Does Forest Soil Fungal Community Respond to Short-Term Simulated Nitrogen Deposition in Different Forests in Eastern China?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Experimental Design
2.2. Sample Collection
2.3. Measurements of Soil Physicochemical Properties, Microbial Biomass, and Soil Enzyme Activities
2.4. Vector Analysis for Measurement of Microbial Nutrient Limitation
2.5. DNA Extraction, PCR Amplification, and Illumina Sequencing
2.6. Sequence Data Processing
2.7. Statistical Analyses
3. Results
3.1. Effects of N Addition on Soil Properties and Soil Fungal Diversity
3.2. Effects of N Addition on Soil Fungal Community Structures, and Functional Compositions
3.3. Relationships between Fungal Communities and Environment Variables
4. Discussion
4.1. Unsensitivity of Forest Soil Fungi Respond to Short-Term N Deposition
4.2. Factors Shaping Soil Fungal Community in Chinese Eastern Forests
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ackerman, D.; Millet, D.B.; Chen, X. Global Estimates of Inorganic Nitrogen Deposition Across Four Decades. Glob. Biogeochem. Cycles 2019, 33, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Goll, D.; Balkanski, Y.; Hauglustaine, D.; Boucher, O.; Ciais, P.; Janssens, I.; Penuelas, J.; Guenet, B.; Sardans, J.; et al. Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Glob. Chang. Biol. 2017, 23, 4854–4872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurmesa, G.A.; Wang, A.; Li, S.; Peng, S.; de Vries, W.; Gundersen, P.; Ciais, P.; Phillips, O.L.; Hobbie, E.A.; Zhu, W.; et al. Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink. Nat. Commun. 2022, 13, 880. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Jia, Y.; He, N.; Zhu, J.; Chen, Z.; Wang, Q.; Piao, S.; Liu, X.; He, H.; Guo, X.; et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 2019, 12, 424–429. [Google Scholar] [CrossRef]
- Frac, M.; Hannula, S.E.; Belka, M.; Jedryczka, M. Fungal Biodiversity and Their Role in Soil Health. Front. Microbiol. 2018, 9, 707. [Google Scholar] [CrossRef] [Green Version]
- Li, P.D.; Jeewon, R.; Aruna, B.; Li, H.Y.; Lin, F.C.; Wang, H.K. Metabarcoding reveals differences in fungal communities between unflooded versus tidal flat soil in coastal saline ecosystem. Sci. Total Environ. 2019, 690, 911–922. [Google Scholar] [CrossRef]
- Luo, G.; Rensing, C.; Chen, H.; Liu, M.; Wang, M.; Guo, S.; Ling, N.; Shen, Q.; Briones, M. Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management. Funct. Ecol. 2018, 32, 1103–1116. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Polme, S.; Koljalg, U.; Yorou, N.S.; Wijesundera, R.; Villarreal Ruiz, L.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Fungal biogeography. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef] [Green Version]
- Lilleskov, E.A.; Kuyper, T.W.; Bidartondo, M.I.; Hobbie, E.A. Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: A review. Environ. Pollut. 2019, 246, 148–162. [Google Scholar] [CrossRef]
- Põlme, S.; Abarenkov, K.; Henrik Nilsson, R.; Lindahl, B.D.; Clemmensen, K.E.; Kauserud, H.; Nguyen, N.; Kjøller, R.; Bates, S.T.; Baldrian, P.; et al. FungalTraits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 2020, 105, 1–16. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Guerra, C.A.; Cano-Díaz, C.; Egidi, E.; Wang, J.-T.; Eisenhauer, N.; Singh, B.K.; Maestre, F.T. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Chang. 2020, 10, 550–554. [Google Scholar] [CrossRef]
- Morrison, E.W.; Frey, S.D.; Sadowsky, J.J.; van Diepen, L.T.A.; Thomas, W.K.; Pringle, A. Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest. Fungal Ecol. 2016, 23, 48–57. [Google Scholar] [CrossRef]
- Karst, J.; Wasyliw, J.; Birch, J.D.; Franklin, J.; Chang, S.X.; Erbilgin, N. Long-term nitrogen addition does not sustain host tree stem radial growth but doubles the abundance of high-biomass ectomycorrhizal fungi. Glob. Chang. Biol. 2021, 27, 4125–4138. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Jiao, S.; Tan, X.; Wei, H.; Ma, X.; Nie, Y.; Liu, J.; Lu, X.; Mo, J.; Shen, W. Adaptation of Soil Fungal Community Structure and Assembly to Long- Versus Short-Term Nitrogen Addition in a Tropical Forest. Front. Microbiol. 2021, 12, 689674. [Google Scholar] [CrossRef]
- Weber, C.F.; Vilgalys, R.; Kuske, C.R. Changes in Fungal Community Composition in Response to Elevated Atmospheric CO2 and Nitrogen Fertilization Varies with Soil Horizon. Front. Microbiol. 2013, 4, 78. [Google Scholar] [CrossRef] [Green Version]
- Burke, D.J.; Carrino-Kyker, S.R.; Burns, J.H. Is it climate or chemistry? Soil fungal communities respond to soil nutrients in a multi-year high-resolution analysis. Ecosphere 2019, 10, e02896. [Google Scholar] [CrossRef] [Green Version]
- Stursova, M.; Barta, J.; Santruckova, H.; Baldrian, P. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol. Ecol. 2016, 92, fiw185. [Google Scholar] [CrossRef] [Green Version]
- Teng, J.; Tian, J.; Barnard, R.; Yu, G.; Kuzyakov, Y.; Zhou, J. Aboveground and Belowground Plant Traits Explain Latitudinal Patterns in Topsoil Fungal Communities From Tropical to Cold Temperate Forests. Front. Microbiol. 2021, 12, 633751. [Google Scholar] [CrossRef]
- Zhou, Z.; Zheng, M.; Xia, J.; Wang, C. Nitrogen addition promotes soil microbial beta diversity and the stochastic assembly. Sci. Total Environ. 2022, 806, 150569. [Google Scholar] [CrossRef]
- Mueller, R.C.; Balasch, M.M.; Kuske, C.R. Contrasting soil fungal community responses to experimental nitrogen addition using the large subunit rRNA taxonomic marker and cellobiohydrolase I functional marker. Mol. Ecol. 2014, 23, 4406–4417. [Google Scholar] [CrossRef]
- He, W.; Zhang, M.; Jin, G.; Sui, X.; Zhang, T.; Song, F. Effects of Nitrogen Deposition on Nitrogen-Mineralizing Enzyme Activity and Soil Microbial Community Structure in a Korean Pine Plantation. Microb. Ecol. 2021, 81, 410–424. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Yang, J.; Sang, C.; Wang, X.; Sun, L.; Jiang, P.; Wang, C.; Bai, E. Phosphorus Reduces Negative Effects of Nitrogen Addition on Soil Microbial Communities and Functions. Microorganisms 2020, 8, 1828. [Google Scholar] [CrossRef] [PubMed]
- Bahram, M.; Hildebrand, F.; Forslund, S.K.; Anderson, J.L.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bengtsson-Palme, J.; Anslan, S.; Coelho, L.P.; Harend, H.; et al. Structure and function of the global topsoil microbiome. Nature 2018, 560, 233–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Li, T.; Wang, Y.; Cheng, H.; Chang, S.X.; Liang, C.; An, S. Negative effects of multiple global change factors on soil microbial diversity. Soil Biol. Biochem. 2021, 156, 108229. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, Y.; Shen, L.; Wen, C.; Yan, Q.; Ning, D.; Qin, Y.; Xue, K.; Wu, L.; He, Z.; et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 2016, 7, 12083. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Cheng, H.; Gao, H.; An, S. Response and driving factors of soil microbial diversity related to global nitrogen addition. Land Degrad. Dev. 2020, 31, 190–204. [Google Scholar] [CrossRef]
- Li, J.; Dong, L.; Liu, Y.; Wu, J.; Wang, J.; Shangguan, Z.; Deng, L. Soil organic carbon variation determined by biogeographic patterns of microbial carbon and nutrient limitations across a 3000-km humidity gradient in China. Catena 2022, 209, 105849. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Allison, S.D.; Crenshaw, C.; Contosta, A.R.; Cusack, D.; Frey, S.; Gallo, M.E.; et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef]
- Cui, J.; Zhu, R.; Wang, X.; Xu, X.; Ai, C.; He, P.; Liang, G.; Zhou, W.; Zhu, P. Effect of high soil C/N ratio and nitrogen limitation caused by the long-term combined organic-inorganic fertilization on the soil microbial community structure and its dominated SOC decomposition. J. Environ. Manag. 2022, 303, 114155. [Google Scholar] [CrossRef]
- Du, E.; Zhou, Z.; Li, P.; Hu, X.; Ma, Y.; Wang, W.; Zheng, C.; Zhu, J.; He, J.S.; Fang, J. NEECF: A project of nutrient enrichment experiments in China’s forests. J. Plant Ecol. 2013, 6, 428–435. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy; United Stated Department of Agriculture and Natural Resources Conservation Service: Washington, DC, USA, 2003; pp. 37–41.
- Tian, D.; Jiang, L.; Ma, S.; Fang, W.; Schmid, B.; Xu, L.; Zhu, J.; Li, P.; Losapio, G.; Jing, X.; et al. Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China. Sci. Total Environ. 2017, 607–608, 1367–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margesin, R.; Schinner, F. Manual for Soil Analysis—Monitoring and Assessing Soil Bioremediation; Springer Science & Business Media: New York, NY, USA, 2005; pp. 281–295. [Google Scholar]
- Jing, X.; Chen, X.; Tang, M.; Ding, Z.; Jiang, L.; Li, P.; Ma, S.; Tian, D.; Xu, L.; Zhu, J.; et al. Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests. Sci. Total Environ. 2017, 607–608, 806–815. [Google Scholar] [CrossRef] [PubMed]
- German, D.P.; Weintraub, M.N.; Grandy, A.S.; Lauber, C.L.; Rinkes, Z.L.; Allison, S.D. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 2011, 43, 1387–1397. [Google Scholar] [CrossRef]
- Bach, C.E.; Warnock, D.D.; Van Horn, D.J.; Weintraub, M.N.; Sinsabaugh, R.L.; Allison, S.D.; German, D.P. Measuring phenol oxidase and peroxidase activities with pyrogallol, l-DOPA, and ABTS: Effect of assay conditions and soil type. Soil Biol. Biochem. 2013, 67, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Moorhead, D.L.; Rinkes, Z.L.; Sinsabaugh, R.L.; Weintraub, M.N. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: Informing enzyme-based decomposition models. Front. Microbiol. 2013, 4, 223. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.; Chen, X.; Fang, J.; Ji, C.; Shen, H.; Zheng, C.; Zhu, B. Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems. Soil. Biol. Biochem. 2020, 141, 107657. [Google Scholar] [CrossRef]
- Nally, R.M.; Walsh, C.J. Hierarchical partitioning public-domain software. Biodivers. Conserv. 2004, 13, 659–660. [Google Scholar] [CrossRef]
- Sha, M.; Xu, J.; Zheng, Z.; Fa, K. Enhanced atmospheric nitrogen deposition triggered little change in soil microbial diversity and structure in a desert ecosystem. Glob. Ecol. Conserv. 2021, 31, e01879. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, T.; Lu, X.; Ellsworth, D.S.; BassiriRad, H.; You, C.; Wang, D.; He, P.; Deng, Q.; Liu, H.; et al. Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis. Glob. Chang. Biol. 2020, 26, 3585–3600. [Google Scholar] [CrossRef]
- Hiiesalu, I.; Bahram, M.; Tedersoo, L. Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats. Mol. Ecol. 2017, 26, 4846–4858. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, X.; Sun, F.; Zhao, Y.; Sun, W.; Guo, J.; Zhang, T. Sensitivity of soil fungal and bacterial community compositions to nitrogen and phosphorus additions in a temperate meadow. Plant Soil 2021, 471, 477–490. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, M.; Yang, Z.; Cong, M.; Zhu, X.; Jia, H. Soil Microbial Community Response to Nitrogen Application on a Swamp Meadow in the Arid Region of Central Asia. Front. Microbiol. 2021, 12, 797306. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, D.; Bai, E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. 2018, 120, 126–133. [Google Scholar] [CrossRef]
- Wang, J.; Shi, X.; Zheng, C.; Suter, H.; Huang, Z. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest. Sci. Total Environ. 2021, 755, 142449. [Google Scholar] [CrossRef] [PubMed]
- Grzadziel, J.; Galazka, A. Fungal Biodiversity of the Most Common Types of Polish Soil in a Long-Term Microplot Experiment. Front. Microbiol. 2019, 10, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; Xing, Y.; Liu, G.; Hu, C.; Wang, X.; Yan, G.; Wang, Q. Changes in soil bacterial and fungal community composition and functional groups during the succession of boreal forests. Soil Biol. Biochem. 2021, 161, 108393. [Google Scholar] [CrossRef]
- Ye, C.; Chen, D.; Hall, S.J.; Pan, S.; Yan, X.; Bai, T.; Guo, H.; Zhang, Y.; Bai, Y.; Hu, S. Reconciling multiple impacts of nitrogen enrichment on soil carbon: Plant, microbial and geochemical controls. Ecol. Lett. 2018, 21, 1162–1173. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.A.M.; Anthony, M.A.; Pec, G.J.; Trocha, L.K.; Trzebny, A.; Geyer, K.M.; van Diepen, L.T.A.; Frey, S.D. Fungal community structure and function shifts with atmospheric nitrogen deposition. Glob. Chang. Biol. 2021, 27, 1349–1364. [Google Scholar] [CrossRef]
- Ma, S.; Chen, G.; Tang, W.; Xing, A.; Chen, X.; Xiao, W.; Zhou, L.; Zhu, J.; Li, Y.; Zhu, B.; et al. Inconsistent responses of soil microbial community structure and enzyme activity to nitrogen and phosphorus additions in two tropical forests. Plant Soil 2021, 460, 453–468. [Google Scholar] [CrossRef]
- Gadgil, R.L.; Gadgil, P.D. Mycorrhiza and litter decomposition. Nature 1971, 233, 133. [Google Scholar] [CrossRef]
- Ning, C.; Mueller, G.; Egerton-Warburton, L.; Wilson, A.; Yan, W.; Xiang, W. Diversity and Enzyme Activity of Ectomycorrhizal Fungal Communities Following Nitrogen Fertilization in an Urban-Adjacent Pine Plantation. Forests 2018, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.; Yang, T.; Zhang, K.; Shen, C.; Chu, H. Fungal Communities Along a Small-Scale Elevational Gradient in an Alpine Tundra Are Determined by Soil Carbon Nitrogen Ratios. Front. Microbiol. 2018, 9, 1815. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, H.; Tian, P.; Yao, X.; Sun, H.; Wang, Q.; Delgado-Baquerizo, M. Decoupled diversity patterns in bacteria and fungi across continental forest ecosystems. Soil Biol. Biochem. 2020, 144, 107763. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Manzoni, S.; Moorhead, D.L.; Richter, A. Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling. Ecol. Lett. 2013, 16, 930–939. [Google Scholar] [CrossRef]
- Brockett, B.F.T.; Prescott, C.E.; Grayston, S.J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 2012, 44, 9–20. [Google Scholar] [CrossRef]
- Ji, L.; Shen, F.; Liu, Y.; Yang, Y.; Wang, J.; Purahong, W.; Yang, L. Contrasting altitudinal patterns and co-occurrence networks of soil bacterial and fungal communities along soil depths in the cold-temperate montane forests of China. Catena 2022, 209, 105844. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, G.; Zhang, X.; He, N.; Wang, Q.; Wang, S.; Xu, X.; Wang, R.; Zhao, N. Biogeographical patterns of soil microbial community as influenced by soil characteristics and climate across Chinese forest biomes. Appl. Soil Ecol. 2018, 124, 298–305. [Google Scholar] [CrossRef]
- Custodio, V.; Gonin, M.; Stabl, G.; Bakhoum, N.; Oliveira, M.M.; Gutjahr, C.; Castrillo, G. Sculpting the soil microbiota. Plant J. 2022, 109, 508–522. [Google Scholar] [CrossRef]
- Vetrovsky, T.; Kohout, P.; Kopecky, M.; Machac, A.; Man, M.; Bahnmann, B.D.; Brabcova, V.; Choi, J.; Meszarosova, L.; Human, Z.R.; et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 2019, 10, 5142. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Veresoglou, S.D.; Tedersoo, L.; Xu, T.; Ge, T.; Liu, L.; Chen, Y.; Hao, Z.; Su, Y.; Rillig, M.C.; et al. Contrasting latitudinal diversity and co-occurrence patterns of soil fungi and plants in forest ecosystems. Soil Biol. Biochem. 2019, 131, 100–110. [Google Scholar] [CrossRef]
- Wang, S.; Bao, X.; Feng, K.; Deng, Y.; Zhou, W.; Shao, P.; Zheng, T.; Yao, F.; Yang, S.; Liu, S.; et al. Warming-driven migration of core microbiota indicates soil property changes at continental scale. Sci. Bull. 2021, 66, 2025–2035. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, J.; Berdugo, M.; Guirado, E.; Guerra, C.A.; Egidi, E.; Wang, J.; Singh, B.K.; Delgado-Baquerizo, M. Temperature thresholds drive the global distribution of soil fungal decomposers. Glob. Chang. Biol. 2022, 28, 2779–2789. [Google Scholar] [CrossRef] [PubMed]
- Sinsabaugh, R.L.; Follstad Shah, J.J.; Hill, B.H.; Elonen, C.M. Ecoenzymatic stoichiometry of stream sediments with comparison to terrestrial soils. Biogeochemistry 2012, 111, 455–467. [Google Scholar] [CrossRef]
- Fanin, N.; Moorhead, D.; Bertrand, I. Eco-enzymatic stoichiometry and enzymatic vectors reveal differential C, N, P dynamics in decaying litter along a land-use gradient. Biogeochemistry 2016, 129, 21–36. [Google Scholar] [CrossRef]
Biome | Site | Forest Type | Soil Type | Location | Altitude | MAT | MAP |
---|---|---|---|---|---|---|---|
(m) | (°C) | (mm) | |||||
Tropical forest | JFL | TMF | Inceptisols | 18°43′ N, 108°53′ E | 870 | 24.7 | 2449 |
Subtropical forest | WYS | SEB | Ultisols | 27°39′ N, 117°57′ E | 700 | 18.6 | 2159.4 |
Temperate forest | DLS | TDB | Alfisols | 39°58′ N, 115°26′ E | 1300 | 9.8 | 472.1 |
WY | TBCM | Alfisols | 48°07′ N, 129°11′ E | 350 | 1.8 | 719.4 | |
Boreal forest | GH | BF | Alfisols | 50°56′ N, 121°30′ E | 825 | −3.4 | 487.5 |
Variables | F-Values | ||
---|---|---|---|
Forest Type | N Treat | Forest Type × N Treat | |
pH | 166.87 ** | 2.01 | 1.94 |
SWC | 112.85 ** | 0.62 | 0.99 |
STC | 715.45 ** | 0.85 | 1.33 |
STN | 203.31 ** | 1.18 | 0.77 |
STP | 95.94 ** | 0.41 | 0.33 |
C:N | 56.57 ** | 3.2 | 1.4 |
C:P | 163.18 ** | 0.59 | 1.6 |
N:P | 75.72 ** | 0.35 | 1 |
MBC | 23.91 ** | 0.24 | 1.04 |
MBN | 20.05 ** | 0.17 | 0.58 |
PN_lim | 120.27 ** | 0.7 | 0.59 |
Chao1 | 27.07 ** | 1.74 | 0.82 |
Shannon | 2.97 * | 3.73 * | 0.78 |
Variables | F-Values | ||
---|---|---|---|
Forest Type | N Treat | Forest Type × N Treat | |
Ascomycota | 9.72 ** | 3.18 | 0.88 |
Basidiomycota | 5.98 ** | 3.37 * | 1.3 |
Mortierellomycota | 16.7 ** | 0.13 | 2.86 * |
Soil_saprotroph | 14.14 ** | 3.68 * | 1.76 |
Ectomycorrhizal | 5.98 ** | 1.32 | 1.54 |
Mycoparasite | 16.17 ** | 3.27 | 0.95 |
Litter_saprotroph | 2.16 | 0.51 | 0.17 |
Unspecified_saprotroph | 3.06 * | 1.26 | 1.86 |
Wood_saprotroph | 7.96 ** | 4.93 * | 1.6 |
Plant_pathogen | 11.27 ** | 2.67 | 1 |
Animal_parasite | 8.51 ** | 0.2 | 0.46 |
Dung_saprotroph | 1.74 | 3.1 | 0.78 |
Root_endophyte | 25.13 ** | 0.63 | 2.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Xu, G.; Tian, D.; Lin, Q.; Ma, S.; Xing, A.; Xu, L.; Shen, H.; Ji, C.; Zheng, C.; et al. Does Forest Soil Fungal Community Respond to Short-Term Simulated Nitrogen Deposition in Different Forests in Eastern China? J. Fungi 2023, 9, 53. https://doi.org/10.3390/jof9010053
Liu Z, Xu G, Tian D, Lin Q, Ma S, Xing A, Xu L, Shen H, Ji C, Zheng C, et al. Does Forest Soil Fungal Community Respond to Short-Term Simulated Nitrogen Deposition in Different Forests in Eastern China? Journal of Fungi. 2023; 9(1):53. https://doi.org/10.3390/jof9010053
Chicago/Turabian StyleLiu, Zhenyue, Gexi Xu, Di Tian, Quanhong Lin, Suhui Ma, Aijun Xing, Longchao Xu, Haihua Shen, Chengjun Ji, Chengyang Zheng, and et al. 2023. "Does Forest Soil Fungal Community Respond to Short-Term Simulated Nitrogen Deposition in Different Forests in Eastern China?" Journal of Fungi 9, no. 1: 53. https://doi.org/10.3390/jof9010053
APA StyleLiu, Z., Xu, G., Tian, D., Lin, Q., Ma, S., Xing, A., Xu, L., Shen, H., Ji, C., Zheng, C., Wang, X., & Fang, J. (2023). Does Forest Soil Fungal Community Respond to Short-Term Simulated Nitrogen Deposition in Different Forests in Eastern China? Journal of Fungi, 9(1), 53. https://doi.org/10.3390/jof9010053