Brazilian Copaifera Species: Antifungal Activity against Clinically Relevant Candida Species, Cellular Target, and In Vivo Toxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Microorganisms
2.3. Antifungal Activity Evaluation
2.4. Checkerboard Assay
2.5. Copaifera Species Effect on the Inhibition of Candida Biofilm Formation
2.6. Copaifera Species Effect against Preformed C. glabrata Biofilms
2.7. Sample Preparation for Transmission Electron Microscopy
2.8. Experiments with the Animal Model Caenorhabditis Elegans
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Global Conference on Primary Health Care. World Health Organization. 2018. Available online: https://www.who.int/primary-health/conference-phc (accessed on 2 May 2020).
- Oliveira, U.; Soares-Filho, B.S.; Santos, A.J.; Paglia, A.P.; Brescovit, A.D.; de Carvalho, C.J.B.; Silva, D.P.; Rezende, D.T.; Leite, F.S.F.; Batista, J.A.N.; et al. Modelling highly biodiverse areas in Brazil. Sci. Rep. 2019, 9, 6355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carneiro, L.J.; Bianchi, T.C.; da Silva, J.J.M.; Oliveira, L.C.; Borges, C.H.G.; Lemes, D.C.; Bastos, J.K.; Veneziani, R.C.S.; Ambrósio, S.R. Development and validation of a rapid and reliable RP-HPLC-PDA method for the quantification of six diterpenes in Copaifera duckei, Copaifera reticulata and Copaifera multijuga oleoresins. J. Braz. Chem. Soc. 2018, 29, 729–737. [Google Scholar] [CrossRef]
- Arruda, C.; Mejia, J.A.A.; Ribeiro, V.P.; Borges, C.H.G.; Martins, C.H.G.; Veneziani, R.C.S.; Ambrósio, S.R.; Bastos, J.K. Occurrence, chemical composition, biological activities and analytical methods on Copaifera genus-A review. Biomed. Pharmacother. 2019, 109, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Furtado, R.A.; de Oliveira, P.F.; Senedese, J.M.; Ozelin, S.D.; Ribeiro de Souza, L.D.; Leandro, L.F.; Oliveira, W.L.; Silva, J.J.M.; Oliveira, L.C.; Rogez, H.; et al. Assessment of toxicogenetic activity of oleoresins and leaves extracts of six Copaifera species for prediction of potential human risks. J. Ethnopharmacol. 2018, 221, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Brancalion, A.P.S.; Oliveira, R.B.; Sousa, J.P.B.; Groppo, M.; Berretta, A.A.; Barros, M.E.; Boim, M.; Bastos, J.K. Effect of hydroalcoholic extract from Copaifera langsdorffii leaves on urolithiasis induced in rats. Urol. Res. 2012, 40, 475–481. [Google Scholar] [CrossRef]
- Motta, E.V.; Lemos, M.; Costa, J.C.; Bandero-Filho, V.C.; Sasse, A.; Sheridan, H.; Bastos, J.K. Galloylquinic acid derivatives from Copaifera langsdorffii leaves display gastroprotective activity. Chem. Biol. Interact. 2017, 261, 145–155. [Google Scholar] [CrossRef]
- Ruhnke, M. Epidemiology of Candida albicans infections and role of non-Candida-albicans yeasts. Curr. Drug Targets 2006, 7, 495–504. [Google Scholar] [CrossRef]
- Brandt, M.E.; Lockhart, S.R. Recent taxonomic developments with Candida and other opportunistic yeasts. Curr. Fungal Infect. Rep. 2012, 6, 170–177. [Google Scholar] [CrossRef]
- Herkert, P.F.; Gomes, R.R.; Muro, M.D.; Pinheiro, R.L.; Fornari, G.; Vicente, V.A.; Queiroz-Telles, F. In vitro susceptibility and molecular characterization of Candida spp. from candidemic patients. Rev. Iberoam. Micol. 2015, 32, 221–228. [Google Scholar] [CrossRef]
- Sanguinetti, M.; Posteraro, B.; Lass-Florl, C. Antifungal drug resistance among Candida species: Mechanisms and clinical impact. Mycoses 2015, 58 Suppl. 2, 2–13. [Google Scholar] [CrossRef]
- Breger, J.; Fuchs, B.B.; Aperis, G.; Moy, T.I.; Ausubel, F.M.; Mylonakis, E. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog. 2007, 3, e18. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.O.; Ueda-Nakamura, T.; Dias Filho, B.P.; Veiga Junior, V.F.; Pinto, A.C.; Nakamura, C.V. Antimicrobial activity of Brazilian copaiba oils obtained from different species of the Copaifera genus. Mem. Inst. Oswaldo Cruz 2008, 103, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Fourth Informational Supplement (Document M27-S4); CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Clinical and Laboratory Standards Institute. M60: Performance Standards for Antifungal Susceptibility Testing of Yeasts; CLSI: Wayne, PA, USA, 2017. [Google Scholar]
- Far, F.E.; Al-Obaidi, M.M.J.; Desa, M.N.M. Efficacy of modified Leeming-Notman media in a resazurin microtiter assay in the evaluation of in-vitro activity of fluconazole against Malassezia furfur ATCC 14521. J. Mycol. Med. 2018, 28, 486–491. [Google Scholar] [CrossRef]
- Holetz, F.B.; Pessini, G.L.; Sanches, N.R.; Cortez, D.A.G.; Nakamura, C.V.; Dias, B.P. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz. 2002, 97, 1027–1031. [Google Scholar] [CrossRef] [Green Version]
- Kokoska, L.; Kloucek, P.; Leuner, O.; Novy, P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem. 2019, 26, 5501–5541. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.D.; MacDougall, C.; Ostrosky-Zeichner, L.; Perfect, J.R.; Rex, J.H. Combination antifungal therapy. Antimicrob. Agents Chemother. 2004, 48, 693–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kontoyiannis, D.P.; Lewis, R.E. Combination chemotherapy for invasive fungal infections: What laboratory and clinical studies tell us so far. Drug Resist. Updat. 2003, 6, 257–269. [Google Scholar] [CrossRef]
- Pierce, C.G.; Uppuluri, P.; Tristan, A.R.; Wormley, F.L., Jr.; Mowat, E.; Ramage, G.; Ramage, G.; Lopez-Ribot, J.L. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat. Protoc. 2008, 3, 1494–1500. [Google Scholar] [CrossRef]
- Aneja, B.; Irfan, M.; Kapil, C.; Jairajpuri, M.A.; Maguire, R.; Kavanagh, K.M.; Rizvi, M.A.; Manzoor, N.; Azam, A.; Abid, M. Effect of novel triazole-amino acid hybrids on growth and virulence of Candida species: In vitro and in vivo studies. Org. Biomol. Chem. 2016, 14, 10599–10619. [Google Scholar] [CrossRef] [Green Version]
- Mylonakis, E.; Ausubel, F.M.; Perfect, J.R.; Heitman, J.; Calderwood, S.B. Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc. Natl. Acad. Sci. USA 2002, 99, 5675–5680. [Google Scholar] [CrossRef] [Green Version]
- Scorzoni, L.; Lucas, M.P.; Singulani, J.L.; Oliveira, H.C.; Assato, P.A.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J. Evaluation of Caenorhabditis elegans as a host model for Paracoccidioides brasiliensis and Paracoccidioides lutzii. Path. Dis. 2018, 76, fty004. [Google Scholar] [CrossRef] [PubMed]
- Diefenbach, A.L.; Muniz, F.; Oballe, H.J.R.; Rosing, C.K. Antimicrobial activity of copaiba oil (Copaifera ssp.) on oral pathogens: Systematic review. Phytother. Res. 2018, 32, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Zimmermam-Franco, D.C.; Bolutari, E.B.; Polonini, H.C.; do Carmo, A.M.; Chaves, M.; Raposo, N.R. Antifungal activity of Copaifera langsdorffii Desf oleoresin against dermatophytes. Molecules 2013, 18, 12561–12570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobouti, P.L.; de Andrade Martins, T.C.; Pereira, T.J.; Mussi, M.C.M. Antimicrobial activity of copaiba oil: A review and a call for further research. Biomed. Pharmacother. 2017, 94, 93–99. [Google Scholar] [CrossRef]
- Souza, A.B.; Martins, C.H.G.; Souza, M.G.M.; Furtado, N.A.J.C.; Heleno, V.C.G.; Sousa, J.P.B.; Rocha, E.M.P.; Bastos, J.K.; Cunha, W.R.; Veneziani, R.C.S.; et al. Antimicrobial activity of terpenoids from Copaifera langsdorffii Desf. against cariogenic bacteria. Phytother. Res. 2011, 25, 215–220. [Google Scholar] [CrossRef]
- Cowen, L.E.; Sanglard, D.; Howard, S.J.; Rogers, P.D.; Perlin, D.S. Mechanisms of antifungal drug resistance. Cold Spring Harb. Perspect. Med. 2014, 5, 019752. [Google Scholar] [CrossRef]
- De Leo, M.; Braca, A.; De Tommasi, N.; Norscia, I.; Morelli, L.; Battinelli, L.; Mazzanti, G. Phenolic compounds from Baseonema acuminatum leaves: Isolation and antimicrobial activity. Planta Med. 2004, 70, 841–846. [Google Scholar] [CrossRef]
- Li, X.C.; Jacob, M.R.; Pasco, D.S.; ElSohly, H.N.; Nimrod, A.C.; Walker, L.A.; Clark, A.M. Phenolic compounds from Miconia myriantha inhibiting Candida aspartic proteases. J. Nat. Prod. 2001, 64, 1282–1285. [Google Scholar] [CrossRef]
- Turchetti, B.; Pinelli, P.; Buzzini, P.; Romani, A.; Heimler, D.; Franconi, F.; Martini, A. In vitro antimycotic activity of some plant extracts towards yeast and yeast-like strains. Phytother. Res. 2005, 19, 44–49. [Google Scholar] [CrossRef]
- Latte, K.P.; Kolodziej, H. Antifungal effects of hydrolysable tannins and related compounds on dermatophytes, mould fungi and yeasts. Z. für Naturforsch. C J. Biosci. 2000, 55, 467–472. [Google Scholar] [CrossRef]
- Kolodzeij, H.; Kayser, O.; Latte, K.P.; Ferreira, D. Evaluation of the antimicrobial potency of tannins and related compounds using the microdilution broth method. Planta Med. 1999, 65, 444–446. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, B.E.; Zhang, S.W.; Yang, S.M.; Wang, H.; Ren, A.M.; Yie, E.-T. Isolation of antifungal compound from Paeonia suffruticosa and its antifungal mechanism. Chin. J. Integr. Med. 2015, 21, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Geesey, G.G.; Cheng, K.J. How bacteria stick. Sci. Am. 1978, 238, 86–95. [Google Scholar] [CrossRef]
- Arciola, C.R.; Campoccia, D.; Ravaioli, S.; Montanaro, L. Polysaccharide intercellular adhesin in biofilm: Structural and regulatory aspects. Front. Cell. Infect. Microbiol. 2015, 5, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobile, C.J.; Johnson, A.D. Candida albicans biofilms and human disease. Annu. Rev. Microbiol. 2015, 69, 71–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, C.; Mavrianos, J.; Chauhan, N. Candida glabrata Pwp7p and Aed1p are required for adherence to human endothelial cells. FEMS Yeast Res. 2011, 11, 595–601. [Google Scholar] [CrossRef]
- Tam, P.; Gee, K.; Piechocinski, M.; Macreadie, I. Candida glabrata, friend and foe. J. Fungi 2015, 1, 277–292. [Google Scholar] [CrossRef] [Green Version]
- Selim, S.A.; Adam, M.E.; Hassan, S.M.; Albalawi, A.R. Chemical composition, antimicrobial and antibiofilm activity of the essential oil and methanol extract of the Mediterranean cypress (Cupressus sempervirens L.). BMC Complement. Altern. Med. 2014, 14, 179. [Google Scholar] [CrossRef]
- Evensen, N.A.; Braun, P.C. The effects of tea polyphenols on Candida albicans: Inhibition of biofilm formation and proteasome inactivation. Can. J. Microbiol. 2009, 55, 1033–1039. [Google Scholar] [CrossRef]
- Groot, P.W.J.; Kraneveld, E.A.; Yin, Q.Y.; Dekker, H.L.; Gross, U.; Crielaard, W.; Koster, C.G.; Bader, O.; Klis, F.M.; Weig, M. The cell wall of the human pathogen Candida glabrata: Differential incorporation of novel adhesin-like wall proteins. Eukaryot. Cell 2008, 7, 1951–1964. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, S.; Kudoh, A.; Okawa, Y.; Shibata, N. Significant differences in the cell-wall mannans from three Candida glabrata strains correlate with antifungal drug sensitivity. FEBS J. 2012, 279, 1844–1856. [Google Scholar] [CrossRef] [PubMed]
- Hunt, P.R. The C. elegans model in toxicity testing. J. Appl. Toxicol. 2017, 37, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Aldana, J.A.; De Grandis, R.A.; Nicolella, H.; Guissoni, A.P.P.; Squarisi, I.; Arruda, C.; Ribeiro, V.P.; Tavares, D.C.; Barcelos, G.R.M.; Antunes, L.M.G.; et al. Evaluation of cytoprotective effects of compounds isolated from Copaifera langsdorffii Desf. against induced cytotoxicity by exposure to methylmercury and lead. Nat. Prod. Res. 2019, 1–5. [Google Scholar] [CrossRef] [PubMed]
Copaifera Leaf Extract | C. albicans (ATCC 5314) | C. glabrata (ATCC 2001) | C. krusei (ATCC 6258) | C. parapsilosis (ATCC 22019) | C. orthopsilosis (ATCC 96141) | C. tropicalis (ATCC 13803) |
---|---|---|---|---|---|---|
C. duckei | 46.87 | 23.43 | 23.43 | 23.43 | 11.72 | 46.87 |
C. langsdorffii | 93.75 | 23.43 | 23.43 | 93.73 | 46.87 | 93.75 |
C. lucens | 46.87 | 46.87 | 46.87 | 46.87 | 11.72 | 46.87 |
C. multijuga | 46.87 | 23.43 | 23.43 | 46.87 | 46.87 | 46.87 |
C. oblongifolia | 93.75 | 23.43 | 23.43 | 46.87 | 23.43 | 93.75 |
C. paupera | 46.87 | 5.86 | 11.72 | 23.43 | 23.43 | 46.87 |
C. reticulata | 46.87 | 5.86 | 11.72 | 23.43 | 23.43 | 46.87 |
C. trapeziofolia | 93.75 | 23.43 | 46.87 | 46.87 | 23.43 | 93.75 |
Copaifera Oleoresin | ||||||
C. duckei | >750.00 | >750.00 | >750.00 | >750.00 | >750.00 | >750.00 |
C. langsdorffii | >750.00 | 750.00 | 750.00 | 750.00 | 750.00 | >750.00 |
C. paupera | 750.00 | 187.50 | 187.50 | 750.00 | 750.00 | 750.00 |
C. pubiflora | >750.00 | 750.00 | 750.00 | >750.00 | 750.00 | >750.00 |
C. reticulata | >750.00 | 750.00 | 375.00 | 750.00 | 750.00 | >750.00 |
C. trapeziofolia | >750.00 | 375.00 | 750.00 | 750.00 | 375.00 | >750.00 |
Amphotericin B | 1.00 | 0.25 |
Strains | MIC in Combination (µg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
Cd/AMB | Cla/AMB | Clu/AMB | Cm/AMB | Co/AMB | Cp/AMB | Cr/AMB | Ct/AMB | |
C. albicans ATCC 5314 | 93.75/1.0 | 93.75/0.5 | 46.87/1.0 | 46.87/1.0 | 187.5/2.0 | 46.87/0.25 | 46.87/0.5 | 187.5/1.0 |
C. glabrata ATCC 2001 | 23.43/1.0 | 11.72/0.5 | 46.87/1.0 | 11.72/0.7 | 46.87/1.0 | 5.86/0.25 | 5.86/0.5 | 23.43/1.0 |
C. krusei ATCC 6258 | 23.43/2.0 | 11.72/1.0 | 46.87/2.0 | 11.72/1.0 | 46.87/2.0 | 11.72/0.5 | 11.72/1.0 | 93.73/2.0 |
C. parapsilosis ATCC 22019 | 46.87/0.5 | 93.73/0.5 | 46.87/0.5 | 23.43/0.5 | 93.73/0.5 | 23.43/0.12 | 23.43/0.25 | 93.73/0.5 |
C. orthopsilosis ATCC 96141 | 23.43/0.5 | 46.87/0.5 | 11.72/0.5 | 23.43/0.5 | 93.73/0.5 | 23.43/0.125 | 23.43/0.25 | 46.87/0.5 |
C. tropicalis ATCC 13803 | 93.75/1.0 | 93.75/1.0 | 46.87/1.0 | 46.87/1.0 | 187.5/2.0 | 46.87/0.25 | 46.87/0.5 | 187.5/1.0 |
FICI (Interpretation) | ||||||||
Cd | Cla | Clu | Cm | Co | Cp | Cr | Ct | |
C. albicans ATCC 5314 | 4.0/A | 2.0/I | 3.0/I | 3.0/I | 6.0/A | 1.5/I | 2.0/I | 4.0/A |
C. glabrata ATCC 2001 | 4.0/A | 1.5/I | 3.0/I | 2.40/I | 4.0/A | 1.5/I | 2.0/I | 3.0/I |
C. krusei ATCC 6258 | 4.0/A | 1.5/I | 3.0/I | 1.5/I | 4.0/A | 1.5/I | 2.0/I | 4.0/I |
C. parapsilosis ATCC 22019 | 4.0/A | 3.0/I | 3.0/I | 2.49/I | 3.9/I | 1.5/I | 2.0/I | 4.0/A |
C. orthopsilosis ATCC 96141 | 4.0/A | 3.0/I | 3.0/I | 2.49/I | 6.0/A | 1.5/I | 2.0/I | 4.0/A |
C. tropicalis ATCC 13803 | 4.0/A | 3.0/I | 3.0/I | 3.0/I | 6.0/A | 1.5/I | 2.0/I | 4.0/A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, G.; Orlando, H.C.S.; Scorzoni, L.; Pedroso, R.S.; Abrão, F.; Carvalho, M.T.M.; Veneziani, R.C.S.; Ambrósio, S.R.; Bastos, J.K.; Mendes-Giannini, M.J.S.; et al. Brazilian Copaifera Species: Antifungal Activity against Clinically Relevant Candida Species, Cellular Target, and In Vivo Toxicity. J. Fungi 2020, 6, 153. https://doi.org/10.3390/jof6030153
Andrade G, Orlando HCS, Scorzoni L, Pedroso RS, Abrão F, Carvalho MTM, Veneziani RCS, Ambrósio SR, Bastos JK, Mendes-Giannini MJS, et al. Brazilian Copaifera Species: Antifungal Activity against Clinically Relevant Candida Species, Cellular Target, and In Vivo Toxicity. Journal of Fungi. 2020; 6(3):153. https://doi.org/10.3390/jof6030153
Chicago/Turabian StyleAndrade, Géssica, Haniel Chadwick Silva Orlando, Liliana Scorzoni, Reginaldo Santos Pedroso, Fariza Abrão, Marco Túlio Menezes Carvalho, Rodrigo Cassio Sola Veneziani, Sérgio Ricardo Ambrósio, Jairo Kenupp Bastos, Maria José Soares Mendes-Giannini, and et al. 2020. "Brazilian Copaifera Species: Antifungal Activity against Clinically Relevant Candida Species, Cellular Target, and In Vivo Toxicity" Journal of Fungi 6, no. 3: 153. https://doi.org/10.3390/jof6030153
APA StyleAndrade, G., Orlando, H. C. S., Scorzoni, L., Pedroso, R. S., Abrão, F., Carvalho, M. T. M., Veneziani, R. C. S., Ambrósio, S. R., Bastos, J. K., Mendes-Giannini, M. J. S., Martins, C. H. G., & Pires, R. H. (2020). Brazilian Copaifera Species: Antifungal Activity against Clinically Relevant Candida Species, Cellular Target, and In Vivo Toxicity. Journal of Fungi, 6(3), 153. https://doi.org/10.3390/jof6030153