Developmental Roles of the Hog1 Protein Phosphatases of the Maize Pathogen Cochliobolus heterostrophus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Candidate Protein Phosphatase Gene Search
2.2. DNA Manipulations and Construction of C. heterostrophus Transformation Vectors
2.3. Generation and Transformation of Fungal Protoplasts.
2.4. Single-Spore Isolation
2.5. Transformant Verification
2.6. Growth Rate Measurements and Phenotypes
2.7. Hog1’s Phosphorylation State in Response to Different Stimuli
2.8. Immunoblotting
2.9. Virulence Assays
2.10. Complementation Analysis
3. Results
3.1. Identification of Protein Phosphatase Genes
3.2. Phenotypic Characterization of the Protein Phosphatase Deletion Mutants
3.3. Spore and Colony Morphology
3.4. Growth Rate, Germination and Germling Adherence
3.5. Virulence Assays
3.6. The Effect of Phosphatase Deletions on Hog1 Dual Phosphorylation
4. Discussion
4.1. Hog1 Dephosphorylation as a Signal
4.2. Contribution of More than One Phosphatase to FA-Induced Hog1 Dephosphorylation
4.3. Hog1 Phosphatases of C. heterostrophus in Comparison to Other Fungal Models
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winkelströter, L.K.; Bom, V.L.P.; de Castro, P.A.; Ramalho, L.N.Z.; Goldman, M.H.S.; Brown, N.A.; Rajendran, R.; Ramage, G.; Bovier, E.; dos Reis, T.F.; et al. High osmolarity glycerol response PtcB phosphatase is important for Aspergillus fumigatus virulence. Mol. Microbiol. 2015, 96, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.C.; Qi, R.Z.; Paudel, H.; Zhu, H.J. Regulation and function of protein kinases and phosphatases. Enzym. Res. 2011, 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattison, C.P.; Ota, I.M. Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast. Genes Dev. 2000, 14, 1229–1235. [Google Scholar] [PubMed]
- Peterson, R.T.; Desai, B.N.; Hardwick, J.S.; Schreiber, S.L. Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycin-associated protein. Proc. Natl. Acad. Sci. USA 1999, 96, 4438–4442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayllón, V.; Martínez-A, C.; García, A.; Cayla, X.; Rebollo, A. Protein phosphatase 1α is a Ras-activated Bad phosphatase that regulates interleukin-2 deprivation-induced apoptosis. EMBO J. 2000, 19, 2237–2246. [Google Scholar]
- Kim, J.; Oh, J.; Sung, G.-H. MAP kinase Hog1 regulates metabolic changes induced by hyperosmotic stress. Front. Microbiol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Hamel, L.P.; Nicole, M.C.; Duplessis, S.; Ellis, B.E. Mitogen-activated protein kinase signaling in plant-interacting fungi: Distinct messages from conserved messengers. Plant Cell 2012, 24, 1327–1351. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, S.; Larkov, O.; Lamdan, N.L.; Goldshmidt-Tran, O.; Horwitz, B.A. Plant phenolic acids induce programmed cell death of a fungal pathogen: MAPK signaling and survival of Cochliobolus heterostrophus. Environ. Microbiol. 2016, 18, 4188–4199. [Google Scholar] [CrossRef]
- Lygin, A.V.; Upton, J.; Dohleman, F.G.; Juvik, J.; Zabotina, O.A.; Widholm, J.M.; Lozovaya, V.V. Composition of cell wall phenolics and polysaccharides of the potential bioenergy crop -Miscanthus. GCB Bioenergy 2011, 3, 333–345. [Google Scholar] [CrossRef]
- De Oliveira, D.M.; Finger-Teixeira, A.; Rodrigues Mota, T.; Salvador, V.H.; Moreira-Vilar, F.C.; Correa Molinari, H.B.; Craig Mitchell, R.A.; Marchiosi, R.; Ferrarese-Filho, O.; dos Santos, W.D. Ferulic acid: A key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnol. J. 2015, 13, 1224–1232. [Google Scholar] [CrossRef]
- Condon, B.J.; Leng, Y.; Wu, D.; Bushley, K.E.; Ohm, R.A.; Otillar, R.; Martin, J.; Schackwitz, W.; Grimwood, J.; MohdZainudin, N.A.I.; et al. Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens. PLoS Genet. 2013, 9, e1003233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shalaby, S.; Horwitz, B.A. Plant phenolic compounds and oxidative stress: Integrated signals in fungal–plant interactions. Curr. Genet. 2015, 61, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Vendrell, A.; Martánez-Pastor, M.; González-Novo, A.; Pascual-Ahuir, A.; Sinclair, D.A.; Proft, M.; Posas, F. Sir2 histone deacetylase prevents programmed cell death caused by sustained activation of the Hog1 stress-activated protein kinase. EMBO Rep. 2011, 2, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Day, A.M.; Smith, D.A.; Ikeh, M.A.C.; Haider, M.; Herrer -de-Dios, C.M.; Brown, A.J.P.; Morgan, B.A.; Erwig, L.P.; MacCallum, D.M.; Quinn, J. Blocking two-component signalling enhances Candida albicans virulence and reveals adaptive mechanisms that counteract sustained SAPK activation. PLoS Pathog. 2017, 13, e1006131. [Google Scholar] [CrossRef] [PubMed]
- Bohnert, S.; Heck, L.; Gruber, C.; Neumann, H.; Distler, U.; Tenzer, S.; Yemelin, A.; Thines, E.; Jacob, S. Fungicide resistance toward fludioxonil conferred by overexpression of the phosphatase gene MoPTP2 in Magnaporthe oryzae. Mol. Microbiol. 2019, 111, 662–677. [Google Scholar]
- Simaan, H.; Shalaby, S.; Hatoel, M.; Karinski, O.; Goldshmidt-Tran, O.; Horwitz, B.A. The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic. Curr. Genet. 2020, 66, 187–203. [Google Scholar] [CrossRef]
- Ohm, R.A.; Feau, N.; Henrissat, B.; Schoch, C.L.; Horwitz, B.A.; Barry, K.W.; Condon, B.J.; Copeland, A.C.; Dhillon, B.; Glaser, F.; et al. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi. PLoS Pathog. 2012, 8, e1003037. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Servin, J.A.; Park, G.; Borkovich, K.A. Global analysis of serine/threonine and tyrosine protein phosphatase catalytic subunit genes in Neurospora crassa reveals interplay between phosphatases and the p38 mitogen-activated protein kinase. G3 Genes Genomes Genet. 2014, 4, 349–365. [Google Scholar]
- Winkelströter, L.K.; Dolan, S.K.; dos Reis, T.F.; Bom, V.L.P.; de Castro, P.A.; Hagiwara, D.; Alowni, R.; Jones, G.W.; Doyle, S.; Brown, N.A.; et al. Systematic global analysis of genes encoding protein phosphatases in Aspergillus fumigatus. G3 Genes Genomes Genet. 2015, 5, 1525–1539. [Google Scholar]
- Jacoby, T.; Flanagan, H.; Faykin, A.; Seto, A.G.; Mattison, C.; Ota, I. Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1. J. Biol. Chem. 1997, 272, 17749–17755. [Google Scholar] [CrossRef] [Green Version]
- Ariño, J.; Casamayor, A.; González, A. Type 2C protein phosphatases in fungi. Eukaryot. Cell 2011, 10, 21–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, P.; Jin, K.; Xia, Y. The phosphatase gene MaCdc14 negatively regulates UV-B tolerance by mediating the transcription of melanin synthesis-related genes and contributes to conidiation in Metarhizium acridum. Curr. Genet. 2020, 66, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Iglesias, A.; Schmoll, M. Protein Phosphatases Regulate Growth, Development, Cellulases and Secondary Metabolism in Trichoderma Reesei. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Liu, J.; Hu, Y.; Ying, S.H.; Feng, M.G. Cytokinesis-required Cdc14 is a signaling hub of asexual development and multi-stress tolerance in Beauveria bassiana. Sci. Rep. 2013, 3, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radmaneshfar, E.; Kaloriti, D.; Gustin, M.C.; Gow, N.A.R.; Brown, A.J.P.; Grebogi, C.; Romano, M.C.; Thiel, M. From START to FINISH: The Influence of Osmotic Stress on the Cell Cycle. PLoS ONE 2013, 8, e68067. [Google Scholar] [CrossRef] [Green Version]
- Kaneva, I.N.; Sudbery, I.M.; Dickman, M.J.; Sudbery, P.E. Proteins that physically interact with the phosphatase Cdc14 in Candida albicans have diverse roles in the cell cycle. Sci. Rep. 2019, 9, 6258. [Google Scholar] [CrossRef]
- Lee, K.T.; Byun, H.J.; Jung, K.W.; Hong, J.; Cheong, E.; Bahn, Y.S. Distinct and redundant roles of protein tyrosine phosphatases Ptp1 and Ptp2 in governing the differentiation and pathogenicity of Cryptococcus neoformans. Eukaryot. Cell 2014, 13, 796–812. [Google Scholar] [CrossRef] [Green Version]
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.F.; Guindon, S.; Lefort, V.; Lescot, M.; et al. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36, W465–W469. [Google Scholar] [CrossRef]
- Catlett, N.L.; Lee, B.-N.; Yoder, O.C.; Turgeon, B.G. Split-Marker Recombination for Efficient Targeted Deletion of Fungal Genes. Fungal Genet. Rep. 2003, 50, 9–11. [Google Scholar] [CrossRef] [Green Version]
- Turgeon, B.G.; Condon, B.; Liu, J.; Zhang, N. Protoplast transformation of filamentous fungi. Methods Mol. Biol. 2010, 638, 3–19. [Google Scholar]
- Gurtovenko, A.A.; Anwar, J. Modulating the Structure and Properties of Cell Membranes: The Molecular Mechanism of Action of Dimethyl Sulfoxide. J. Phys. Chem. B 2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, K.; Takano, Y.; Yoshimi, A.; Tanaka, C.; Kikuchi, T.; Okuno, T. Fungicide Activity through Activation of a Fungal Signalling Pathway. Mol. Microbiol. 2004. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Nadales, E.; di Pietro, A. The Membrane Mucin Msb2 Regulates Invasive Growth and Plant Infection in Fusarium oxysporum. Plant Cell 2011, 23, 1171–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jandric, Z.; Gregori, C.; Klopf, E.; Radolf, M.; Schüller, C. Sorbic Acid Stress Activates the Candida glabrata High Osmolarity Glycerol MAP Kinase Pathway. Front. Microbiol. 2013. [Google Scholar] [CrossRef] [Green Version]
- Igbaria, A.; Lev, S.; Rose, M.S.; Bee, N.L.; Hadar, R.; Degani, O.; Horwitz, B.A. Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses. Mol. Plant-Microbe Interact. 2008, 21, 769–780. [Google Scholar] [CrossRef] [Green Version]
- Bahn, Y.S.; Kojima, K.; Cox, G.M.; Heitman, J. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Mol. Biol. Cell 2005, 16, 2285–2300. [Google Scholar] [CrossRef] [Green Version]
- Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions. Endocr. Rev. 2001, 22, 153–183. [Google Scholar]
- Stegmeier, F.; Amon, A. Closing mitosis: The functions of the Cdc14 phosphatase and its regulation. Annu. Rev. Genet. 2004, 38, 203–232. [Google Scholar] [CrossRef]
- Zhan, X.L.; Hong, Y.; Zhu, T.; Mitchell, A.P.; Deschenes, R.J.; Guan, K.L. Essential functions of protein tyrosine phosphatases Ptp2 and Ptp3 and Rim11 tyrosine phosphorylation in Saccharomyces cerevisiae meiosis and sporulation. Mol. Biol. Cell 2000, 11, 663–676. [Google Scholar] [CrossRef] [Green Version]
Gene | JGI Protein ID | Synonym | Sequence (5′ to 3′) | Origin |
---|---|---|---|---|
Hygromycin | M13Rhyg | AGCGGATAACAATTTCACACAGGA | pUCATPH seq. 2865-2888RC—5′ region of hygB | |
NLC37 | GGATGCCTCCGCTCGAAGTA | pUCATPH seq. 1685-1704—5′ region of hygB | ||
M13Fhyg | CGCCAGGGTTTTCCCAGTCACGAC | pUCATPH seq. 352-375—3′ region of hygB | ||
NLC38 | CGTTGCAAGACCTGCCTGAA | pUCATPH seq. 2132-2150RC—3′ region of hygB | ||
PtcB | 200919 | FP1 | GGGAGCATGTAGTAAGTGC | forward primer to PtcB 5′ flank |
RP1 | TCCTGTGTGAAATTGTTATCCGCTCTTGTCCGGTATCTAGGAGGAC | complementary to M13R—reverse primer to PtcB 5′ flank | ||
FP2 | GTCGTGACTGGGAAAACCCTGGCGCTTGTGCTCACTTGACCTGG | complementary to M13F—forward primer to PtcB 3′ flank | ||
RP2 | GAATCAGTGGCCAGATCCAGTC | reverse primer to PtcB 3′ flank | ||
ORF FR | GGCCAGACACTCTCCGAGC | |||
ORF RV | CTTCTCGCTTGTCTTCTTGGC | |||
HI—Upstream | CTCAAGTAGAGGTGAGTATGGG | |||
CDC14 | 56964 | FP1 | GGTGCATGTTCAGGGACGGCC | forward primer to CDC14 5′ flank |
RP1 | TCCTGTGTGAAATTGTTATCCGCTGAGCAGGAAGGGGCGACTCTC | complementary to M13R—reverse primer to CDC14 5′ flank | ||
FP2 | GTCGTGACTGGGAAAACCCTGGCGCCACTTCTTAGTCTCCATCTCCATCGC | complementary to M13F—forward primer to CDC14 3′ flank | ||
RP2 | ATCGGCAAAGACCCTGCCCGTC | reverse primer to CDC14 3′ flank | ||
ORF FR | CGACTTCCTTGCCTTTGCC | |||
ORF RV | GTTCTCGTCAATGCGCTGG | |||
HI—Upstream | GTGGGGGGAGTTTAGTTGC | |||
PTP1 | 142461 | FP1 | GATGCGATACGATGGTAGGG | forward primer to PTP1 5′ flank |
RP1 | TCCTGTGTGAAATTGTTATCCGCTCGCCCTTGAGCTTTGCCTTG | complementary to M13R—reverse primer to PTP1 5′ flank | ||
FP2 | GTCGTGACTGGGAAAACCCTGGCGCTTGGGCGTGAGAACAATGC | complementary to M13F—forward primer to PTP1 3′ flank | ||
RP2 | CCAGACGACAACCGCTAATGAAC | reverse primer to PTP1 3′ flank | ||
ORF FR | CTGCTAGAGACGTCAATGCC | |||
ORF RV | GCACAATCCGCGGGTTGGTAG | |||
HI—Upstream | CAAAGGGGACATGGACGCAC | |||
PTP2 | 169617 | FP1 | GGCTTTAGCTTGCGATGGTC | forward primer to PTP2 5′ flank |
RP1 | TCCTGTGTGAAATTGTTATCCGCTCGAGACGTGAACGTGGGAAG | complementary to M13R—reverse primer to PTP2 5′ flank | ||
FP2 | GTCGTGACTGGGAAAACCCTGGCGGGCAAAGCTCATTGGGAG | complementary to M13F—forward primer to PTP2 3′ flank | ||
RP2 | CAAGGAAACACAATGCCCCG | reverse primer to PTP2 3′ flank | ||
ORF FR | CCAACAAACCCAATGCACTCGTC | |||
ORF RV | GTAGGGCCATCCGTGCTAG | |||
HI—Upstream | CGCCTTTGCTGTCGTCGCC |
Family a | Subfamily b | Class/Domain c | Ch Model Name d | JGI Protein ID e | N. crassa Homolog Gene f | NCU g |
---|---|---|---|---|---|---|
S/T | PPM | PP2Cc | estExt_Genewise1Plus.C_19_t10368 | 200919 | pph-8 | 04600 |
PTP | Dual-specificity | DSPc | fgenesh1_pm.3_#_471 | 56964 | cdc-14 | 03246 |
PTP1 | Classical | PTPc | e_gw1.16.187.1 | 142461 | pty-2 | 02257 |
PTP2 | Classical | PTPc | estExt_Genewise1.C_12_t30017 | 169617 | pty-3 | 05364 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuchman, R.; Koren, R.; Horwitz, B.A. Developmental Roles of the Hog1 Protein Phosphatases of the Maize Pathogen Cochliobolus heterostrophus. J. Fungi 2021, 7, 83. https://doi.org/10.3390/jof7020083
Zuchman R, Koren R, Horwitz BA. Developmental Roles of the Hog1 Protein Phosphatases of the Maize Pathogen Cochliobolus heterostrophus. Journal of Fungi. 2021; 7(2):83. https://doi.org/10.3390/jof7020083
Chicago/Turabian StyleZuchman, Rina, Roni Koren, and Benjamin A. Horwitz. 2021. "Developmental Roles of the Hog1 Protein Phosphatases of the Maize Pathogen Cochliobolus heterostrophus" Journal of Fungi 7, no. 2: 83. https://doi.org/10.3390/jof7020083
APA StyleZuchman, R., Koren, R., & Horwitz, B. A. (2021). Developmental Roles of the Hog1 Protein Phosphatases of the Maize Pathogen Cochliobolus heterostrophus. Journal of Fungi, 7(2), 83. https://doi.org/10.3390/jof7020083