberrant Crypt Foci by Altering Selected Intestinal Microbiota in Sprague–Dawley Rats. Pharm. Biol. 2016, 54, 1596–1605. [Google Scholar] [CrossRef]
- Verma, A.; Shukla, G. Administration of Prebiotic Inulin Suppresses 1,2 Dimethylhydrazine Dihydrochloride Induced Procarcinogenic Biomarkers Fecal Enzymes and Preneoplastic Lesions in Early Colon Carcinogenesis in Sprague Dawley Rats. J. Funct. Foods 2013, 5, 991–996. [Google Scholar] [CrossRef]
- Poulsen, M.; Mølck, A.M.; Jacobsen, B.L. Different Effects of Short- and Long-Chained Fructans on Large Intestinal Physiology and Carcinogen-Induced Aberrant Crypt Foci in Rats. Nutr. Cancer 2002, 42, 194–205. [Google Scholar] [CrossRef]
- Stewart, M.L.; Timm, D.A.; Slavin, J.L. Fructooligosaccharides Exhibit More Rapid Fermentation than Long-Chain Inulin in an in Vitro Fermentation System. Nutr. Res. 2008, 28, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Sealy, L.; Chalkley, R. The Effect of Sodium Butyrate on Histone Modification. Cell 1978, 14, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Terova, G.; Díaz, N.; Rimoldi, S.; Ceccotti, C.; Gliozheni, E.; Piferrer, F. Effects of Sodium Butyrate Treatment on Histone Modifications and the Expression of Genes Related to Epigenetic Regulatory Mechanisms and Immune Response in European Sea Bass (Dicentrarchus labrax) Fed a Plant-Based Diet. PLoS ONE 2016, 11, e0160332. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, J.O.; Whelan, K.; Stagg, A.J.; Gobin, P.; Al-Hassi, H.O.; Rayment, N.; Kamm, M.A.; Knight, S.C.; Forbes, A. Clinical, Microbiological, and Immunological Effects of Fructo-Oligosaccharide in Patients with Crohn’s Disease. Gut 2006, 55, 348–355. [Google Scholar] [CrossRef]
- Akram, W.; Garud, N.; Joshi, R. Role of Inulin as Prebiotics on Inflammatory Bowel Disease. Drug Discov. Ther. 2019, 13, 1–8. [Google Scholar] [CrossRef]
- Wilson, B.; Whelan, K. Prebiotic Inulin-Type Fructans and Galacto-Oligosaccharides: Definition, Specificity, Function, and Application in Gastrointestinal Disorders. J. Gastroenterol. Hepatol. 2017, 32, 64–68. [Google Scholar] [CrossRef]
- Harmsen, H.J.M.; Raangs, G.C.; Franks, A.H.; Wildeboer-Veloo, A.C.M.; Welling, G.W. The Effect of the Prebiotic Inulin and the Probiotic Bifidobacterium Longum on the Fecal Microflora of Healthy Volunteers Measured by FISH and DGGE. Microb. Ecol. Health Dis. 2002, 14, 212–220. [Google Scholar] [CrossRef]
- Furrie, E.; Macfarlane, S.; Kennedy, A.; Cummings, J.H.; Walsh, S.V.; O’Neil, D.A.; Macfarlane, G.T. Synbiotic Therapy (Bifidobacterium longum/Synergy 1) Initiates Resolution of Inflammation in Patients with Active Ulcerative Colitis: A Randomised Controlled Pilot Trial. Gut 2005, 54, 242–249. [Google Scholar] [CrossRef]
- Varma, K. Sreeraj Gopi Biopolymers in Pharmaceutical and Food Applications. In Biopolymers and Their Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 175–191. [Google Scholar]
- Falony, G.; Vlachou, A.; Verbrugghe, K.; De Vuyst, L. Cross-Feeding between Bifidobacterium longum BB536 and Acetate-Converting, Butyrate-Producing Colon Bacteria during Growth on Oligofructose. Appl. Environ. Microbiol. 2006, 72, 7835–7841. [Google Scholar] [CrossRef]
- Le Bastard, Q.; Chapelet, G.; Javaudin, F.; Lepelletier, D.; Batard, E.; Montassier, E. The Effects of Inulin on Gut Microbial Composition: A Systematic Review of Evidence from Human Studies. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 403–413. [Google Scholar] [CrossRef]
- Vogt, L.; Meyer, D.; Pullens, G.; Faas, M.; Smelt, M.; Venema, K.; Ramasamy, U.; Schols, H.A.; De Vos, P. Immunological Properties of Inulin-Type Fructans. Crit. Rev. Food Sci. Nutr. 2015, 55, 414–436. [Google Scholar] [CrossRef]
- Micka, A.; Siepelmeyer, A.; Holz, A.; Theis, S.; Schön, C. Effect of Consumption of Chicory Inulin on Bowel Function in Healthy Subjects with Constipation: A Randomized, Double-Blind, Placebo-Controlled Trial. Int. J. Food Sci. Nutr. 2017, 68, 82–89. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of a health claim related to “Native Chicory Inulin” and maintenance of normal defecation by increasing stool frequency pursuant to Article 13.5 of Regulation (EC) No 1924/2006. EFSA J. 2015, 13, 3951. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, S.; Xu, C.; Li, J.; Liu, H.; He, L.; Zhong, S.; Li, K. The Leap of Inulin Fructans from Food Industry to Medical Application. Chem. Biodivers. 2023, 20, e202201126. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Verma, A. Toxicity and Safety Aspects of Inulin. In Inulin for Pharmaceutical Applications: A Versatile Biopolymer; Springer: Berlin/Heidelberg, Germany, 2025; pp. 169–187. [Google Scholar]
- Le Bourgot, C.; Rigaudier, F.; Juhel, C.; Herpin, F.; Meunier, C. Gastrointestinal Tolerance of Short-Chain Fructo-Oligosaccharides from Sugar Beet: An Observational, Connected, Dose-Ranging Study in Healthy Volunteers. Nutrients 2022, 14, 1461. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Bhadouriya, K.; Haider, T.; Akram, W.; Pathan, H.K.; Mishra, N. Introduction to Inulin. In Inulin for Pharmaceutical Applications: A Versatile Biopolymer; Springer: Berlin/Heidelberg, Germany, 2025; pp. 1–19. [Google Scholar]
- Mitchell, C.M.; Davy, B.M.; Ponder, M.A.; McMillan, R.P.; Hughes, M.D.; Hulver, M.W.; Neilson, A.P.; Davy, K.P. Prebiotic Inulin Supplementation and Peripheral Insulin Sensitivity in Adults at Elevated Risk for Type 2 Diabetes: A Pilot Randomized Controlled Trial. Nutrients 2021, 13, 3235. [Google Scholar] [CrossRef]
- Companys, J.; Calderón-Pérez, L.; Pla-Pagà, L.; Llauradó, E.; Sandoval-Ramirez, B.A.; Gosalbes, M.J.; Arregui, A.; Barandiaran, M.; Caimari, A.; del Bas, J.M.; et al. Effects of Enriched Seafood Sticks (Heat-Inactivated B. Animalis Subsp. Lactis CECT 8145, Inulin, Omega-3) on Cardiometabolic Risk Factors and Gut Microbiota in Abdominally Obese Subjects: Randomized Controlled Trial. Eur. J. Nutr. 2022, 61, 3597–3611. [Google Scholar] [CrossRef]
- Birkeland, E.; Gharagozlian, S.; Birkeland, K.I.; Valeur, J.; Måge, I.; Rud, I.; Aas, A.M. Correction to: Prebiotic Effect of Inulin-type Fructans on Faecal Microbiota and Short-chain Fatty Acids in Type 2 Diabetes: A Randomised Controlled Trial. Eur. J. Nutr. 2020, 59, 3339–3340. [Google Scholar]
- Wijaya, H.; Tjahjono, Y.; Foe, K.; Setiadi, D.A.; Kasih, E.; Wihadmadyatami, H. Pre-Meal High-Performance Inulin Supplementation Reduce Post-Prandial Glycaemic Response in Healthy Subjects: A Repeated Single-Arm Clinical Trial. Diabetes Metab. Syndr. Clin. Res. Rev. 2022, 16, 102354. [Google Scholar]
- Xiong, Q.; Li, L.; Xiao, Y.; He, S.; Zhao, J.; Lin, X.; He, Y.; Wang, J.; Guo, X.; Liang, W.; et al. The Effect of Inulin-Type Fructans on Plasma Trimethylamine N-Oxide Levels in Peritoneal Dialysis Patients: A Randomized Crossover Trial. Mol. Nutr. Food Res. 2023, 67, 2200531. [Google Scholar]
- Visuthranukul, C.; Chamni, S.; Kwanbunbumpen, T.; Saengpanit, P.; Chongpison, Y.; Tepaamorndech, S.; Panichsillaphakit, E.; Uaariyapanichkul, J.; Nonpat, N.; Chomtho, S. Effects of Inulin Supplementation on Body Composition and Metabolic Outcomes in Children with Obesity. Sci. Rep. 2022, 12, 13014. [Google Scholar] [CrossRef]
- Costa, G.; Vasconcelos, Q.; Abreu, G.; Albuquerque, A.; Vilarejo, J.; Aragão, G. Changes in Nutrient Absorption in Children and Adolescents Caused by Fructans, Especially Fructooligosaccharides and Inulin. Arch. Pédiatrie 2020, 27, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Moser, M.; Sentko, A.; Alexiou, H. Inulin and Health Benefits. In Polysaccharides: Bioactivity and Biotechnology; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 675–715. ISBN 9783319162980. [Google Scholar]
- Scholz-Ahrens, K.E.; Schrezenmeir, J. Inulin, Oligofructose and Mineral Metabolism—Experimental Data and Mechanism. Br. J. Nutr. 2002, 87, S179–S186. [Google Scholar] [PubMed]
- Sobol, M.; Raj, S.; Skiba, G. Inulin Supplementation Reduces the Negative Effect of a High-Fat Diet Rich in SFA on Bone Health of Growing Pigs. Br. J. Nutr. 2018, 119, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Lepczyński, A.; Herosimczyk, A.; Barszcz, M.; Ożgo, M.; Michałek, K.; Grabowska, M.; Tuśnio, A.; Szczerbińska, D.; Skomiał, J. Diet Supplemented Either with Dried Chicory Root or Chicory Inulin Significantly Influence Kidney and Liver Mineral Content and Antioxidative Capacity in Growing Pigs. Animal 2021, 15, 100129. [Google Scholar] [CrossRef]
- Varley, P.F.; McCarney, C.; Callan, J.J.; O’Doherty, J.V. Effect of Dietarymineral Level and Inulin Inclusion on Phosphorus, Calcium and Nitrogen Utilisation, Intestinal Microflora and Bone Development. J. Sci. Food Agric. 2010, 90, 2447–2454. [Google Scholar] [CrossRef]
- Samolińska, W.; Grela, E.R. Comparative Effects of Inulin with Different Polymerization Degrees on Growth Performance, Blood Trace Minerals, and Erythrocyte Indices in Growing-Finishing Pigs. Biol. Trace Elem. Res. 2017, 176, 130–142. [Google Scholar]
- García-Vieyra, M.I.; Del Real, A.; López, M.G. Agave Fructans: Their Effect on Mineral Absorption and Bone Mineral Content. J. Med. Food 2014, 17, 1247–1255. [Google Scholar] [CrossRef]
- Krupa-Kozak, U.; Markiewicz, L.H.; Lamparski, G.; Juśkiewicz, J. Administration of Inulin-Supplemented Gluten-Free Diet Modified Calcium Absorption and Caecal Microbiota in Rats in a Calcium-Dependent Manner. Nutrients 2017, 9, 702. [Google Scholar] [CrossRef]
- Griffin, I.J.; Hicks, P.M.D.; Heaney, R.P.; Abrams, S.A. Enriched Chicory Inulin Increases Calcium Absorption Mainly in Girls with Lower Calcium Absorption. Nutr. Res. 2003, 23, 901–909. [Google Scholar] [CrossRef]
- Holloway, L.; Moynihan, S.; Abrams, S.A.; Kent, K.; Hsu, A.R.; Friedlander, A.L. Effects of Oligofructose-Enriched Inulin on Intestinal Absorption of Calcium and Magnesium and Bone Turnover Markers in Postmenopausal Women. Br. J. Nutr. 2007, 97, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Legette, L.L.; Lee, W.; Martin, B.R.; Story, J.A.; Campbell, J.K.; Weaver, C.M. Prebiotics Enhance Magnesium Absorption and Inulin-Based Fibers Exert Chronic Effects on Calcium Utilization in a Postmenopausal Rodent Model. J. Food Sci. 2012, 77, 88–94. [Google Scholar]
- Drabińska, N.; Krupa-Kozak, U.; Abramowicz, P.; Jarocka-Cyrta, E. Beneficial Effect of Oligofructose-Enriched Inulin on Vitamin d and e Status in Children with Celiac Disease on a Long-Term Gluten-Free Diet: A Preliminary Randomized, Placebo-Controlled Nutritional Intervention Study. Nutrients 2018, 10, 1769. [Google Scholar]
- Feruś, K.; Drabińska, N.; Krupa-Kozak, U.; Jarocka-Cyrta, E. A Randomized, Placebo-Controlled, Pilot Clinical Trial to Evaluate the Effect of Supplementation with Prebiotic Synergy 1 on Iron Homeostasis in Children and Adolescents with Celiac Disease Treated with a Gluten-Free Diet. Nutrients 2018, 10, 1818. [Google Scholar] [CrossRef]
- Guess, N.D.; Dornhorst, A.; Oliver, N.; Bell, J.D.; Thomas, E.L.; Frost, G.S. A Randomized Controlled Trial: The Effect of Inulin on Weight Management and Ectopic Fat in Subjects with Prediabetes. Nutr. Metab. 2015, 12, 36. [Google Scholar] [CrossRef]
- Parnell, J.A.; Reimer, R.A. Weight Loss during Oligofructose Supplementation Is Associated with Decreased Ghrelin and Increased Peptide YY in Overweight and Obese Adults. Am. J. Clin. Nutr. 2009, 89, 1751–1759. [Google Scholar] [CrossRef]
- Vekic, J.; Stefanovic, A.; Zeljkovic, A. Obesity and Dyslipidemia: A Review of Current Evidence. Curr. Obes. Rep. 2023, 12, 207–222. [Google Scholar] [CrossRef]
- Mistry, R.H.; Gu, F.; Schols, H.A.; Verkade, H.J.; Tietge, U.J.F. Effect of the Prebiotic Fiber Inulin on Cholesterol Metabolism in Wildtype Mice. Sci. Rep. 2018, 8, 13238. [Google Scholar] [CrossRef]
- Hoving, L.R.; de Vries, M.R.; de Jong, R.C.M.; Katiraei, S.; Pronk, A.; Quax, P.H.A.; van Harmelen, V.; van Dijk, K.W. The Prebiotic Inulin Aggravates Accelerated Atherosclerosis in Hypercholesterolemic APOE*3-Leiden Mice. Nutrients 2018, 10, 172. [Google Scholar] [CrossRef]
- Wang, D.; Liu, C.D.; Tian, M.L.; Tan, C.Q.; Shu, G.; Jiang, Q.Y.; Zhang, L.; Yin, Y.L. Propionate Promotes Intestinal Lipolysis and Metabolic Benefits via AMPK/LSD1 Pathway in Mice. J. Endocrinol. 2019, 243, 187–197. [Google Scholar] [CrossRef]
- Pérez-Monter, C.; Álvarez-Arce, A.; Nuño-Lambarri, N.; Escalona-Nández, I.; Juárez-Hernández, E.; Chávez-Tapia, N.C.; Uribe, M.; Barbero-Becerra, V.J. Inulin Improves Diet-Induced Hepatic Steatosis and Increases Intestinal Akkermansia Genus Level. Int. J. Mol. Sci. 2022, 23, 991. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, Y.; Luo, X.; Wu, Q.; He, J.; Li, S.; Barba, F.J. Modulation of Lipid Metabolism and Colonic Microbial Diversity of High-Fat-Diet C57BL/6 Mice by Inulin with Different Chain Lengths. Food Res. Int. 2019, 123, 355–363. [Google Scholar] [PubMed]
- Hiel, S.; Neyrinck, A.M.; Rodriguez, J.; Pachikian, B.D.; Bouzin, C.; Thissen, J.P.; Cani, P.D.; Bindels, L.B.; Delzenne, N.M. Inulin Improves Postprandial Hypertriglyceridemia by Modulating Gene Expression in the Small Intestine. Nutrients 2018, 10, 532. [Google Scholar] [CrossRef] [PubMed]
- Fiordaliso, M.; Kok, N.; Desager, J.P.; Goethals, F.; Deboyser, D.; Roberfroid, M.; Delzenne, N. Dietary Oligofructose Lowers Triglycerides, Phospholipids and Cholesterol in Serum and Very Low Density Lipoproteins of Rats. Lipids 1995, 30, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Delzenne, N.M.; Kok, N.; Fiordaliso, M.F.; Deboyser, D.M.; Goethals, F.M.; Roberfroid, M.B. Dietary Fructooligosaccharides Modify Lipid Metabolism in Rats. Am. J. Clin. Nutr. 1993, 57, 820S. [Google Scholar] [CrossRef]
- Beylot, M. Effects of Inulin-Type Fructans on Lipid Metabolism in Man and in Animal Models. Br. J. Nutr. 2005, 93, S163–S168. [Google Scholar] [CrossRef]
- Nishimura, M.; Ohkawara, T.; Kanayama, T.; Kitagawa, K.; Nishimura, H.; Nishihira, J. Effects of the Extract from Roasted Chicory (Cichorium intybus L.) Root Containing Inulin-Type Fructans on Blood Glucose, Lipid Metabolism, and Fecal Properties. J. Tradit. Complement. Med. 2015, 5, 161. [Google Scholar] [CrossRef]
- Forcheron, F.; Beylot, M. Long-Term Administration of Inulin-Type Fructans Has No Significant Lipid-Lowering Effect in Normolipidemic Humans. Metabolism 2007, 56, 1093–1098. [Google Scholar] [CrossRef]
- Weyer, C.; Bogardus, C.; Mott, D.M.; Pratley, R.E. The Natural History of Insulin Secretory Dysfunction and Insulin Resistance in the Pathogenesis of Type 2 Diabetes Mellitus. J. Clin. Investig. 1999, 104, 787–794. [Google Scholar] [CrossRef]
- Stumvoll, M.; Goldstein, B.J.; Van Haeften, T.W. Type 2 Diabetes: Principles of Pathogenesis and Therapy. Lancet 2005, 365, 1333–1346. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Dai, Y.; Rui, C.; Fan, Y.; Wang, X.; Fan, C.; Mu, J.; Hou, W.; Dong, Z.; Li, P.; et al. Dietary Supplementation of Inulin Alleviates Metabolism Disorders in Gestational Diabetes Mellitus Mice via RENT/AKT/IRS/GLUT4 Pathway. Diabetol. Metab. Syndr. 2021, 13, 150. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Reddivari, L.; Shi, Z.; Li, S.; Wang, Y.; Bretin, A.; Ngo, V.L.; Flythe, M.; Pellizzon, M.; Chassaing, B.; et al. Inulin Fermentable Fiber Ameliorates Type I Diabetes via IL22 and Short-Chain Fatty Acids in Experimental Models. CMGH 2021, 12, 983–1000. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhang, L.; Xue, J.; Yang, X.; Dong, X.; Sha, L.; Lei, H.; Zhang, X.; Zhu, L.; Wang, Z.; et al. Dietary Inulin Alleviates Diverse Stages of Type 2 Diabetes Mellitus: Via Anti-Inflammation and Modulating Gut Microbiota in Db/Db Mice. Food Funct. 2019, 10, 1915–1927. [Google Scholar] [CrossRef]
- Ramakrishna, B.S. Role of the Gut Microbiota in Human Nutrition and Metabolism. J. Gastroenterol. Hepatol. 2013, 28, 9–17. [Google Scholar] [CrossRef]
- Causey, J.L.; Feirtag, J.M.; Gallaher, D.D.; Tungland, B.C.; Slavin, J.L. Effects of Dietary Inulin on Serum Lipids, Blood Glucose and the Gastrointestinal Environment in Hypercholesterolemic Men. Nutr. Res. 2000, 20, 191–201. [Google Scholar] [CrossRef]
- Russo, F.; Riezzo, G.; Chiloiro, M.; De Michele, G.; Chimienti, G.; Marconi, E.; D’Attoma, B.; Linsalata, M.; Clemente, C. Metabolic Effects of a Diet with Inulin-Enriched Pasta in Healthy Young Volunteers. Curr. Pharm. Des. 2010, 16, 825–831. [Google Scholar] [CrossRef]
- Dehghan, P.; Gargari, B.P.; Jafar-Abadi, M.A.; Aliasgharzadeh, A. Inulin Controls Inflammation and Metabolic Endotoxemia in Women with Type 2 Diabetes Mellitus: A Randomized-Controlled Clinical Trial. Int. J. Food Sci. Nutr. 2014, 65, 117–123. [Google Scholar] [CrossRef]
- Dehghan, P.; Pourghassem Gargari, B.; Asghari Jafar-abadi, M. Oligofructose-Enriched Inulin Improves Some Inflammatory Markers and Metabolic Endotoxemia in Women with Type 2 Diabetes Mellitus: A Randomized Controlled Clinical Trial. Nutrition 2014, 30, 418–423. [Google Scholar] [CrossRef]
- Gargari, B.P.; Dehghan, P.; Aliasgharzadeh, A.; Jafar-Abadi, M.A. Effects of High Performance Inulin Supplementation on Glycemic Control and Antioxidant Status in Women with Type 2 Diabetes. Diabetes Metab. J. 2013, 37, 140–148. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, H.; Xiao, X.; Hu, L.; Xin, F.; Yu, X. Inulin-Type Fructan Improves Diabetic Phenotype and Gut Microbiota Profiles in Rats. PeerJ 2018, 6, e4446. [Google Scholar] [CrossRef]
- Ning, C.; Wang, X.; Gao, S.; Mu, J.; Wang, Y.; Liu, S.; Zhu, J.; Meng, X. Chicory Inulin Ameliorates Type 2 Diabetes Mellitus and Suppresses JNK and MAPK Pathways in Vivo and in Vitro. Mol. Nutr. Food Res. 2017, 61, 1600673. [Google Scholar] [CrossRef] [PubMed]
- Schley, P.D.; Field, C.J. The Immune-Enhancing Effects of Dietary Fibres and Prebiotics. Br. J. Nutr. 2002, 87, S221–S230. [Google Scholar] [CrossRef] [PubMed]
- Kelly-Quagliana, K.A.; Nelson, P.D.; Buddington, R.K. Dietary Oligofructose and Inulin Modulate Immune Functions in Mice. Nutr. Res. 2003, 23, 257–267. [Google Scholar] [CrossRef]
- Benyacoub, J.; Rochat, F.; Saudan, K.Y.; Rochat, I.; Antille, N.; Cherbut, C.; Von Der Weid, T.; Schiffrin, E.J.; Blum, S. Feeding a Diet Containing a Fructooligosaccharide Mix Can Enhance Salmonella Vaccine Efficacy in Mice. J. Nutr. 2008, 138, 123–129. [Google Scholar] [CrossRef]
- Hegar, B.; Boediarso, A.; Firmansyah, A.; Vandenplas, Y. Investigation of Regurgitation and Other Symptoms of Gastroesophageal Reflux in Indonesian Infants. World J. Gastroenterol. 2004, 10, 1795–1797. [Google Scholar] [CrossRef]
- Bunout, D.; Barrera, G.; Hirsch, S.; Gattas, V.; De La Maza, M.P.; Haschke, F.; Steenhout, P.; Klassen, P.; Hager, C.; Avendaño, M.; et al. Effects of a Nutritional Supplement on the Immune Response and Cytokine Production in Free-Living Chilean Elderly. J. Parenter. Enter. Nutr. 2004, 28, 348–354. [Google Scholar] [CrossRef]
- Saavedra, J.M.; Tschernia, A. Human Studies with Probiotics and Prebiotics: Clinical Implications. Br. J. Nutr. 2002, 87, S241–S246. [Google Scholar] [CrossRef]
- Guglani, A.; Shukla, S.; Tripathi, R. Therapeutic Role of Inulin in Disease Management. In Inulin for Pharmaceutical Applications: A Versatile Biopolymer; Springer: Berlin/Heidelberg, Germany, 2025; pp. 303–323. [Google Scholar]
- Alonso-Allende, J.; Milagro, F.I.; Aranaz, P. Health Effects and Mechanisms of Inulin Action in Human Metabolism. Nutrients 2024, 16, 2935. [Google Scholar] [CrossRef]
- Rajoka, M.S.R.; Thirumdas, R.; Mehwish, H.M.; Umair, M.; Khurshid, M.; Hayat, H.F.; Phimolsiripol, Y.; Pallarés, N.; Martí-Quijal, F.J.; Barba, F.J. Role of Food Antioxidants in Modulating Gut Microbial Communities: Novel Understandings in Intestinal Oxidative Stress Damage and Their Impact on Host Health. Antioxidants 2021, 10, 1563. [Google Scholar] [CrossRef]
- Shang, H.M.; Zhou, H.Z.; Yang, J.Y.; Li, R.; Song, H.; Wu, H.X. In Vitro and in Vivo Antioxidant Activities of Inulin. PLoS ONE 2018, 13, e0192273. [Google Scholar] [CrossRef]
Plant Source | Plant Part | Inulin (g/100 g FW) | References |
---|---|---|---|
Jerusalem artichoke (Helianthus tuberosus) | Tuber | 17.00–20.50 | [2] |
Dahlia (Dahlia pinnata) | Tuber | 15.00–20.00 | [63] |
Chicory (Cichorium intybus) | Roots | 15.00–20.00 | [2] |
Yacon (Smallanthus sonchifolius) | Roots | 3.00–19.00 | [62] |
Garlic (Allium sativum) | Bulb | 9.00–16.00 | [2] |
Dendelion (Taraxacum officinale) | Roots | 12.00–15.00 | [64] |
Leek (Allium ampeloprasum) | Bulb | 3.00–10.00 | [2] |
Globe Artichoke (Cynara scolymus) | Globes | 2.00–7.00 | [62] |
Onions (Allium cepa) | Bulb | 3.09–4.96 | [52] |
Asparagus (Asparagus officinalis) | Roots | 2.00–3.00 | [52] |
Wheat (Triticum aestivum) | Seeds | 1.50–2.30 | [2] |
Barley (Hordeum vulgare) | Seeds | 0.50–1.50 | [52] |
Banana (ripe) (Musa acuminata) | Fruit | 0.58–1.09 | [52] |
Rye (Secale cereale) | Seeds | 0.50–1.00 | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canazza, E.; Grauso, M.; Mihaylova, D.; Lante, A. Techno-Functional Properties and Applications of Inulin in Food Systems. Gels 2025, 11, 829. https://doi.org/10.3390/gels11100829
Canazza E, Grauso M, Mihaylova D, Lante A. Techno-Functional Properties and Applications of Inulin in Food Systems. Gels. 2025; 11(10):829. https://doi.org/10.3390/gels11100829
Chicago/Turabian StyleCanazza, Elisa, Miriam Grauso, Dasha Mihaylova, and Anna Lante. 2025. "Techno-Functional Properties and Applications of Inulin in Food Systems" Gels 11, no. 10: 829. https://doi.org/10.3390/gels11100829
APA StyleCanazza, E., Grauso, M., Mihaylova, D., & Lante, A. (2025). Techno-Functional Properties and Applications of Inulin in Food Systems. Gels, 11(10), 829. https://doi.org/10.3390/gels11100829