The Effects of Subalpine Forest Succession on Soil Fungal Community Composition and Diversity Vary with Soil Depth and Trophic Mode on the Eastern Qinghai–Tibetan Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plot Setup and Soil Sampling
2.3. Determination of Soil Physicochemical Properties
2.4. DNA Extraction, MiSeq Sequencing, and Bioinformatics
2.5. Statistical Analysis
3. Results
3.1. Soil Fungal Community Composition
3.2. Soil Fungal Diversity
3.3. The Drivers of Soil Fungal Community
4. Discussion
4.1. Soil Fungal Community Composition
4.2. Soil Fungal Diversity
4.3. The Drivers of Soil Fungal Community
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Voříšková, J.; Baldrian, P. Fungal Community on Decomposing Leaf Litter Undergoes Rapid Successional Changes. ISME J. 2013, 7, 477–486. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Põlme, S.; Kõljalg, U.; Yorou, N.S.; Wijesundera, R.; Ruiz, L.V.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Global Diversity and Geography of Soil Fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef]
- Wang, J.-T.; Zheng, Y.-M.; Hu, H.-W.; Zhang, L.-M.; Li, J.; He, J.-Z. Soil pH Determines the Alpha Diversity but Not Beta Diversity of Soil Fungal Community along Altitude in a Typical Tibetan Forest Ecosystem. J. Soils Sediments 2015, 15, 1224–1232. [Google Scholar] [CrossRef]
- Pena, R.; Awad, A.; Nawaz, A.; Shang, Y.; Wubet, T.; Tibbett, M. Unravelling the Facilitation-Competition Continuum among Ectomycorrhizal and Saprotrophic Fungi. Soil Biol. Biochem. 2025, 208, 109865. [Google Scholar] [CrossRef]
- Clemmensen, K.E.; Finlay, R.D.; Dahlberg, A.; Stenlid, J.; Wardle, D.A.; Lindahl, B.D. Carbon Sequestration Is Related to Mycorrhizal Fungal Community Shifts during Long-Term Succession in Boreal Forests. New Phytol. 2015, 205, 1525–1536. [Google Scholar] [CrossRef]
- Chen, W.; Wang, J.; Meng, Z.; Xu, R.; Chen, J.; Zhang, Y.; Hu, T. Fertility-Related Interplay between Fungal Guilds Underlies Plant Richness–Productivity Relationships in Natural Grasslands. New Phytol. 2020, 226, 1129–1143. [Google Scholar] [CrossRef]
- Yang, T.; Adams, J.M.; Shi, Y.; He, J.; Jing, X.; Chen, L.; Tedersoo, L.; Chu, H. Soil Fungal Diversity in Natural Grasslands of the Tibetan Plateau: Associations with Plant Diversity and Productivity. New Phytol. 2017, 215, 756–765. [Google Scholar] [CrossRef]
- Frąc, M.; Hannula, S.E.; Bełka, M.; Jędryczka, M. Fungal Biodiversity and Their Role in Soil Health. Front. Microbiol. 2018, 9, 707. [Google Scholar] [CrossRef]
- Chang, C.C.; Turner, B.L. Ecological Succession in a Changing World. J. Ecol. 2019, 107, 503–509. [Google Scholar] [CrossRef]
- Li, F.; Wang, Z.; Hou, J.; Li, X.; Wang, D.; Yang, W. The Changes in Soil Organic Carbon Stock and Quality across a Subalpine Forest Successional Series. For. Ecosyst. 2024, 11, 100203. [Google Scholar] [CrossRef]
- Jiang, S.; Xing, Y.; Liu, G.; Hu, C.; Wang, X.; Yan, G.; Wang, Q. Changes in Soil Bacterial and Fungal Community Composition and Functional Groups during the Succession of Boreal Forests. Soil Biol. Biochem. 2021, 161, 108393. [Google Scholar] [CrossRef]
- Hu, P. Linking Bacterial Life Strategies with Soil Organic Matter Accrual by Karst Vegetation Restoration. Soil Biol. Biochem. 2023, 177, 108925. [Google Scholar] [CrossRef]
- Li, S.; Huang, X.; Shen, J.; Xu, F.; Su, J. Effects of Plant Diversity and Soil Properties on Soil Fungal Community Structure with Secondary Succession in the Pinus yunnanensis Forest. Geoderma 2020, 379, 114646. [Google Scholar] [CrossRef]
- Jiang, S.; Song, M.; Du, H.; Wang, F.; Song, T.; Chen, H.; Zeng, F.; Peng, W. Soil Properties Regulate Soil Microbial Communities during Forest Succession in a Karst Region of Southwest China. Microorganisms 2024, 12, 2136. [Google Scholar] [CrossRef]
- Zhao, W.; Yin, Y.; Li, S.; Dong, Y.; Su, S. Changes in Soil Fungal Community Composition and Functional Groups during the Succession of Alpine Grassland. Plant Soil 2023, 484, 201–216. [Google Scholar] [CrossRef]
- Jumpponen, A. Soil Fungal Community Assembly in a Primary Successional Glacier Forefront Ecosystem as Inferred from rDNA Sequence Analyses. New Phytol. 2003, 158, 569–578. [Google Scholar] [CrossRef]
- Peng, W.; Song, M.; Du, H.; Jiang, S.; Zeng, F.; Chen, H.; Song, T. Assembly Processes and Networks of Soil Microbial Communities along Karst Forest Succession. CATENA 2025, 248, 108574. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Cui, M.; Zhou, Z.; Zhang, Q.; Li, Y.; Ha, W.; Pang, D.; Luo, J.; Zhou, J. Effects of Secondary Succession on Soil Fungal and Bacterial Compositions and Diversities in a Karst Area. Plant Soil 2022, 475, 91–102. [Google Scholar] [CrossRef]
- Sun, H.; Sun, F.; Deng, X.; Storn, N. Soil Carbon Fractions Drive Microbial Community Assembly Processes during Forest Succession. J. Environ. Manag. 2025, 373, 123638. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Fry, E.L.; Eldridge, D.J.; de Vries, F.T.; Manning, P.; Hamonts, K.; Kattge, J.; Boenisch, G.; Singh, B.K.; Bardgett, R.D. Plant Attributes Explain the Distribution of Soil Microbial Communities in Two Contrasting Regions of the Globe. New Phytol. 2018, 219, 574–587. [Google Scholar] [CrossRef]
- Mundra, S.; Kjønaas, O.J.; Morgado, L.N.; Krabberød, A.K.; Ransedokken, Y.; Kauserud, H. Soil Depth Matters: Shift in Composition and Inter-Kingdom Co-Occurrence Patterns of Microorganisms in Forest Soils. FEMS Microbiol. Ecol. 2021, 97, fiab022. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Liu, S.; Shen, H.; Zhao, M.; Xu, L.; Xing, A.; Fang, J. Soil Extracellular Enzyme Activity and Stoichiometry in China’s Forests. Funct. Ecol. 2020, 34, 1461–1471. [Google Scholar] [CrossRef]
- Sterkenburg, E.; Bahr, A.; Brandström Durling, M.; Clemmensen, K.E.; Lindahl, B.D. Changes in Fungal Communities along a Boreal Forest Soil Fertility Gradient. New Phytol. 2015, 207, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Luo, X.; Huang, B.; Wang, H.; Sun, X.; Gao, H.; Zhou, M.; Xing, Y.; Wang, Q. Assembly Processes, Driving Factors, and Shifts in Soil Microbial Communities across Secondary Forest Succession. Land Degrad. Dev. 2023, 34, 3130–3143. [Google Scholar] [CrossRef]
- Clemmensen, K.E.; Bahr, A.; Ovaskainen, O.; Dahlberg, A.; Ekblad, A.; Wallander, H.; Stenlid, J.; Finlay, R.D.; Wardle, D.A.; Lindahl, B.D. Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest. Science 2013, 339, 1615–1618. [Google Scholar] [CrossRef]
- Chen, J.; Shi, Z.; Liu, S.; Zhang, M.; Cao, X.; Chen, M.; Xu, G.; Xing, H.; Li, F.; Feng, Q. Altitudinal Variation Influences Soil Fungal Community Composition and Diversity in Alpine–Gorge Region on the Eastern Qinghai–Tibetan Plateau. J. Fungi 2022, 8, 807. [Google Scholar] [CrossRef]
- Qiang, W.; He, L.; Zhang, Y.; Liu, B.; Liu, Y.; Liu, Q.; Pang, X. Aboveground Vegetation and Soil Physicochemical Properties Jointly Drive the Shift of Soil Microbial Community during Subalpine Secondary Succession in Southwest China. CATENA 2021, 202, 105251. [Google Scholar] [CrossRef]
- Tan, Q.; Lin, X.; Tedersoo, L.; Li, J.; Zhao, X.; Zhu, J.; Chu, H.; Yang, T. Successional Trajectories Differ between Soil Microbial Guilds after Logging in Mixed Conifer-Broadleaf Forests. Plant Soil 2025, 514, 3155–3172. [Google Scholar] [CrossRef]
- Cao, R.; Chang, C.; Xu, M.; Wang, Z.; Wang, Q.; Tan, B.; Li, H.; Wang, Z.; Hou, J.; Li, F.; et al. The Elevational Patterns and Key Drivers of Soil Microbial Communities Strongly Depend on Soil Layer and Season. Eur. J. Soil Sci. 2023, 74, e13419. [Google Scholar] [CrossRef]
- Xu, G.; Chen, H.; Shi, Z.; Liu, S.; Cao, X.; Zhang, M.; Chen, M.; Chen, J.; Xiong, K.; Yang, H.; et al. Mycorrhizal and Rhizospheric Fungal Community Assembly Differs during Subalpine Forest Restoration on the Eastern Qinghai-Tibetan Plateau. Plant Soil 2021, 458, 245–259. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME Improves Sensitivity and Speed of Chimera Detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and Clustering Orders of Magnitude Faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Kõljalg, U.; Nilsson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.S.; Bahram, M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.; Callaghan, T.M.; et al. Towards a Unified Paradigm for Sequence-Based Identification of Fungi. Mol. Ecol. 2013, 22, 5271–5277. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Põlme, S.; Abarenkov, K.; Henrik Nilsson, R.; Lindahl, B.D.; Clemmensen, K.E.; Kauserud, H.; Nguyen, N.; Kjøller, R.; Bates, S.T.; Baldrian, P.; et al. FungalTraits: A User-Friendly Traits Database of Fungi and Fungus-like Stramenopiles. Fungal Divers. 2020, 105, 1–16. [Google Scholar] [CrossRef]
- Peay, K.G.; Baraloto, C.; Fine, P.V.A. Strong Coupling of Plant and Fungal Community Structure across Western Amazonian Rainforests. ISME J. 2013, 7, 1852–1861. [Google Scholar] [CrossRef]
- Taguchi, Y.-H.; Oono, Y. Relational Patterns of Gene Expression via Non-Metric Multidimensional Scaling Analysis. Bioinformatics 2005, 21, 730–740. [Google Scholar] [CrossRef]
- Willis, A.D. Rarefaction, Alpha Diversity, and Statistics. Front. Microbiol. 2019, 10, 2407. [Google Scholar] [CrossRef]
- Baselga, A.; Orme, C.D.L. Betapart: An R Package for the Study of Beta Diversity. Methods Ecol. Evol. 2012, 3, 808–812. [Google Scholar] [CrossRef]
- Goslee, S.C.; Urban, D.L. The Ecodist Package for Dissimilarity-Based Analysis of Ecological Data. J. Stat. Softw. 2007, 22, 1–19. [Google Scholar] [CrossRef]
- Yang, Y.; Dou, Y.; Wang, B.; Xue, Z.; Wang, Y.; An, S.; Chang, S.X. Deciphering Factors Driving Soil Microbial Life-History Strategies in Restored Grasslands. iMeta 2023, 2, e66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhu, S.; Li, J.; Fu, F.; Guo, L.; Li, J.; Zhang, Y.; Liu, Y.; Chen, G.; Zhang, G. Elevational Distribution Patterns and Drivers Factors of Fungal Community Diversity at Different Soil Depths in the Abies Georgei Var. Smithii Forests on Sygera Mountains, Southeastern Tibet, China. Front. Microbiol. 2024, 15, 1444260. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, S.; Wang, C.; Lan, M.; Yang, S.; Luo, S.; Li, R.; Xia, J.; Xiao, B.; Xie, L.; et al. The Changes, Aggregation Processes, and Driving Factors for Soil Fungal Communities during Tropical Forest Restoration. J. Fungi 2024, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Braima, A.; Liu, B.; Ma, Y.; Sun, H. Soil Fungal Community Structure and Function Shift during a Disease-Driven Forest Succession. Microbiol. Spectr. 2022, 10, e00795-22. [Google Scholar] [CrossRef]
- Fang, K.; Liu, Y.-J.; Zhao, W.-Q.; Liu, J.; Zhang, X.-Y.; He, H.-L.; Kou, Y.-P.; Liu, Q. Stand Age Alters Fungal Community Composition and Functional Guilds in Subalpine Picea asperata Plantations. Appl. Soil Ecol. 2023, 188, 104860. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Wang, H.; Ouyang, S.; Liu, X.; Lu, J. Pattern and Drivers of Soil Fungal Community along Elevation Gradient in the Abies georgei Forests of Segila Mountains, Southeast Tibet. Glob. Ecol. Conserv. 2022, 39, e02291. [Google Scholar] [CrossRef]
- Luo, H.; Wang, C.; Zhang, K.; Ming, L.; Chu, H.; Wang, H. Elevational Changes in Soil Properties Shaping Fungal Community Assemblages in Terrestrial Forest. Sci. Total Environ. 2023, 900, 165840. [Google Scholar] [CrossRef]
- Liang, M.; Shi, L.; Burslem, D.F.R.P.; Johnson, D.; Fang, M.; Zhang, X.; Yu, S. Soil Fungal Networks Moderate Density-Dependent Survival and Growth of Seedlings. New Phytol. 2021, 230, 2061–2071. [Google Scholar] [CrossRef]
- Ward, S.F.; Liebhold, A.M.; Fei, S. Variable Effects of Forest Diversity on Invasions by Non-Native Insects and Pathogens. Biodivers. Conserv. 2022, 31, 2575–2586. [Google Scholar] [CrossRef]
- Baldrian, P. Forest Microbiome: Diversity, Complexity and Dynamics. FEMS Microbiol. Rev. 2017, 41, 109–130. [Google Scholar] [CrossRef]
- Wang, M.; Shao, Y.; Zhang, W.; Yu, B.; Shen, Z.; Fan, Z.; Zu, W.; Dai, G.; Fu, S. Secondary Succession Increases Diversity and Network Complexity of Soil Microbial Communities in Subtropical and Temperate Forests. CATENA 2025, 249, 108662. [Google Scholar] [CrossRef]
- Shi, J.; Deng, L.; Yang, L.; Dong, Y.; Liao, Y.; Li, J.; Liu, Y.; Ren, C.; Yang, F.; Shangguan, Z.; et al. Deciphering Microbial Drivers of Soil Organic Matter Mineralization in Surface and Subsurface Soil during Long-Term Vegetation Succession. Agric. Ecosyst. Environ. 2024, 374, 109186. [Google Scholar] [CrossRef]
- Strickland, M.S.; Lauber, C.; Fierer, N.; Bradford, M.A. Testing the Functional Significance of Microbial Community Composition. Ecology 2009, 90, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, T.; Rashid, M.I.; Maire, V.; Barot, S.; Perveen, N.; Alvarez, G.; Mougin, C.; Fontaine, S. Root Penetration in Deep Soil Layers Stimulates Mineralization of Millennia-Old Organic Carbon. Soil Biol. Biochem. 2018, 124, 150–160. [Google Scholar] [CrossRef]
- Chen, L.; Xiang, W.; Wu, H.; Ouyang, S.; Zhou, B.; Zeng, Y.; Chen, Y.; Kuzyakov, Y. Tree Species Identity Surpasses Richness in Affecting Soil Microbial Richness and Community Composition in Subtropical Forests. Soil Biol. Biochem. 2019, 130, 113–121. [Google Scholar] [CrossRef]
- Ning, D.; Yuan, M.; Wu, L.; Zhang, Y.; Guo, X.; Zhou, X.; Yang, Y.; Arkin, A.P.; Firestone, M.K.; Zhou, J. A Quantitative Framework Reveals Ecological Drivers of Grassland Microbial Community Assembly in Response to Warming. Nat. Commun. 2020, 11, 4717. [Google Scholar] [CrossRef]
- Stegen, J.C.; Lin, X.; Fredrickson, J.K.; Chen, X.; Kennedy, D.W.; Murray, C.J.; Rockhold, M.L.; Konopka, A. Quantifying Community Assembly Processes and Identifying Features That Impose Them. ISME J. 2013, 7, 2069–2079. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Reich, P.B.; Trivedi, C.; Eldridge, D.J.; Abades, S.; Alfaro, F.D.; Bastida, F.; Berhe, A.A.; Cutler, N.A.; Gallardo, A.; et al. Multiple Elements of Soil Biodiversity Drive Ecosystem Functions across Biomes. Nat. Ecol. Evol. 2020, 4, 210–220. [Google Scholar] [CrossRef]
- Schroeder, J.W.; Martin, J.T.; Angulo, D.F.; Arias-Del Razo, I.; Barbosa, J.M.; Perea, R.; Sebastián-González, E.; Dirzo, R. Host Plant Phylogeny and Abundance Predict Root-Associated Fungal Community Composition and Diversity of Mutualists and Pathogens. J. Ecol. 2019, 107, 1557–1566. [Google Scholar] [CrossRef]
- Pieterse, C.M.J.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Wees, S.C.M.V.; Bakker, P.A.H.M. Induced Systemic Resistance by Beneficial Microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef]
- Chen, W.; Wang, J.; Chen, X.; Meng, Z.; Xu, R.; Duoji, D.; Zhang, J.; He, J.; Wang, Z.; Chen, J.; et al. Soil Microbial Network Complexity Predicts Ecosystem Function along Elevation Gradients on the Tibetan Plateau. Soil Biol. Biochem. 2022, 172, 108766. [Google Scholar] [CrossRef]
- Louca, S.; Polz, M.F.; Mazel, F.; Albright, M.B.N.; Huber, J.A.; O’Connor, M.I.; Ackermann, M.; Hahn, A.S.; Srivastava, D.S.; Crowe, S.A.; et al. Function and Functional Redundancy in Microbial Systems. Nat. Ecol. Evol. 2018, 2, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Schimel, J.; Balser, T.C.; Wallenstein, M. Microbial Stress-Response Physiology and Its Implications for Ecosystem Function. Ecology 2007, 88, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil Bacterial and Fungal Communities across a pH Gradient in an Arable Soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Chai, Y.; Cao, Y.; Yue, M.; Tian, T.; Yin, Q.; Dang, H.; Quan, J.; Zhang, R.; Wang, M. Soil Abiotic Properties and Plant Functional Traits Mediate Associations between Soil Microbial and Plant Communities during a Secondary Forest Succession on the Loess Plateau. Front. Microbiol. 2019, 10, 895. [Google Scholar] [CrossRef]
- Rosenstock, N.P.; Berner, C.; Smits, M.M.; Krám, P.; Wallander, H. The Role of Phosphorus, Magnesium and Potassium Availability in Soil Fungal Exploration of Mineral Nutrient Sources in Norway Spruce Forests. New Phytol. 2016, 211, 542–553. [Google Scholar] [CrossRef]
- Devi, R.; Kaur, T.; Kour, D.; Yadav, A.; Yadav, A.N.; Suman, A.; Ahluwalia, A.S.; Saxena, A.K. Minerals Solubilizing and Mobilizing Microbiomes: A Sustainable Approach for Managing Minerals’ Deficiency in Agricultural Soil. J. Appl. Microbiol. 2022, 133, 1245–1272. [Google Scholar] [CrossRef]
- Kyaschenko, J.; Clemmensen, K.E.; Hagenbo, A.; Karltun, E.; Lindahl, B.D. Shift in Fungal Communities and Associated Enzyme Activities along an Age Gradient of Managed Pinus Sylvestris Stands. ISME J. 2017, 11, 863–874. [Google Scholar] [CrossRef]
- Tang, S.; Ma, Q.; Marsden, K.A.; Chadwick, D.R.; Luo, Y.; Kuzyakov, Y.; Wu, L.; Jones, D.L. Microbial Community Succession in Soil Is Mainly Driven by Carbon and Nitrogen Contents Rather than Phosphorus and Sulphur Contents. Soil Biol. Biochem. 2023, 180, 109019. [Google Scholar] [CrossRef]






| Abbreviation | Stand Age (a) | Vegetation Types | Dominant Plant Species |
|---|---|---|---|
| Stage 1 | 20–30 | Broadleaf forests | Betula albosinensis, Acer davidii |
| Stage 2 | 40–50 | Coniferous–broadleaf mixed forests | Betula utilis, Abies fargesii var. faxoniana, Picea purpurea |
| Stage 3 | 60–70 | Coniferous–broadleaf mixed forests | Betula albosinensis, Abies fargesii var. faxoniana |
| Stage 4 | >120 | Dark coniferous primary forests | Abies fargesii var. faxoniana, Rhododendron spp. |
| Soil Layers | Trophic Modes | ANOSIM | MRPP | PERMANOVA |
|---|---|---|---|---|
| 0–10 cm | Symbiotic fungi | 0.241 ** | 0.009 ** | 0.214 ** |
| 0–10 cm | Saprophytic fungi | 0.283 ** | 0.109 *** | 0.349 ** |
| 0–10 cm | Pathogenic fungi | 0.237 * | 0.065 *** | 0.290 ** |
| 40–60 cm | Symbiotic fungi | 0.286 *** | 0.013 *** | 0.220 *** |
| 40–60 cm | Saprophytic fungi | 0.158 * | 0.065 * | 0.286 * |
| 40–60 cm | Pathogenic fungi | 0.007 ns | 0.004 ns | 0.204 ns |
| Influencing Factors | 0–10 cm | 40–60 cm | ||||
|---|---|---|---|---|---|---|
| Symbiotic Fungi | Saprophytic Fungi | Pathogenic Fungi | Symbiotic Fungi | Saprophytic Fungi | Pathogenic Fungi | |
| SOC | 0.344 ns | 0.110 ns | 0.562 ** | 0.292 ns | 0.460 * | 0.080 ns |
| TN | 0.444 * | 0.041 ns | 0.449 * | 0.344 ns | 0.314 ns | 0.107 ns |
| TP | 0.243 ns | 0.141 ns | 0.490 * | 0.254 ns | 0.429 * | 0.429 * |
| TK | 0.370 * | 0.407 * | 0.068 ns | 0.444 * | 0.213 ns | 0.252 ns |
| AN | 0.285 ns | 0.048 ns | 0.603 ** | 0.156 ns | 0.115 ns | 0.163 ns |
| AP | 0.237 ns | 0.337 ns | 0.044 ns | 0.422 * | 0.186 ns | 0.097 ns |
| AK | 0.097 ns | 0.278 ns | 0.190 ns | 0.322 ns | 0.380 * | 0.143 ns |
| SWC | 0.245 ns | 0.289 ns | 0.035 ns | 0.128 ns | 0.056 ns | 0.174 ns |
| BD | 0.370 * | 0.324 ns | 0.453 * | 0.031 ns | 0.302 ns | 0.058 ns |
| pH | 0.059 ns | 0.663 ** | 0.292 ns | 0.636 ** | 0.180 ns | 0.022 ns |
| TGB | 0.087 ns | 0.395 * | 0.019 ns | 0.799 *** | 0.036 ns | 0.035 ns |
| Richness | 0.346 ns | 0.277 ns | 0.568 ** | 0.229 ns | 0.056 ns | 0.395 * |
| Soil Layer | Soil Fungi | Components | Fit Equation | R2 |
|---|---|---|---|---|
| 0–10 | Symbiotrophic | β-diversity | 0.992 − 0.0003AN +0.0034pH + 0.0008TK + 0.0022TN | 0.129 ** |
| Turnover | 0.979 − 0.0001AK + 0.0203pH − 0.0009SOC + 0.0108TN + 0.0313TP | 0.146 ** | ||
| Nestedness | 0.0244 + 0.0001AK − 0.0211BD − 0.0090pH + 0.0007SOC − 0.0341SWC − 0.0013TK − 0.0089TN − 0.0186TP | 0.187 ** | ||
| 0–10 | Saprotrophic | β-diversity | 0.811 − 0.015AP + 0.080pH + 0.0029Richness + 0.0046SOC − 0.468SWC − 0.014TK − 0.066TN | 0.482 *** |
| Turnover | 0.779 − 0.0004AN − 0.012AP + 0.070pH + 0.003Richness + 0.0071SOC − 0.544SWC − 0.014TK − 0.078TN | 0.477 *** | ||
| Nestedness | 0.035 + 0.0001AN − 0.0019SOC + 0.073SWC + 0.017TN | 0.199 *** | ||
| 0–10 | Pathotrophic | β-diversity | 0.909 + 0.041pH + 0.001Richness − 0.120SWC + 0.006TK | 0.193 *** |
| Turnover | 0.766 + 0.0004AK + 0.268BD − 0.0039SOC − 0.0037TGB + 0.018TK + 0.066TN | 0.144 ** | ||
| Nestedness | 0.100 − 0.0079AP + 0.0036TGB − 0.146TP | 0.128 ** | ||
| 40–60 | Symbiotrophic | β-diversity | 0.995 − 0.0001AK + 0.0002Richness + 0.0003SOC | 0.091 * |
| Turnover | 0.912 + 0.0958pH + 0.0047Richness − 0.0135TK + 0.0894TN − 0.311TP | 0.142 ** | ||
| Nestedness | 0.0813 − 0.0922pH − 0.0045Richness + 0.0132TK − 0.0862TN + 0.310TP | 0.139 ** | ||
| 40–60 | Saprotrophic | β-diversity | 0.749 − 0.0012AN + 0.340SWC + 0.263TP | 0.232 *** |
| Turnover | 0.714 − 0.0016AN + 0.312TP + 0.395SWC | 0.246 *** | ||
| Nestedness | 0.027 + 0.0003AN − 0.049SWC + 0.0016TK − 0.050TP | 0.178 *** | ||
| 40–60 | Pathotrophic | β-diversity | 0.899 + 0.0007AK + 0.0007AN − 0.006AP − 0.033TN | 0.167 *** |
| Turnover | 0.714 + 0.0002AK − 0.0021TGB | 0.072 * | ||
| Nestedness | 0.157 + 0.0008AN + 0.0015TGB + 0.0055TN + 0.0015AP | 0.060 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Chen, J.; Tang, X.; Liu, S.; Xing, H.; Li, X.; Cai, L.; Xu, Z.; Miao, W.; Hu, X.; et al. The Effects of Subalpine Forest Succession on Soil Fungal Community Composition and Diversity Vary with Soil Depth and Trophic Mode on the Eastern Qinghai–Tibetan Plateau. J. Fungi 2025, 11, 881. https://doi.org/10.3390/jof11120881
Chen M, Chen J, Tang X, Liu S, Xing H, Li X, Cai L, Xu Z, Miao W, Hu X, et al. The Effects of Subalpine Forest Succession on Soil Fungal Community Composition and Diversity Vary with Soil Depth and Trophic Mode on the Eastern Qinghai–Tibetan Plateau. Journal of Fungi. 2025; 11(12):881. https://doi.org/10.3390/jof11120881
Chicago/Turabian StyleChen, Miao, Jian Chen, Xiaoqiang Tang, Shun Liu, Hongshuang Xing, Xuhua Li, Lei Cai, Zhengjingru Xu, Wenhao Miao, Xia Hu, and et al. 2025. "The Effects of Subalpine Forest Succession on Soil Fungal Community Composition and Diversity Vary with Soil Depth and Trophic Mode on the Eastern Qinghai–Tibetan Plateau" Journal of Fungi 11, no. 12: 881. https://doi.org/10.3390/jof11120881
APA StyleChen, M., Chen, J., Tang, X., Liu, S., Xing, H., Li, X., Cai, L., Xu, Z., Miao, W., Hu, X., & Feng, Q. (2025). The Effects of Subalpine Forest Succession on Soil Fungal Community Composition and Diversity Vary with Soil Depth and Trophic Mode on the Eastern Qinghai–Tibetan Plateau. Journal of Fungi, 11(12), 881. https://doi.org/10.3390/jof11120881
