Epidemiology and Diagnostic Perspectives of Dermatophytoses
Abstract
:1. Epidemiology of Infections Caused by Dermatophytes
2. Deep Infection Caused by Dermatophytes
3. CARD 9 Mutation and Fungal Infections
4. Diagnostic and Identification Methods for Dermatophytoses: from Conventional to Molecular Methods
4.1. Culture, Microscopy, Histology and Molecular Assays Based on DNA
4.2. MALDI-TOF-MS
5. The Potential of Molecular Approaches for the Study of Dermatophytes
6. Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gnat, S.; Łagowski, D.; Nowakiewicz, A.; Zięba, P. The host range of dermatophytes, it is at all possible? Phenotypic evaluation of the keratinolytic activity of Trichophyton verrucosum clinical isolates. Mycoses 2019, 62, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Khurana, A.; Sardana, K.; Chowdhary, A. Antifungal resistance in dermatophytes: Recent trends and therapeutic implications. Fungal Genet. Biol. 2019, 132, 103255. [Google Scholar] [CrossRef] [PubMed]
- Mercer, D.K.; Stewart, C.S. Keratin hydrolysis by dermatophytes. Med. Mycol. 2019, 57, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Antuori, A.; Fernández, G.; Fernández, A.; Alcaide, M.; Boada, A.; Bielsa, M.I.; Romaní, N.; Matas, L. Epidemiology of dermatophytic infections between 2008 and 2017 in Barcelona, Spain. Enferm. Infecc. Microbiol. Clin. 2019, 37, 642–647. [Google Scholar] [CrossRef]
- Bhavsar Hitendra, K.; Modi Dhara, J.; Sood Nidhi, K.; Shah Hetal, S. A Study of Superficial Mycoses With Clinical Mycological Profile in Tertiary Care Hospital in Ahmedabad, Gujarat. Natl. J. Med. Res. 2012, 2, 160–164. [Google Scholar]
- Leung, A.K.; Lam, J.M.; Leong, K.F.; Hon, K.L. Tinea corporis: An updated review. Drugs Context 2020, 9, 1–12. [Google Scholar] [CrossRef]
- Woo, T.E.; Somayaji, R.; Haber, R.M.; Parsons, L. Diagnosis and Management of Cutaneous Tinea Infections. Adv. Skin Wound Care 2019, 32, 350–357. [Google Scholar] [CrossRef]
- Grigoryan, K.V.; Tollefson, M.M.; Olson, M.A.; Newman, C.C. Pediatric tinea capitis caused by Trichophyton violaceum and Trichophyton soudanense in Rochester, Minnesota, United States. Int. J. Dermatol. 2019, 58, 912–915. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.K.C.; Hon, K.L.; Leong, K.F.; Barankin, B.; Lam, J.M. Tinea Capitis: An Updated Review. Recent Pat. Inflamm. Allergy Drug Discov. 2020, 14, 58–68. [Google Scholar] [CrossRef]
- Bishnoi, A.; Mahajan, R. Tinea cruris. In Diagnostics to Pathogenomics of Sexually Transmitted Infections; wiley: Hoboken, NJ, USA, 2018; pp. 329–340. ISBN 9781119380924. [Google Scholar]
- Asz-Sigall, D.; Tosti, A.; Arenas, R. Tinea Unguium: Diagnosis and Treatment in Practice. Mycopathologia 2017, 182, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Taplin, D. Dermatophytosis in Vietnam. Cutis 2001, 67, 19–20. [Google Scholar]
- Iorio, R.; Cafarchia, C.; Capelli, G.; Fasciocco, D.; Otranto, D.; Giangaspero, A. Dermatophytoses in cats and humans in central Italy: Epidemiological aspects. Mycoses 2007, 50, 491–495. [Google Scholar] [CrossRef]
- Pires, C.A.A.; da Cruz, N.F.S.; Lobato, A.M.; de Sousa, P.O.; Carneiro, F.R.O.; Mendes, A.M.D. Clinical, epidemiological, and therapeutic profile of dermatophytosis. An. Bras. Dermatol. 2014, 89, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Sai, B.S.; Tejashree, A.; Veeranna, S.; Krishna Karthik, M. Speciation and In Vitro Activity of Four Antifungal Drugs Against Clinical Isolates of Dermatophytes By E-Test Method. Int. J. Sci. Res. 2019, 8. [Google Scholar] [CrossRef]
- Gupta, A.K.; Stec, N. Emerging drugs for the treatment of onychomycosis. Expert Opin. Emerg. Drugs 2019, 24, 213–220. [Google Scholar] [CrossRef]
- Gupta, A.K.; Versteeg, S.G.; Shear, N.H. Onychomycosis in the 21st Century: An Update on Diagnosis, Epidemiology, and Treatment. J. Cutan. Med. Surg. 2017, 21, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Rafat, Z.; Hashemi, S.J.; Saboor-Yaraghi, A.A.; Pouragha, B.; Taheriniya, A.; Moosavi, A.; Roohi, B.; Arjmand, R.; Moradi, A.; Daie-Ghazvini, R.; et al. A systematic review and meta-analysis on the epidemiology, casual agents and demographic characteristics of onychomycosis in Iran. J. Mycol. Med. 2019, 29, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Dalla Lana, D.F.; Batista, B.G.; Alves, S.H.; Fuentefria, A.M. Dermatofitoses: Agentes etiológicos, formas clínicas, terapêutica e novas perspectivas de tratamento. Clin. Biomed. Res. 2016, 36, 230–241. [Google Scholar] [CrossRef]
- Seebacher, C.; Bouchara, J.-P.; Mignon, B. Updates on the Epidemiology of Dermatophyte Infections. Mycopathologia 2008, 166, 335–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piggott, C.D.S.; Friedlander, S.F. Dermatophytes and Other Superficial Fungi. In Principles and Practice of Pediatric Infectious Diseases: Fourth Edition; Elsevier Inc.: Amsterdam, The Netherlands, 2012; pp. 1246–1250.e2. ISBN 9781437720594. [Google Scholar]
- Cordeiro, L.V. Perfil Epidemiológico De Dermatofitoses Superficiais Em Pacientes Atendidos Em Um Laboratório Da Rede Privada De João Pessoa-Pb; Universidade Federal Da Paraíba: João Pessoa, Brazil, 2015. [Google Scholar]
- Hayette, M.P.; Sacheli, R. Dermatophytosis, Trends in Epidemiology and Diagnostic Approach. Curr. Fungal Infect. Rep. 2015, 9, 164–179. [Google Scholar] [CrossRef]
- Jha, B.; Bhattarai, S.; Sapkota, J.; Sharma, M.; Bhatt, C.P. Dermatophytes in Skin, Nail and Hair among the Patients Attending Out Patient Department. J. Nepal Health Res. Counc. 2019, 16, 434–437. [Google Scholar] [CrossRef]
- Teixera, N.; Peres, D.A.; Rossi, A. Dermatófitos: Interação patógeno-hospedeiro e resistência a antifúngicos. An. Bras. Dermatol. 2010, 85, 657–667. [Google Scholar]
- Silva-Rocha, W.P.; de Azevedo, M.F.; Chaves, G.M. Epidemiology and fungal species distribution of superficial mycoses in Northeast Brazil. J. Mycol. Med. 2017, 27, 57–64. [Google Scholar] [CrossRef]
- de Albuquerque Maranhão, F.C.; Oliveira-Júnior, J.B.; dos Santos Araújo, M.A.; Silva, D.M.W. Mycoses in northeastern Brazil: Epidemiology and prevalence of fungal species in 8 years of retrospective analysis in Alagoas. Braz. J. Microbiol. 2019, 50, 969–978. [Google Scholar] [CrossRef]
- Araya, S.; Tesfaye, B.; Fente, D. Epidemiology of dermatophyte and non-dermatophyte fungi infection in Ethiopia. Clin. Cosmet. Investig. Dermatol. 2020, 13, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Bitew, A. Dermatophytosis: Prevalence of Dermatophytes and Non-Dermatophyte Fungi from Patients Attending Arsho Advanced Medical Laboratory, Addis Ababa, Ethiopia. Dermatol. Res. Pract. 2018, 2018, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coulibaly, O.; L’Ollivier, C.; Piarroux, R.; Ranque, S. Epidemiology of human dermatophytoses in Africa. Med. Mycol. 2017, 56, 145–161. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; De, A.; Saha, R.; Sharma, N.; Khemka, M.; Singh, S.; Hesanoor Reja, A.; Kumar, P. The current Indian epidemic of dermatophytosis: A study on causative agents and sensitivity patterns. Indian J. Dermatol. 2020, 65, 118–122. [Google Scholar]
- Kalita, J.; Sharma, A.; Bhardwaj, A.; Nag, V. Dermatophytoses and spectrum of dermatophytes in patients attending a teaching hospital in Western Rajasthan, India. J. Fam. Med. Prim. Care 2019, 8, 1418–1421. [Google Scholar]
- Thakur, R. Epidemiology of cortico-steroid-modified tinea: Study of 100 cases in a rural tertiary care teaching hospital of Western Uttar Pradesh, India. J. Dermatology Cosmetol. 2018, 2, 1. [Google Scholar] [CrossRef]
- Lanternier, F.; Pathan, S.; Vincent, Q.B.; Liu, L.; Cypowyj, S.; Prando, C.; Taibi, L.; Ammar-khodja, A.; Stambouli, O.B.; Guellil, B.; et al. Deep Dermatophytosis and Inherited CARD9 Deficiency. N. Engl. J. Med. 2013, 369, 1704–1714. [Google Scholar] [CrossRef] [Green Version]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases—Estimate precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- García-Romero, M.T.; Arenas, R. New insights into genes, immunity, and the occurrence of dermatophytosis. J. Investig. Dermatol. 2015, 135, 655–657. [Google Scholar] [CrossRef] [Green Version]
- Warycha, M.A.; Leger, M.; Tzu, J.; Kamino, H.; Stein, J. Deep dermatophytosis caused by Trichophyton rubrum. Dermatol. Online J. 2011, 17, 21. [Google Scholar]
- Costa, J.E.F.; Neves, R.P.; Delgado, M.M.; Lima-Neto, R.G.; Morais, V.M.S.; Coêlho, M.R.C.D. Dermatophytosis in patients with human immunodeficiency virus infection: Clinical aspects and etiologic agents. Acta Trop. 2015, 150, 111–115. [Google Scholar] [CrossRef]
- Kershenovich, R.; Sherman, S.; Reiter, O.; Huss, S.R.; Didkovsky, E.; Mimouni, D.; Hodak, E.; Segal, R. A Unique Clinicopathological Manifestation of Fungal Infection: A Case Series of Deep Dermatophytosis in Immunosuppressed Patients. Am. J. Clin. Dermatol. 2017, 18, 697–704. [Google Scholar] [CrossRef]
- Kim, S.H.; Jo, I.H.; Kang, J.; Joo, S.Y.; Choi, J.H. Dermatophyte abscesses caused by Trichophyton rubrum in a patient without pre-existing superficial dermatophytosis: A case report. BMC Infect. Dis. 2016, 16, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, H.; Li, L.; Cheng, B.; Zhu, J.; Zhang, Q.; Xu, J.; Zhu, M. Trichophyton rubrum Infection Characterized by Majocchi’s Granuloma and Deeper Dermatophytosis: Case Report and Review of Published Literature. Mycopathologia 2017, 182, 549–554. [Google Scholar] [CrossRef]
- Dai, Y.; Xia, X.; Shen, H. Multiple abscesses in the lower extremities caused by Trichophyton rubrum. BMC Infect. Dis. 2019, 19, 271. [Google Scholar] [CrossRef]
- Seo, J.-K.; Jeong, K.-H.; Shin, M.K.; Choi, J.S.; Lee, M.-H. Dermal Infection with Trichophyton rubrum in an Immunocompetent Patient. Ann. Dermatol. 2019, 31, S32. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, L.; Li, F.; Xu, Y.; Lv, S.; Wang, B. Simultaneous dermatophytosis and keratomycosis caused by Trichophyton interdigitale infection: A case report and literature review. BMC Infect. Dis. 2019, 19, 983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouzaud, C.; Hay, R.; Chosidow, O.; Dupin, N.; Puel, A.; Lortholary, O.; Lanternier, F. Severe dermatophytosis and acquired or innate immunodeficiency: A review. J. Fungi 2016, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Chen, B.; Yang, L.; Yang, Z. Molecular and physiological roles of the adaptor protein CARD9 in immunity review-article. Cell Death Dis. 2018, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Vaezi, A.; Mardani, M.; Fakhim, H.; Yaghoobi, M.H.; Abtahian, Z.; Nasri, E.; Geramishoar, M.; Khodavaisy, S.; Meis, J.F.; Badali, H. Severe disseminated phaeohyphomycosis in a patient with inherited card9 deficiency. Arch. Clin. Infect. Dis. 2018, 13, 13. [Google Scholar] [CrossRef] [Green Version]
- Begum, J.; Mir, N.A.; Lingaraju, M.C.; Buyamayum, B.; Dev, K. Recent advances in the diagnosis of dermatophytosis. J. Basic Microbiol. 2020, 60, 293–303. [Google Scholar] [CrossRef]
- Ates, A.; Ozcan, K.; Ilkit, M. Diagnostic value of morphological, physiological and biochemical tests in distinguishing Trichophyton rubrum from Trichophyton mentagrophytes complex. Med. Mycol. 2008, 46, 811–822. [Google Scholar] [CrossRef] [Green Version]
- Nenoff, P.; Krüger, C.; Schaller, J.; Ginter-Hanselmayer, G.; Schulte-Beerbühl, R.; Tietz, H.J. Mycology—An update Part 2: Dermatomycoses: Clinical picture and diagnostics. JDDG J. Ger. Soc. Dermatology 2014, 12, 749–777. [Google Scholar] [CrossRef] [PubMed]
- Lipner, S.R.; Scher, R.K. Onychomycosis: Clinical overview and diagnosis. J. Am. Acad. Dermatol. 2019, 80, 835–851. [Google Scholar] [CrossRef]
- Baudraz-Rosselet, F.; Ruffieux, C.; Lurati, M.; Bontems, O.; Monod, M. Onychomycosis insensitive to systemic terbinafine and azole treatments reveals non-dermatophyte moulds as infectious agents. Dermatology 2010, 220, 164–168. [Google Scholar] [CrossRef]
- Verrier, J.; Monod, M. Diagnosis of Dermatophytosis Using Molecular Biology. Mycopathologia 2017, 182, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Pihet, M.; Govic, Y. Le Reappraisal of conventional diagnosis for dermatophytes. Mycopathologia 2017, 182, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Rothmund, G.; Sattler, E.C.; Kaestle, R.; Fischer, C.; Haas, C.J.; Starz, H.; Welzel, J. Confocal laser scanning microscopy as a new valuable tool in the diagnosis of onychomycosis—Comparison of six diagnostic methods. Mycoses 2013, 56, 47–55. [Google Scholar] [CrossRef]
- Luk, N.M.; Hui, M.; Cheng, T.S.; Tang, L.S.; Ho, K.M. Evaluation of PCR for the diagnosis of dermatophytes in nail specimens from patients with suspected onychomycosis. Clin. Exp. Dermatol. 2012, 37, 230–234. [Google Scholar] [CrossRef]
- Álvarez-Mosquera, I.; Hernáez, S.; Sánchez, J.; Suárez, M.D.; Cisterna, R. Diagnosis of Superficial Mycoses by a Rapid and Effective PCR Method from Samples of Scales, Nails and Hair. Mycopathologia 2018, 183, 777–783. [Google Scholar] [CrossRef]
- Piri, F.; Zarei Mahmoudabadi, A.; Ronagh, A.; Ahmadi, B.; Makimura, K.; Rezaei-Matehkolaei, A. Assessment of a pan-dermatophyte nested-PCR compared with conventional methods for direct detection and identification of dermatophytosis agents in animals. Mycoses 2018, 61, 837–844. [Google Scholar] [CrossRef] [Green Version]
- Hwee Koo, S.; Leng Teoh, Y.; Liang Koh, W.; Ochi, H.; Kye Tan, S.; Miao Fang Sim, D.; Jiang, B.; Ling Tan, A.; Yen Tan, T.; Ping Regina Lim, S. Development and validation of a real-time multiplex PCR assay for the detection of dermatophytes and Fusarium spp. J. Med. Microbiol. 2019, 68, 1641–1648. [Google Scholar] [CrossRef]
- Dhib, I.; Fathallah, A.; Yaacoub, A.; Hadj Slama, F.; Said, M.B.; Zemni, R. Multiplex PCR assay for the detection of common dermatophyte nail infections. Mycoses 2014, 57, 19–26. [Google Scholar] [CrossRef]
- Lubis, N.Z.; Muis, K.; Nasution, L.H. Polymerase chain reaction-restriction fragment length polymorphism as a confirmatory test for onychomycosis. Open Access Maced. J. Med. Sci. 2018, 6, 280–283. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, R.; Abastabar, M.; Mirhendi, H.; Badali, H.; Shadzi, S.; Chadeganipour, M.; Pourfathi, P.; Jalalizand, N.; Haghani, I. Use of restriction fragment length polymorphism to rapidly identify dermatophyte species related to dermatophytosis. Jundishapur J. Microbiol. 2015, 8, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Beifuss, B.; Bezold, G.; Gottlöber, P.; Borelli, C.; Wagener, J.; Schaller, M.; Korting, H.C. Direct detection of five common dermatophyte species in clinical samples using a rapid and sensitive 24-h PCR-ELISA technique open to protocol transfer. Mycoses 2011, 54, 137–145. [Google Scholar] [CrossRef]
- Nenoff, P.; Verma, S.B.; Vasani, R.; Burmester, A.; Hipler, U.C.; Wittig, F.; Krüger, C.; Nenoff, K.; Wiegand, C.; Saraswat, A.; et al. The current Indian epidemic of superficial dermatophytosis due to Trichophyton mentagrophytes—A molecular study. Mycoses 2019, 336–356. [Google Scholar] [CrossRef]
- Jacobson, L.S.; McIntyre, L.; Mykusz, J. Assessment of real-time PCR cycle threshold values in Microsporum canis culture-positive and culture-negative cats in an animal shelter: A field study. J. Feline Med. Surg. 2018, 20, 108–113. [Google Scholar] [CrossRef]
- Gong, J.; Ran, M.; Wang, X.; Wan, Z.; Li, R. Development and Evaluation of a Novel Real-Time PCR for Pan-Dermatophyte Detection in Nail Specimens. Mycopathologia 2016, 181, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Sherman, S.; Goshen, M.; Treigerman, O.; Ben-Zion, K.; Carp, M.-J.; Maisler, N.; Ehrenreich, I.B.; Kimchi, A.; Lifshitz, S.; Smollan, G.; et al. Evaluation of multiplex real-time PCR for identifying dermatophytes in clinical samples—A multicentre study. Mycoses 2017, 61, 119–126. [Google Scholar] [CrossRef]
- Hayette, M.P.; Seidel, L.; Adjetey, C.; Darfouf, R.; Wéry, M.; Boreux, R.; Sacheli, R.; Melin, P.; Arrese, J. Clinical evaluation of the DermaGeniusR Nail real-time PCR assay for the detection of dermatophytes and Candida albicans in nails. Med. Mycol. 2019, 57, 277–283. [Google Scholar] [CrossRef]
- De Respinis, S.; Monnin, V.; Girard, V.; Welker, M.; Arsac, M.; Cellière, B.; Durand, G.; Bosshard, P.P.; Farina, C.; Passera, M.; et al. Matrix-assisted laser desorption ionization-time of flight (MALDITOF) mass spectrometry using the Vitek MS system for rapid and accurate identification of dermatophytes on solid cultures. J. Clin. Microbiol. 2014, 52, 4286–4292. [Google Scholar] [CrossRef] [Green Version]
- Theel, E.S.; Hall, L.; Mandrekar, J.; Wengenack, N.L. Dermatophyte identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2011, 49, 4067–4071. [Google Scholar] [CrossRef] [Green Version]
- Packeu, A.; De Bel, A.; L’Ollivier, C.; Ranque, S.; Detandt, M.; Hendrickx, M. Fast and accurate identification of dermatophytes by matrix-assisted laser desorption ionization-time of flight mass spectrometry: Validation in the clinical laboratory. J. Clin. Microbiol. 2014, 52, 3440–3443. [Google Scholar] [CrossRef] [Green Version]
- L’Ollivier, C.; Cassagne, C.; Normand, A.C.; Bouchara, J.P.; Contet-Audonneau, N.; Hendrickx, M.; Fourquet, P.; Coulibaly, O.; Piarroux, R.; Ranque, S. A MALDI-TOF MS procedure for clinical dermatophyte species identification in the routine laboratory. Med. Mycol. 2013, 51, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Nenoff, P.; Erhard, M.; Simon, J.C.; Muylowa, G.K.; Herrmann, J.; Rataj, W.; Gräser, Y. MALDI-TOF mass spectrometry—A rapid method for the identification of dermatophyte species. Med. Mycol. 2013, 51, 17–24. [Google Scholar] [CrossRef] [Green Version]
- De Respinis, S.; Tonolla, M.; Pranghofer, S.; Petrini, L.; Petrini, O.; Bosshard, P.P. Identification of dermatophytes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Med. Mycol. 2013, 51, 514–521. [Google Scholar] [CrossRef] [Green Version]
- Erhard, M.; Hipler, U.C.; Burmester, A.; Brakhage, A.A.; Wöstemeyer, J. Identification of dermatophyte species causing onychomycosis and tinea pedis by MALDI-TOF mass spectrometry. Exp. Dermatol. 2008, 17, 356–361. [Google Scholar] [CrossRef]
- Alshawa, K.; Beretti, J.L.; Lacroix, C.; Feuilhade, M.; Dauphin, B.; Quesne, G.; Hassouni, N.; Nassif, X.; Bougnoux, M.E. Successful identification of clinical dermatophyte and Neoscytalidium species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2012, 50, 2277–2281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderaro, A.; Motta, F.; Montecchini, S.; Gorrini, C.; Piccolo, G.; Piergianni, M.; Buttrini, M.; Medici, M.C.; Arcangeletti, M.C.; Chezzi, C.; et al. Identification of Dermatophyte Species after implementation of the in-house MALDI-TOF MS database. Int. J. Mol. Sci. 2014, 15, 16012–16024. [Google Scholar] [CrossRef]
- Karabıçak, N.; Karatuna, O.; İlkit, M.; Akyar, I. Evaluation of the Bruker Matrix-Assisted Laser Desorption–Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) System for the Identification of Clinically Important Dermatophyte Species. Mycopathologia 2015, 180, 165–171. [Google Scholar] [CrossRef]
- L’Ollivier, C.; Ranque, S. MALDI-TOF-Based Dermatophyte Identification. Mycopathologia 2017, 182, 183–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, P.R. What Is new in clinical microbiologymicrobial identification by MALDI-TOF mass spectrometry: A paper from the 2011 William Beaumont Hospital symposium on molecular pathology. J. Mol. Diagn. 2012, 14, 419–423. [Google Scholar] [CrossRef] [Green Version]
- Fagerquist, C.K.; Garbus, B.R.; Miller, W.G.; Williams, K.E.; Yee, E.; Bates, A.H.; Boyle, S.; Harden, L.A.; Cooley, M.B.; Mandrell, R.E. Rapid identification of protein biomarkers of escherichia coli O157:H7 by matrix-assisted laser desorption Lonization-time-of-flight-time-of-flight mass spectrometry and top-down proteomics. Anal. Chem. 2010, 82, 2717–2725. [Google Scholar] [CrossRef]
- Sacheli, R.; Henri, A.S.; Seidel, L.; Ernst, M.; Darfouf, R.; Adjetey, C.; Schyns, M.; Marechal, L.; Meex, C.; Arrese, J.; et al. Evaluation of the new Id-Fungi plates from Conidia for MALDI-TOF MS identification of filamentous fungi and comparison with conventional methods as identification tool for dermatophytes from nails, hair and skin samples. Mycoses 2020, 63, 1115–1127. [Google Scholar] [CrossRef] [PubMed]
- Sanguinetti, M.; Posteraro, B. Identification of molds by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2017, 55, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.; Paterson, R.R.M.; Venâncio, A.; Lima, N. Filamentous fungal characterizations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Appl. Microbiol. 2010, 108, 375–385. [Google Scholar] [CrossRef] [Green Version]
- Robert, R.; Pihet, M. Conventional methods for the diagnosis of dermatophytosis. Mycopathologia 2008, 166, 295–306. [Google Scholar] [CrossRef] [Green Version]
- Hay, R. Literature review. J. Eur. Acad. Dermatol. Venereol. 2005, 19, 1–7. [Google Scholar] [CrossRef]
- de Hoog, G.S.; Dukik, K.; Monod, M.; Packeu, A.; Stubbe, D.; Hendrickx, M.; Kupsch, C.; Stielow, J.B.; Freeke, J.; Göker, M.; et al. Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes. Mycopathologia 2017, 182, 5–31. [Google Scholar] [CrossRef] [Green Version]
- Sanguinetti, M.; Posteraro, B. MALDI-TOF Mass Spectrometry: Any Use for Aspergilli? Mycopathologia 2014, 178, 417–426. [Google Scholar] [CrossRef]
- Posteraro, B.; De Carolis, E.; Vella, A.; Sanguinetti, M. MALDI-TOF mass spectrometry in the clinical mycology laboratory: Identification of fungi and beyond. Expert Rev. Proteom. 2013, 10, 151–164. [Google Scholar] [CrossRef]
- Schulthess, B.; Ledermann, R.; Mouttet, F.; Zbinden, A.; Bloemberg, G.V.; Böttger, E.C.; Hombach, M. Use of the Bruker MALDI Biotyper for identification of molds in the clinical mycology laboratory. J. Clin. Microbiol. 2014, 52, 2797–2803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, A.F.; Drake, S.K.; Calhoun, L.B.; Henderson, C.M.; Zelazny, A.M. Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-Time of flight mass spectrometry. J. Clin. Microbiol. 2013, 51, 828–834. [Google Scholar] [CrossRef] [Green Version]
- Pennanec, X.; Dufour, A.; Haras, D.; Réhel, K. A quick and easy method to identify bacteria by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 384–392. [Google Scholar] [CrossRef]
- Patel, R. A moldy application of MALDI: MALDI-ToF mass spectrometry for fungal identification. J. Fungi 2019, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Normand, A.C.; Becker, P.; Gabriel, F.; Cassagne, C.; Accoceberry, I.; Gari-Toussaint, M.; Hasseine, L.; De Geyter, D.; Pierard, D.; Surmont, I.; et al. Validation of a new web application for identification of fungi by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2017, 55, 2661–2670. [Google Scholar] [CrossRef] [Green Version]
- Hedayati, M.T.; Ansari, S.; Ahmadi, B.; Armaki, M.T.; Shokohi, T.; Abastabar, M.; Er, H.; Özhak, B.; Öğünç, D.; Ilkit, M.; et al. Identification of clinical dermatophyte isolates obtained from Iran by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Curr. Med. Mycol. 2019, 2019, 22–26. [Google Scholar]
- Gupta, A.K.; Foley, K.A.; Versteeg, S.G. New Antifungal Agents and New Formulations Against Dermatophytes. Mycopathologia 2017, 182, 127–141. [Google Scholar] [CrossRef]
- Cantelli, B.A.M.; Bitencourt, T.A.; Komoto, T.T.; Beleboni, R.O.; Marins, M.; Fachin, A.L. Caffeic acid and licochalcone A interfere with the glyoxylate cycle of Trichophyton rubrum. Biomed. Pharmacother. 2017, 96, 1389–1394. [Google Scholar] [CrossRef]
- Komoto, T.T.; Bitencourt, T.A.; Silva, G.; Beleboni, R.O.; Marins, M.; Fachin, A.L. Gene Expression Response of Trichophyton rubrum during Coculture on Keratinocytes Exposed to Antifungal Agents. Evidence-Based Complement. Altern. Med. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitencourt, T.A.; Komoto, T.T.; Massaroto, B.G.; Miranda, C.E.S.; Beleboni, R.O.; Marins, M.; Fachin, A.L. Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrum. BMC Complement. Altern. Med. 2013, 13, 229. [Google Scholar] [CrossRef] [Green Version]
- de Abreu, M.H.; Bitencourt, T.A.; Franco, M.E.; Moreli, I.S.; Cantelli, B.A.M.; Komoto, T.T.; Marins, M.; Fachin, A.L. Expression of genes containing tandem repeat patterns involved in the fungal-host interaction and in the response to antifungals in Trichophyton rubrum. Mycoses 2020, 63, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Petrucelli, M.F.; Peronni, K.; Sanches, P.R.; Komoto, T.T.; Matsuda, J.B.; da Silva Junior, W.A.; Beleboni, R.O.; Martinez-Rossi, N.M.; Marins, M.; Fachin, A.L. Dual RNA-Seq analysis of trichophyton rubrum and HaCat keratinocyte co-culture highlights important genes for fungal-host interaction. Genes (Basel) 2018, 9, 362. [Google Scholar] [CrossRef] [Green Version]
- Bitencourt, T.A.; Macedo, C.; Franco, M.E.; Assis, A.F.; Komoto, T.T.; Stehling, E.G.; Beleboni, R.O.; Malavazi, I.; Marins, M.; Fachin, A.L. Transcription profile of Trichophyton rubrum conidia grown on keratin reveals the induction of an adhesin-like protein gene with a tandem repeat pattern. BMC Genom. 2016, 17, 249. [Google Scholar] [CrossRef] [Green Version]
- Petrucelli, M.F.; Matsuda, J.B.; Peroni, K.; Sanches, P.R.; Silva, W.A.; Beleboni, R.O.; Martinez-Rossi, N.M.; Marins, M.; Fachin, A.L. The transcriptional profile of Trichophyton rubrum co-cultured with human keratinocytes shows new insights about gene modulation by terbinafine. Pathogens 2019, 8, 274. [Google Scholar] [CrossRef] [Green Version]
Tinea | Main Dermatophyte | Site of Infection | Reference |
---|---|---|---|
Tinea corporis | Trichophyton rubrum T. tonsurans Microsporum canis | Body (chest, face, arms, and/or legs) | [6] |
Tinea pedis (athlete’s foot) | T rubrum T. interdigitale Epidermophyton floccosum | Foot (soles or interdigital spaces) | [7] |
Tinea capitis | T. tonsurans Microsporum canis Trichophyton violaceum Trichophyton soudanense | Scalp | [8,9] |
Tinea cruris | T. rubrum | Groin folds | [10] |
Tinea unguium (onychomycosis) | T. rubrum T. interdigitale | Nails | [11] |
Comorbidity | Symptoms | Reference |
---|---|---|
Hepatitis C and liver cirrhosis | Subcutaneous nodules | [37] |
Human immunodeficiency virus (HIV) | Atypical, multiple or extensive lesions | [38] |
Transplant and chemotherapy patients | Nodules | [39] |
History of diabetes mellitus | Palpable nodules in the ankle | [40] |
Patients without immunodeficiency, history of onychomycosis | Erythema, papules and nodules in the submandibular area, neck, and chest | [41] |
Use of immunosuppressive drugs | Fungal abscesses | [42] |
Patients without immunodeficiency, hypertension and angina | Red spots with secretion | [43] |
Fungal infection for 2 years, onychomycosis | Loss of vision | [44] |
Methods of Identification/Diagnosis | Advantages | Disadvantages | Reference |
---|---|---|---|
Conventional (culture followed by direct microscopy or histology) | Low cost of materials Well-established standard method | Time-consuming process to obtain the result High false-negative rate | [48,51,96] |
Conventional PCR | Better cost–benefit ratio Rapid detection | Post-PCR tests might be necessary to complement the diagnosis | [53] |
Nested PCR | Reduces nonspecific binding of PCR products More specific results Good sensitivity | High risk of contamination Prolongs the time to diagnosis | [48,53] |
Multiplex PCR | Identification of multiple targets in the same reaction Time saving and rapid diagnosis Higher detection efficacy Reduces the risk of false-negative results | Possibility of nonspecific binding between primers | [48] |
PCR-RFLP | Low cost Does not require sophisticated equipment | Use of restriction enzymes is necessary Requires more time for diagnostic analysis Not commonly used for diagnosis | [48] |
PCR-ELISA | Higher sensitivity than techniques that use analysis by gel electrophoresis | Elaborate manipulations are necessary Requires more time for diagnostic analysis Not commonly used for diagnosis | [48,53] |
Real-time PCR | Low risk of contamination Post-PCR tests are not required Rapid identification Quantitative detection | Specific equipment is necessary Higher cost than conventional PCR | [48,53,65] |
MALDI- TOF MS | Identification of the microorganism at the genus, species, and strain level | Difficulty of access or incomplete information of some dermatophyte species in databases used for identification Sister species might be indistinguishable because of similar molecular components | [70,71,72,74,75,77,79,81,85,86,87,93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrucelli, M.F.; Abreu, M.H.d.; Cantelli, B.A.M.; Segura, G.G.; Nishimura, F.G.; Bitencourt, T.A.; Marins, M.; Fachin, A.L. Epidemiology and Diagnostic Perspectives of Dermatophytoses. J. Fungi 2020, 6, 310. https://doi.org/10.3390/jof6040310
Petrucelli MF, Abreu MHd, Cantelli BAM, Segura GG, Nishimura FG, Bitencourt TA, Marins M, Fachin AL. Epidemiology and Diagnostic Perspectives of Dermatophytoses. Journal of Fungi. 2020; 6(4):310. https://doi.org/10.3390/jof6040310
Chicago/Turabian StylePetrucelli, Monise Fazolin, Mariana Heinzen de Abreu, Bruna Aline Michelotto Cantelli, Gabriela Gonzalez Segura, Felipe Garcia Nishimura, Tamires Aparecida Bitencourt, Mozart Marins, and Ana Lúcia Fachin. 2020. "Epidemiology and Diagnostic Perspectives of Dermatophytoses" Journal of Fungi 6, no. 4: 310. https://doi.org/10.3390/jof6040310
APA StylePetrucelli, M. F., Abreu, M. H. d., Cantelli, B. A. M., Segura, G. G., Nishimura, F. G., Bitencourt, T. A., Marins, M., & Fachin, A. L. (2020). Epidemiology and Diagnostic Perspectives of Dermatophytoses. Journal of Fungi, 6(4), 310. https://doi.org/10.3390/jof6040310