Influence of Bilberry Pomace Powder Addition on the Physicochemical, Functional, Rheological, and Sensory Properties of Stirred Yogurt
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximate Composition, Titratable Acidity, and Fatty Acid Profile of Bilberry Pomace
2.2. Color
2.3. Physicochemical Properties
2.4. Texture Analysis
2.5. Rheological Properties
2.6. Total Phenolic Content, Total Anthocyanin Content, and DPPH Radical Scavenging Activity
2.7. Sensory Evaluation
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Reagents
4.3. Preparation of Stirred Yogurt Samples
4.4. Proximate and Fatty Acid Composition of Bilberry Pomace Powder
4.5. Color Analysis
4.6. Titratable Acidity and pH
4.7. Syneresis and Water Holding Capacity
4.8. Texture Analysis
4.9. Rheological Measurements
4.10. Sample Extraction
4.11. Total Phenolic Content, Total Anthocyanin Content, and Radical Scavenging Activity
4.12. Sensory Analysis
4.13. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Comunian, T.A.; Silva, M.P.; Souza, C.J.F. The Use of Food By-Products as a Novel for Functional Foods: Their Use as Ingredients and for the Encapsulation Process. Trends Food Sci. Technol. 2021, 108, 269–280. [Google Scholar] [CrossRef]
- Carpentieri, S.; Larrea-Wachtendorff, D.; Donsì, F.; Ferrari, G. Functionalization of pasta through the incorporation of bioactive compounds from agri-food by-products: Fundamentals, opportunities, and drawbacks. Trends Food Sci. Technol. 2022, 122, 49–65. [Google Scholar] [CrossRef]
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M.; et al. Application of agri-food by-products in the food industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Kumari, B.; Tiwari, B.K.; Hossain, M.B.; Brunton, N.P.; Rai, D.K. Recent advances on application of ultrasound and pulsed electric field technologies in the extraction of bioactives from agro-industrial by-products. Food Bioproc. Technol. 2018, 11, 223–241. [Google Scholar] [CrossRef]
- Cecilia, J.A.; García-Sancho, C.; Maireles-Torres, P.J.; Luque, R. Industrial Food Waste Valorization: A General Overview. In Biorefinery; Springer Science and Business Media LLC: Berlin, Germany, 2019; pp. 253–277. [Google Scholar]
- Pires, T.C.S.P.; Caleja, C.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C.F.R. Vaccinium myrtillus L. Fruits as a Novel Source of Phenolic Compounds with Health Benefits and Industrial Applications—A Review. Curr. Pharm. Des. 2020, 26, 1917–1928. [Google Scholar] [CrossRef]
- Karlsen, A.; Paur, I.; Bøhn, S.K.; Sakhi, A.K.; Borge, G.I.; Serafini, M.; Erlund, I.; Laake, P.; Tonstad, S.; Blomhoff, R. Bilberry juice modulates plasma concentration of NF-kappaB related inflammatory markers in subjects at increased risk of CVD. Eur. J. Nutr. 2010, 49, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Alnajjar, M.; Barik, S.K.; Bestwick, C.; Campbell, F.; Cruickshank, M.; Farquharson, F.; Holtrop, G.; Horgan, G.; Louis, P.; Moar, K.-M. Anthocyanin-enriched bilberry extract attenuates glycaemic response in overweight volunteers without changes in insulin. J. Funct. Foods 2020, 64, 103597. [Google Scholar] [CrossRef]
- Dabbou, S.; Ferrocino, I.; Kovitvadhi, A.; Dabbou, S.; Bergagna, S.; Dezzuto, D.; Schiavone, A.; Cocolin, L.; Gai, F.; Santoro, V.; et al. Bilberry pomace in rabbit nutrition: Effects on growth performance, apparent digestibility, caecal traits, bacterial community and antioxidant status. Animal 2019, 13, 53–63. [Google Scholar] [CrossRef]
- Syrpas, M.; Valanciene, E.; Augustiniene, E.; Malys, N. Valorization of bilberry (Vaccinium myrtillus L.) pomace by enzyme-assisted extraction: Process optimization and comparison with conventional solid-liquid extraction. Antioxidants 2021, 10, 773. [Google Scholar] [CrossRef]
- Zhou, L.; Lie, Y.; Briers, H.; Fan, J.; Remón, J.; Nyström, J.; Budarin, V.; Macquarrie, D.; McElroy, C.R. Natural product recovery from bilberry (Vaccinium myrtillus L.) presscake via microwave hydrolysis. ACS Sustain. Chem. Eng. 2018, 6, 3676–3685. [Google Scholar] [CrossRef]
- Chandan, R.C.; Kilara, A. Manufacturing Yogurt and Fermented Milks; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 294–295. [Google Scholar]
- Farvin, K.H.S.; Baron, C.P.; Nielsen, N.S.; Otte, J.; Jacobsen, C. Antioxidant activity of yoghurt peptides: Part 2–Characterisation of peptide fractions. Food Chem. 2010, 123, 1090–1097. [Google Scholar] [CrossRef]
- Vasiljevic, T.; Shah, N.P. Fermented milk: Health benefits beyond probiotic effect. In Handbook of Food Products Manufacturing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; Volume 2, pp. 99–115. [Google Scholar]
- Allgeyer, L.C.; Miller, M.J.; Lee, S.Y. Sensory and microbiological quality of yogurt drinks with prebiotics and probiotics. J. Dairy Sci. 2010, 93, 4471–4479. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.A.; Marette, A. Potential health benefits of combining yogurt and fruits based on their probiotic and prebiotic properties. Adv. Nutr. 2017, 8, 155S–164S. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, F.; Merchiche, F.; Mokhtari, S.; Smail, L.; Guemghar-Haddadi, H.; Yalaoui-Guellal, D.; Achat, S.; Elsebai, M.F.; Madani, K.; Boulekbache, L. Optimization of some extraction parameters of phenolic content from apple peels and grape seeds and enrichment of yogurt by their powders: A comparative study. J. Food Process. Preserv. 2021, 45, e15126. [Google Scholar] [CrossRef]
- Zahid, H.F.; Ali, A.; Ranadheera, C.S.; Fang, Z.; Dunshea, F.R.; Ajlouni, S. In vitro bioaccessibility of phenolic compounds and alpha-glucosidase inhibition activity in yoghurts enriched with mango peel powder. Food Biosci. 2022, 50, 102011. [Google Scholar] [CrossRef]
- de Toledo, N.; de Camargo, A.; Ramos, P.; Button, D.; Granato, D.; Canniatti-Brazaca, S. Potentials and pitfalls on the use of passion fruit by-products in drinkable yogurt: Physicochemical, technological, microbiological, and sensory aspects. Beverages 2018, 4, 47. [Google Scholar] [CrossRef]
- do Espírito Santo, A.P.; Cartolano, N.S.; Silva, T.F.; Soares, F.A.S.M.; Gioielli, L.A.; Perego, P.; Converti, A.; Oliveira, M.N. Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yoghurts. Int. J. Food Microb. 2012, 154, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, M.; Petrovic, M.; Miocinovic, J.; Zlatanovic, S.; Lalicic Petronijevic, J.; Mitic-Culafic, D.; Gorjanovic, S. Bioactivity and sensory properties of probiotic yogurt fortified with apple pomace flour. Foods 2020, 9, 763. [Google Scholar] [CrossRef]
- Hernández-Carranza, P.; Jattar-Santiago, K.Y.; Avila-Sosa, R.; Pérez-Xochipa, I.; Guerrero-Beltrán, J.A.; Ochoa-Velasco, C.E.; Ruiz-López, I.I. Antioxidant fortification of yogurt with red cactus pear peel and its mucilage. CYTA J. Food 2019, 17, 824–833. [Google Scholar] [CrossRef]
- Sah, B.N.P.; Vasiljevic, T.; McKechnie, S.; Donkor, O.N. Physicochemical, textural and rheological properties of probiotic yogurt fortified with fibre-rich pineapple peel powder during refrigerated storage. LWT—Food Sci. Technol. 2016, 65, 978–986. [Google Scholar] [CrossRef]
- Varnaitė, L.; Kersiene, M.; Sipailiene, A.; Kazernaviciute, R.; Venskutonis, P.R.; Leskauskaite, D. Fiber-rich cranberry pomace as food ingredient with functional activity for yogurt production. Foods 2022, 11, 758. [Google Scholar] [CrossRef] [PubMed]
- Pires, T.C.S.P.; Inês Dias, M.; Calhelha, R.C.; José Alves, M.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Barros, L. Development of new bilberry (Vaccinium myrtillus L.) based snacks: Nutritional, chemical and bioactive features. Food Chem. 2021, 334, 127511. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Ahotupa, M.; Määttä, P.; Kallio, H. Composition and antioxidative activities of supercritical CO2-extracted oils from seeds and soft parts of northern berries. Food Res. Int. 2011, 44, 2009–2017. [Google Scholar] [CrossRef]
- Dulf, F.V.; Andrei, S.; Bunea, A.; Socaciu, C. Fatty acid and phytosterol contents of some Romanian wild and cultivated berry pomaces. Chem. Pap. 2012, 66, 925–934. [Google Scholar] [CrossRef]
- Van Hoed, V.; De Clercq, N.; Echim, C.; Andjelkovic, M.; Leber, E.; Dewettinck, K.; Verhe, R. Berry seeds: A source of specialty oils with high content of bioactives and nutritional value. J. Food Lipids 2009, 16, 33–49. [Google Scholar] [CrossRef]
- Mariamenatu, A.H.; Abdu, E.M. Overconsumption of omega-6 polyunsaturated fatty acids (PUFAs) versus deficiency of omega-3 PUFAs in modern-day diets: The disturbing factor for their “Balanced Antagonistic Metabolic Functions” in the human body. J. Lipids 2021, 2021, 8848161. [Google Scholar] [CrossRef]
- Liput, K.P.; Lepczyński, A.; Ogłuszka, M.; Nawrocka, A.; Poławska, E.; Grzesiak, A.; Ślaska, B.; Pareek, C.S.; Czarnik, U.; Pierzchała, M. Effects of dietary n–3 and n–6 polyunsaturated fatty acids in inflammation and cancerogenesis. Int. J. Mol. Sci. 2021, 22, 6965. [Google Scholar] [CrossRef]
- Blejan, A.M.; Nour, V.; Păcularu-Burada, B.; Popescu, S.M. Wild bilberry, blackcurrant, and blackberry by-products as a source of nutritional and bioactive compounds. Int. J. Food Prop. 2023, 26, 1579–1595. [Google Scholar] [CrossRef]
- Dinkçi, N.; Aktaş, M.; Akdeniz, V.; Sirbu, A. The influence of hazelnut skin addition on quality properties and antioxidant activity of functional yogurt. Foods 2021, 10, 2855. [Google Scholar] [CrossRef]
- Cho, W.Y.; Yeon, S.J.; Hong, G.E.; Kim, J.H.; Tsend-Ayush, C.; Lee, C.H. Antioxidant activity and quality characteristics of yogurt added green olive powder during storage. Korean J. Food Sci. Anim. Resour. 2017, 37, 865. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocoll. 2020, 100, 105453. [Google Scholar] [CrossRef]
- Szołtysik, M.; Kucharska, A.Z.; Dąbrowska, A.; Zięba, T.; Bobak, Ł.; Chrzanowska, J. Effect of two combined functional additives on yoghurt properties. Foods 2021, 10, 1159. [Google Scholar] [CrossRef] [PubMed]
- Ścibisz, I.; Ziarno, M. Effect of yogurt addition on the stability of anthocyanin during cold storage of strawberry, raspberry, and blueberry smoothies. Foods 2023, 12, 3858. [Google Scholar] [CrossRef]
- Cheng, X.; Zhu, J.; Chen, Z.; Wu, Z.; Zhang, F.; Wu, C.; Fan, G. Color stability and degradation kinetics of anthocyanins in mulberry stirred yoghurt fermented by different starter cultures. Food Sci. Biotechnol. 2023, 32, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Özkan, M.; Yemenicioǧlu, A.; Cemeroǧlu, B. Degradation of various fruit juice anthocyanins by hydrogen peroxide. Food Res. Int. 2005, 38, 1015–1021. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol. Adv. 2021, 49, 107763. [Google Scholar] [CrossRef]
- Tseng, A.; Zhao, Y. Wine grape pomace asantioxidant dietary fibre for enhancing nutritional value andimproving storability of yogurt and salad dressing. Food Chem. 2013, 138, 356–365. [Google Scholar] [CrossRef]
- Liu, D.; Lv, X.X. Effect of blueberry flower pulp on sensory, physicochemical properties, lactic acid bacteria, and antioxidant activity of set-type yogurt during refrigeration. J. Food Process. Preserv. 2019, 43, e13856. [Google Scholar] [CrossRef]
- Arab, M.; Yousefi, M.; Khanniri, E.; Azari, M.; Ghasemzadeh-Mohammadi, V.; Mollakhalili-Meybodi, N. A comprehensive review on yogurt syneresis: Effect of processing conditions and added additives. J. Food Sci. Technol. 2022, 60, 1656–1665. [Google Scholar] [CrossRef] [PubMed]
- Dönmez, Ö.; Mogol, B.A.; Gökmen, V. Syneresis and rheological behaviors of set yogurt containing green tea and green coffee powders. J. Dairy Sci. 2017, 100, 901–907. [Google Scholar] [CrossRef]
- Gilbert, A.; Rioux, L.E.; St-Gelais, D.; Turgeon, S.L. Characterization of syneresis phenomena in stirred acid milk gel using low frequency nuclear magnetic resonance on hydrogen and image analyses. Food Hydrocoll. 2020, 106, 105907. [Google Scholar] [CrossRef]
- Dabija, A.; Codină, G.G.; Gâtlan, A.M.; Rusu, L. Quality assessment of yogurt enriched with different types of fibers. CYTA-J. Food 2018, 16, 859–867. [Google Scholar] [CrossRef]
- Marand, M.A.; Amjadi, S.; Ardabilchi, M.; Roufegarinejad, L.; Jafari, S.M. Fortification of yogurt with flaxseed powder and evaluation of its fatty acid profile, physicochemical, antioxidant, and sensory properties. Powred Technol. 2020, 351, 76–84. [Google Scholar] [CrossRef]
- Aura, A.M.; Holopainen-Mantila, U.; Sibakov, J.; Kössö, T.; Mokkila, M.; Kaisa, P. Bilberry and bilberry press cake as sources of dietary fibre. Food Nutr. Res. 2015, 59, 28367. [Google Scholar] [CrossRef]
- Hilz, H.; Bakx, E.J.; Schols, H.A.; Voragen, A.G.J. Cell wall polysaccharides in black currants and bilberries—Characterisation in berries, juice, and press cake. Carbohydr. Polym. 2005, 59, 477–488. [Google Scholar] [CrossRef]
- Ahmed, M.; Ali, A.; Sarfraz, A.; Hong, Q.; Boran, H. Effect of freeze-drying on apple pomace and pomegranate peel powders used as a source of bioactive ingredients for the development of functional yogurt. J. Food Qual. 2022, 2022, 3327401. [Google Scholar] [CrossRef]
- Ramirez-Santiago, C.; Ramos-Solis, L.; Lobato-Calleros, C.; Peña-Valdivia, C.; Vernon-Carter, E.J.; Alvarez-Ramírez, J. Enrichment of stirred yogurt with soluble dietary fiber from Pachyrhizus erosus L. Urban: Effect on syneresis, microstructure and rheological properties. J. Food Eng. 2010, 101, 229–235. [Google Scholar] [CrossRef]
- Gilbert, A.; Turgeon, S.L. Studying stirred yogurt microstructure and its correlation to physical properties: A review. Food Hydrocoll. 2021, 121, 106970. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; Mcsweeney, P.L.H. Fundamentals of Cheese Science, 1st ed.; Springer: New York, NY, USA, 2000. [Google Scholar]
- Amal, A.; Eman, A.; Nahla, S.Z. Fruit flavored yogurt: Chemical, functional and rheological properties. Int. J. Environ. Agric. Res. 2016, 2, 57–66. [Google Scholar]
- Pan, L.H.; Liu, F.; Luo, S.Z.; Luo, J.P. Pomegranate juice powder as sugar replacer enhanced quality and function of set yogurts: Structure, rheological property, antioxidant activity and in vitro bioaccessibility. LWT 2019, 115, 108479. [Google Scholar] [CrossRef]
- Yuksel, Z.; Avci, E.; Erdem, Y.K. Characterization of binding interactions between green tea flavanoids and milk proteins. Food Chem. 2010, 121, 450–456. [Google Scholar] [CrossRef]
- Oroian, M.; Codină, G.G.; Dabija, A. Quality characteristics of yogurt with different levels of cranberries powder addition of different particle sizes. J. Culin. Sci. Technol. 2022, 21, 1005–1017. [Google Scholar] [CrossRef]
- Karnopp, A.R.; Oliveira, K.G.; de Andrade, E.F.; Postingher, B.M.; Granato, D. Optimization of an organic yogurt based on sensorial, nutritional, and functional perspectives. Food Chem. 2017, 233, 401–411. [Google Scholar] [CrossRef]
- Güler-Akın, M.B.; Goncu, B.; Akın, M.S. Some properties of bio-yogurt enriched with cellulose fiber. Adv. Microbiol. 2018, 8, 54–64. [Google Scholar] [CrossRef]
- Mohamed, A.G.; Zayan, A.F.; Shahein, N. Physiochemical and sensory evaluation of yoghurt fortified with dietary fiber and phenolic compounds. Life Sci. J. 2014, 11, 816–822. [Google Scholar]
- Postolache, A.N.; Veleșcu, I.D.; Stoica, F.; Crivei, I.C.; Arsenoaia, V.N.; Usturoi, M.G.; Constantinescu, C.G.; Lips, F.D.; Frunză, F.G.; Rațu, R.N.; et al. A clean-label formulation of fortified yogurt based on rhododendron flower powder as a functional ingredient. Foods 2023, 12, 4365. [Google Scholar] [CrossRef]
- Kieserling, K.; Vu, T.M.; Drusch, S.; Schalow, S. Impact of pectin-rich orange fibre on gel characteristics and sensory properties in lactic acid fermented yoghurt. Food Hydrocoll. 2019, 94, 152–163. [Google Scholar] [CrossRef]
- Lee, W.J.; Lucey, J.A. Structure and physical properties of yogurt gels: Effect of inoculation rate and incubation temperature. J. Dairy Sci. 2004, 87, 3153–3164. [Google Scholar] [CrossRef]
- Guénard-Lampron, V.; Bosc, V.; St-Gelais, D.; Villeneuve, S.; Turgeon, S.L. How do smoothing conditions and storage time change syneresis, rheological and microstructural properties of nonfat stirred acid milk gel? Int. Dairy J. 2020, 109, 104780. [Google Scholar] [CrossRef]
- Da-Hee, K.; Won-Young, C.; Su-Jung, Y.; Sung-Hee, C.; Chi-Ho, L. Effects of lotus (Nelumbo nucifera) leaf on quality and antioxidant activity of yogurt during refrigerated storage. Food Sci. Anim. Resour. 2019, 39, 792–803. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Du, H.; Wang, X.; Yang, H.; Zhu, F.; Tang, D.; Cheng, J.; Liu, X. Changes of phenolic profile and antioxidant activity during cold storage of functional flavored yogurt supplemented with mulberry pomace. Food Control 2022, 132, 108554. [Google Scholar] [CrossRef]
- Marchiani, R.; Bertolino, M.; Belviso, S.; Giordano, M.; Ghirardello, D.; Torri, L.; Piochi, M.; Zeppa, G. Yogurt enrichment with grape pomace: Effect of grape cultivar on physicochemical, microbiological and sensory properties. J. Food Qual. 2016, 39, 77–89. [Google Scholar] [CrossRef]
- Sahingil, D.; Hayaloglu, A.A. Enrichment of antioxidant activity, phenolic compounds, volatile composition and sensory properties of yogurt with rosehip (Rosa canina L.) fortification. Int. J. Gastron. Food Sci. 2022, 28, 100514. [Google Scholar] [CrossRef]
- Bertolino, M.; Belviso, S.; Dal Bello, B.; Ghirardello, D.; Giordano, M.; Rolle, L.; Gerbi, V.; Zeppa, G. Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yogurt. LWT Food Sci. Technol. 2015, 63, 1145–1154. [Google Scholar] [CrossRef]
- Foegeding, E.A.; Plundrich, N.; Schneider, M.; Campbell, C.; Lila, M.A. Protein-polyphenol particles for delivering structural and health functionality. Food Hydrocoll. 2017, 72, 163–173. [Google Scholar] [CrossRef]
- Ribeiro, T.B.; Bonifácio-Lopes, T.; Morais, P.; Miranda, A.; Nunes, J.; Vicente, A.A.; Pintado, M. Incorporation of olive pomace ingredients into yoghurts as a source of fibre and hydroxytyrosol: Antioxidant activity and stability throughout gastrointestinal digestion. J. Food Eng. 2021, 297, 110476. [Google Scholar] [CrossRef]
- Sah, B.N.P.; Vasiljevic, T.; McKechnie, S.; Donkor, O.N. Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt. Food Chem. 2014, 156, 264–270. [Google Scholar] [CrossRef]
- Yilmaz-Ersan, L.; Topcuoglu, E. Evaluation of Instrumental and Sensory Measurements Using Multivariate Analysis in Probiotic Yogurt Enriched with Almond Milk. J. Food Sci. Technol. 2022, 59, 133–143. [Google Scholar] [CrossRef]
- Nahali, S.; Gilbert, A.; Marchand, C.; Lessard, M.H.; Miller, D.; Fraud, S.; Labrie, S.; Turgeon, S.L. A methodological approach to assess the ropy character of stirred acid dairy gels based on the measure of adhesiveness. JDS Commun. 2024. [Google Scholar] [CrossRef]
- Janhøj, T.; Petersen, C.B.; Frøst, M.B.; Ipsen, R. Sensory and Rheological Characterization of Low-Fat Stirred Yogurt. J. Texture Stud. 2006, 37, 276–299. [Google Scholar] [CrossRef]
- Sodini, I.; Remeuf, F.; Haddad, C.; Corrieu, G. The Relative Effect of Milk Base, Starter, and Process on Yogurt Texture: A Review. Crit. Rev. Food Sci. Nutr. 2004, 44, 113–137. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.; Romeih, E.; Gamba, R.R.; Nagai, E.; Suzuki, T.; Koyanagi, T.; Enomoto, T. The Biological Activity of Fermented Milk Produced by Lactobacillus casei ATCC 393 during Cold Storage. Int. Dairy J. 2019, 91, 1–8. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Barkallah, M.; Dammak, M.; Louati, I.; Hentati, F.; Hadrich, B.; Mechichi, T.; Ayadi, M.A.; Fendri, I.; Attia, H.; Abdelkafi, S. Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. LWT Food Sci. Technol. 2017, 84, 323–330. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants using Folin-Ciocalteau reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Acree, T.E., An, H., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Sporns, P., Eds.; John Wiley & Sons: New York, NY, USA, 2001; pp. F1.2.1–F1.2.13. [Google Scholar]
- Oliveira, I.; Sousa, A.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L.; Pereira, J.A. Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food Chem. Toxicol. 2008, 46, 2326–2331. [Google Scholar] [CrossRef]
Parameter | Content |
---|---|
Dry matter | 89.82 ± 0.65 g/100 g |
Crude protein | 8.26 ± 0.42 g/100 g |
Crude fat | 8.31 ± 0.43 g/100 g |
Crude fiber | 11.43 ± 0.37 g/100 g |
Ash | 1.09 ± 0.23 g/100 g |
Titratable acidity | 5.45 ± 0.31 g citric acid/100 g |
Fatty acids profile | |
Saturated fatty acids (SFA) | 8.21 ± 0.34 g/100 g fatty acids |
Monounsaturated fatty acids (MUFA) | 18.64 ± 0.69 g/100 g fatty acids |
Polyunsaturated fatty acids (PUFA), of which: | 72.86 ± 2.96 g/100 g fatty acids |
n-3 | 38.11 ± 1.39 g/100 g fatty acids |
n-6 | 34.75 ± 1.57 g/100 g fatty acids |
n-6/n-3 | 0.91 |
Storage Time (Days) | Sample | L* | a* | b* | C* | h* | ΔE |
---|---|---|---|---|---|---|---|
Day 1 | YC | 83.37 ± 3.02 dB | −0.23 ± 0.07 aA | 10.75 ± 0.23 dB | 10.76 ± 0.23 aB | 88.83 ± 0.39 cA | - |
Y0.5%BPP | 55.09 ± 2.49 cB | 16.57 ± 0.73 bB | −2.91 ± 0.17 cA | 16.82 ± 0.75 bB | 9.97 ± 0.34 aA | 35.69 ± 3.74 aA | |
Y1.0%BPP | 43.56 ± 1.52 b | 18.95 ± 0.43 cB | −3.46 ± 0.20 bA | 19.26 ± 0.42 cB | 10.35 ± 0.67 aA | 46.42 ± 1.53 bAB | |
Y1.5%BPP | 40.20 ± 0.80 aC | 19.26 ± 0.70 cB | −4.16 ± 0.19 aA | 19.70 ± 0.71 cB | 12.21 ± 0.45 bC | 49.68 ± 1.66 cA | |
Day 14 | YC | 83.80 ± 1.33 dB | −0.23 ± 0.05 aA | 9.05 ± 0.86 cA | 9.05 ± 0.86 aA | 88.61 ± 0.29 cA | - |
Y0.5%BPP | 53.14 ± 0.55 cAB | 15.90 ± 0.48 bAB | −2.88 ± 0.17 bA | 16.16 ± 0.49 bAB | 10.26 ± 0.44 abA | 36.64 ± 1.99 aA | |
Y1.0%BPP | 42.00 ± 1.93 bAB | 18.58 ± 0.31 cB | −3.33 ± 0.22 abA | 18.88 ± 0.31 cB | 10.17 ± 0.65 aA | 47.49 ± 1.82 bB | |
Y1.5%BPP | 31.94 ± 1.67 aB | 18.73 ± 0.55 cAB | −3.60 ± 0.11 aB | 19.07 ± 0.53 cB | 10.89 ± 0.51 bB | 56.66 ± 1.81 cB | |
Day 28 | YC | 79.87 ± 2.89 dA | −0.21 ± 0.04 aA | 8.63 ± 0.47 bA | 8.63 ± 0.47 aA | 88.68 ± 0.23 cA | - |
Y0.5%BPP | 52.86 ± 1.04 cA | 15.18 ± 0.27 bA | −2.80 ± 0.14 aA | 15.43 ± 0.24 bA | 10.46 ± 0.67 bA | 33.15 ± 2.40 aA | |
Y1.0%BPP | 40.37 ± 2.13 bA | 17.52 ± 0.75 cA | −2.94 ± 0.05 aB | 17.77 ± 0.73 cA | 9.54 ± 0.49 aA | 44.82 ± 1.25 bA | |
Y1.5%BPP | 29.53 ± 1.24 aA | 18.05 ± 0.33 cA | −2.98 ± 0.15 aC | 18.30 ± 0.32 cA | 9.37 ± 0.51 aA | 54.81 ± 2.91 cB |
Storage Time (Days) | Sample | pH | Acidity (% Lactic Acid) | Syneresis (%) | WHC (%) |
---|---|---|---|---|---|
Day 1 | YC | 4.70 ± 0.03 dC | 0.86 ± 0.05 aA | 59.99 ± 0.34 bA | 44.40 ± 0.55 aC |
Y0.5%BPP | 4.54 ± 0.04 cC | 0.93 ± 0.04 bA | 55.35 ± 0.41 aA | 45.69 ± 1.77 aB | |
Y1.0%BPP | 4.44 ± 0.03 bB | 0.98 ± 0.04 cA | 55.58 ± 0.28 aA | 47.31 ± 1.03 abA | |
Y1.5%BPP | 4.27 ± 0.02 aB | 1.04 ± 0.05 dA | 55.05 ± 0.36 aA | 49.24 ± 1.31 bB | |
Day 14 | YC | 4.58 ± 0.03 dB | 0.94 ± 0.03 aB | 61.83 ± 0.24 cB | 42.52 ± 0.43 aB |
Y0.5%BPP | 4.46 ± 0.02 cB | 0.96 ± 0.03 bB | 56.28 ± 0.33 bB | 45.10 ± 0.32 bAB | |
Y1.0%BPP | 4.40 ± 0.03 bB | 1.02 ± 0.05 cB | 56.75 ± 0.26 bB | 47.08 ± 0.56 cA | |
Y1.5%BPP | 4.26 ± 0.02 aB | 1.09 ± 0.04 d | 55.36 ± 0.28 aA | 48.56 ± 0.52 dB | |
Day 28 | YC | 4.47 ± 0.04 cA | 0.95 ± 0.06 aC | 62.95 ± 0.31 cC | 40.06 ± 0.38 aA |
Y0.5%BPP | 4.37 ± 0.03 bA | 1.00 ± 0.03 bC | 58.20 ± 0.26 bC | 43.48 ± 0.45 bA | |
Y1.0%BPP | 4.32 ± 0.03 bA | 1.02 ± 0.03 cC | 58.05 ± 0.19 bC | 45.87 ± 0.70 cA | |
Y1.5%BPP | 4.16 ± 0.03 aA | 1.11 ± 0.05 dC | 56.77 ± 0.28 aB | 47.04 ± 0.61 dA |
Storage Time (Days) | Sample | Hardness (g) | Adhesiveness (J) | Gumminess (g) | Stickiness (g) | Chewiness (g) | Cohesiveness |
---|---|---|---|---|---|---|---|
Day 1 | YC | 20.00 ± 1.00 aB | −24.37 ± 3.71 dC | 16.13 ± 0.56 aA | −8.01 ± 0.90 dC | 16.51 ± 0.50 aA | 0.79 ± 0.04 aB |
Y0.5%BPP | 23.33 ± 1.53 bB | −42.95 ± 2.91 cC | 19.59 ± 0.54 bA | −10.77 ± 0.68 cC | 19.63 ± 0.70 abA | 0.83 ± 0.03 abB | |
Y1.0%BPP | 25.33 ± 1.15 bB | −63.46 ± 3.08 bC | 22.00 ± 2.94 bA | −13.41 ± 0.51 bC | 26.24 ± 1.04 bcB | 0.86 ± 0.06 bcA | |
Y1.5%BPP | 29.00 ± 1.73 cB | −79.79 ± 2.50 aC | 26.39 ± 1.20 cA | −14.97 ± 0.96 aC | 29.78 ± 2.73 dA | 0.92 ± 0.05 cB | |
Day 14 | YC | 29.33 ± 1.53 aC | −44.78 ± 1.54 dB | 17.63 ± 0.66 aB | −16.84 ± 1.06 dB | 19.48 ± 1.33 aB | 0.75 ± 0.01 aA |
Y0.5%BPP | 33.33 ± 1.15 bC | −64.72 ± 1.45 cB | 24.19 ± 1.35 bB | −25.16 ± 1.41 cB | 22.15 ± 0.70 bB | 0.83 ± 0.01 bB | |
Y1.0%BPP | 42.33 ± 0.58 cC | −82.48 ± 2.16 bB | 26.49 ± 0.89 cB | −34.91 ± 1.17 bB | 26.26 ± 1.05 cB | 0.85 ± 0.00 bA | |
Y1.5%BPP | 45.67 ± 1.53 dC | −105.72 ± 3.76 aB | 30.04 ± 1.60 dB | −53.48 ± 2.43 aB | 38.33 ± 1.07 dB | 0.87 ± 0.01 cAB | |
Day 28 | YC | 17.33 ± 0.58 aA | −79.38 ± 2.11 dA | 15.72 ± 0.55 aA | −30.11 ± 1.58 dA | 18.23 ± 0.95 aAB | 0.72 ± 0.01 aA |
Y0.5%BPP | 20.67 ± 0.58 bA | −95.19 ± 1.18 cA | 18.46 ± 1.08 bA | −45.63 ± 1.57 cA | 20.52 ± 0.96 bA | 0.76 ± 0.01 bA | |
Y1.0%BPP | 23.67 ± 0.58 cA | −99.75 ± 0.94 bA | 20.38 ± 0.86 cA | −51.13 ± 2.40 bA | 22.33 ± 0.93 bA | 0.78 ± 0.01 bA | |
Y1.5%BPP | 25.00 ± 1.00 dA | −113.09 ± 1.09 aA | 25.27 ± 0.88 dA | −64.99 ± 2.57 aA | 37.98 ± 1.61 cB | 0.85 ± 0.02 cA |
Storage Time (Days) | Sample | G′ (Pa) | G″ (Pa) | |G*| (Pa) | η in Pa·s |
---|---|---|---|---|---|
Day 1 | YC | 129.37 ± 0.97 aC | 36.18 ± 0.54 aC | 134.31 ± 1.04 aC | 0.50 ± 0.01 aB |
Y0.5%BPP | 185.30 ± 0.82 bB | 48.55 ± 1.22 bB | 173.05 ± 1.36 bB | 0.53 ± 0.01 bB | |
Y1.0%BPP | 190.09 ± 0.76 cB | 52.99 ± 0.89 cB | 193.19 ± 0.89 cB | 0.61 ± 0.01 cC | |
Y1.5%BPP | 194.78 ± 0.96 dB | 57.42 ± 0.70 dB | 202.97 ± 2.23 dB | 0.65 ± 0.01 dC | |
Day 14 | YC | 120.54 ± 0.73 aB | 32.47 ± 0.62 aB | 124.81 ± 0.45 aB | 0.57 ± 0.00 aC |
Y0.5%BPP | 190.49 ± 0.78 bC | 53.58 ± 0.72 bC | 198.17 ± 0.93 bC | 0.58 ± 0.00 abC | |
Y1.0%BPP | 193.30 ± 1.04 cC | 55.41 ± 0.42 cC | 201.31 ± 1.09 cC | 0.58 ± 0.01 abB | |
Y1.5%BPP | 195.36 ± 0.72 dB | 56.70 ± 0.38 dB | 203.49 ± 0.97 dB | 0.59 ± 0.01 bB | |
Day 28 | YC | 59.42 ± 0.73 aA | 17.61 ± 0.46 aA | 62.03 ± 0.29 aA | 0.34 ± 0.01 aA |
Y0.5%BPP | 71.14 ± 0.44 bA | 21.30 ± 0.28 bA | 74.54 ± 1.25 bA | 0.41 ± 0.01 bA | |
Y1.0%BPP | 97.67 ± 1.05 cA | 29.35 ± 1.09 cA | 102.29 ± 1.23 cA | 0.47 ± 0.01 cA | |
Y1.5%BPP | 128.30 ± 0.99 dA | 39.55 ± 0.79 dA | 134.52 ± 1.04 dA | 0.51 ± 0.01 dA |
Storage Time (Days) | Sample | TPC (mg GAE/100 g) | TAC (mg GCE/100 g) | RSA (μmol Trolox/g) |
---|---|---|---|---|
Day 1 | YC | 9.88 ± 0.37 aB | - | 0.62 ± 0.02 aA |
Y0.5%BPP | 24.91 ± 0.89 bB | 12.48 ± 0.43 aB | 0.77 ± 0.03 bAB | |
Y1.0%BPP | 42.36 ± 1.25 cB | 23.62 ± 0.68 bB | 0.86 ± 0.03 cAB | |
Y1.5%BPP | 62.45 ± 1.66 dB | 36.77 ± 1.21 cB | 0.98 ± 0.04 dAB | |
Day 14 | YC | 9.91 ± 0.41 aC | - | 0.63 ± 0.02 aA |
Y0.5%BPP | 28.64 ± 1.04 bC | 14.17 ± 0.86 aC | 0.83 ± 0.03 bB | |
Y1.0%BPP | 45.27 ± 1.21 cC | 26.05 ± 1.25 bC | 0.95 ± 0.04 cB | |
Y1.5%BPP | 66.36 ± 1.98 dC | 42.71 ± 1.88 cC | 1.06 ± 0.04 dB | |
Day 28 | YC | 8.68 ± 0.34 aA | - | 0.59 ± 0.02 aA |
Y0.5%BPP | 22.09 ± 0.82 bA | 9.94 ± 0.73 aA | 0.71 ± 0.09 bA | |
Y1.0%BPP | 37.82 ± 1.28 cA | 18.19 ± 0.74 bA | 0.80 ± 0.04 cA | |
Y1.5%BPP | 59.55 ± 1.45 dA | 28.49 ± 0.85 cA | 0.88 ± 0.05 dA |
Nutrition Facts | For 100 g |
---|---|
Energy (kcal) | 176 kJ/42 kcal |
Fat (g) | 1.5 |
Saturated fat (g) | 0.9 |
Carbohydrates (g) | 3.9 |
Sugars (g) | 3.9 |
Protein (g) | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blejan, A.M.; Nour, V.; Corbu, A.R.; Codină, G.G. Influence of Bilberry Pomace Powder Addition on the Physicochemical, Functional, Rheological, and Sensory Properties of Stirred Yogurt. Gels 2024, 10, 616. https://doi.org/10.3390/gels10100616
Blejan AM, Nour V, Corbu AR, Codină GG. Influence of Bilberry Pomace Powder Addition on the Physicochemical, Functional, Rheological, and Sensory Properties of Stirred Yogurt. Gels. 2024; 10(10):616. https://doi.org/10.3390/gels10100616
Chicago/Turabian StyleBlejan, Ana Maria, Violeta Nour, Alexandru Radu Corbu, and Georgiana Gabriela Codină. 2024. "Influence of Bilberry Pomace Powder Addition on the Physicochemical, Functional, Rheological, and Sensory Properties of Stirred Yogurt" Gels 10, no. 10: 616. https://doi.org/10.3390/gels10100616
APA StyleBlejan, A. M., Nour, V., Corbu, A. R., & Codină, G. G. (2024). Influence of Bilberry Pomace Powder Addition on the Physicochemical, Functional, Rheological, and Sensory Properties of Stirred Yogurt. Gels, 10(10), 616. https://doi.org/10.3390/gels10100616