Biotic Environments Supporting the Persistence of Clinically Relevant Mucormycetes
Abstract
:1. Introduction
2. Optimal Environmental Conditions for Growth and Sporulation
3. Outdoor Habitats
3.1. Soil
3.2. Composting Vegetation
3.3. Animal and Bird Excreta
3.4. Specific Ecological Niches Revealed by Natural Disasters
4. Indoor Niches and Habitats Supporting the Growth of Mucorales
4.1. Indoor Air
4.2. Dust and Litter
4.3. Manuscripts, Documents and Books
4.4. Building Materials
5. Food as an Ecological Niche for Mucorales
6. Water
6.1. Drinking Water
6.2. Marine Environments
7. Hospital Environments
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ribes, J.A.; Vanover-Sams, C.L.; Baker, D.J. Zygomycetes in human disease. Clin. Microbiol. Rev. 2000, 13, 236–301. [Google Scholar] [CrossRef] [PubMed]
- Richardson, M. The ecology of the Zygomycetes and impact on environmental exposure. Clin. Microbiol. Infect. 2009, 15, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Wan, Z.; Ruoyu, L.I.; Yu, J. Species identification and delineation of pathogenic Mucorales by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2018, 56, e01886-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, P.; Guedouar, H.; Laouiti, F.; Grenouillet, F.; Dannaou, E. Identification of Mucorales by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. J. Fungi 2019, 5, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingold, C.T. The Biology of Mucor and its Allies. Studies in Biology No 88; Edward Arnold: London, UK, 1978. [Google Scholar]
- Grant, C.; Hunter, C.A.; Flannigan, B.; Bravery, A.F. Water activity requirements of moulds isolated from domestic dwellings. Int. Biodeterior. 1989, 25, 259–284. [Google Scholar] [CrossRef]
- Ingold, C.T. Fungal Spores: Their Liberation and Dispersal; Clarendon Press: Oxford, UK, 1971; pp. 61–91. [Google Scholar]
- Jennessen, J.; Schnürer, J.; Olsson, J.; Samson, R.A.; Dijksterhuis, J. Morphological characteristics of sporangiospores of the tempe fungus Rhizopus oligosporus differentiate it from other taxa of the R. microsporus group. Mycolog. Res. 2008, 112, 547–563. [Google Scholar] [CrossRef]
- Egge, S.; Wei, E.; Clements, E.; Chandranesan, A.S.J. Post-traumatic fatal disseminated Apophysomyces elegans infection. Med. Mycol. Case Rep. 2018, 22, 45–47. [Google Scholar] [CrossRef]
- Prakash, H.; Ghosh, A.K.; Rudramurthy, S.M.; Paul, R.A.; Gupta, S.; Negi, V.; Chakrabarti, A. The environmental source of emerging Apophysomyces variabilis infection in India. Med. Mycol. 2016, 54, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.Z.; Lewis, R.E.; Kontoyiannis, D.P. Mucormycosis caused by unusual mucormycetes, non-Rhizopus, -Mucor, and Lichtheimia species. Clin. Microbiol. Rev. 2011, 24, 411–445. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Lachica, I.; Marquez-Zequera, I.; Allende-Molar, R.; Sanudo-Barajas, J.A.; Leon-Felix, J.; Ley-Lopez, N.; Garcia-Estrada, R.S. Diversity of mucoralean fungi in soils of papaya (Carica papaya L.) producing regions in Mexico. Fungal Biol. 2018, 122, 810–816. [Google Scholar] [CrossRef]
- De Souza, C.A.F.; Lima, D.X.; Gurgel, L.M.S.; de Azevedo Santiago, A.L.C.M. Diversity of basal fungal order Mucorales (Mucoromycota) in a remaining area of the Brazilian Atlantic Rainforest. Nova Hedwig. 2018, 107, 459–471. [Google Scholar]
- Silvestro, L.B.; Biganzoli, F.; Stenglein, S.A.; Forjan, H.; Manso, L.; Moreno, M.V. Mixed cropping regimes promote the soil fungal community under zero tillage associated Data. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2018, 111, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, B.; Costa, J.M.; Arne, P.; Guillot, J.; Chermette, R.; Botterel, F.; Dannaoui, E. Occurrence and species distribution of pathogenic Mucorales in unselected soil samples from France. Med. Mycol. 2018, 56, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Grishkan, I. Thermotolerant mycobiota of Israeli soils. J. Basic Microbiol. 2018, 58, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Ziaee, A.; Zia, M.; Bayat, M.; Hashemi, J. Identification of Mucorales isolates from soil using morphological and molecular methods. Curr. Med. Mycol. 2016, 2, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khusnullina, A.I.; Bilanenko, E.N.; Kurakov, A.V. Microscopic fungi of white sea sediments. Contemp. Probl. Ecol. 2018, 5, 503–513. [Google Scholar] [CrossRef]
- Hass, D.; Lesch, S.; Buzina, W.; Galler, H.; Gutschi, A.M.; Habib, J.; Pfeifer, B.; Luxner, J.; Reinthaler, F.F. Culturable fungi in potting soils and compost. Med. Mycol. 2016, 54, 825–834. [Google Scholar] [CrossRef]
- De Souza, C.A.F.; Lima, D.X.; Gurgel, L.M.S.; de Azevedo Santiago, A.L.C.M. Coprophilous Mucorales (ex Zygomycota) from three areas in the semi-arid of Pernambuco, Brazil. Braz. J. Microbiol. 2017, 48, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Naz, S.A.; Yaseen, M.; Jabeen, N.; Shafique, M. Isolation of potentially pathogenic fungi from selected pigeons’ feeding sites in Karachi: A new dimension to health hazard. J. Pak. Med. Assoc. 2017, 67, 901–906. [Google Scholar]
- Benedict, K.; Richardson, M.; Vallabhaneni, S.; Jackson, B.R.; Chiller, T. Emerging issues, challenges, and changing epidemiology of fungal disease outbreaks. Lancet Infect. Dis. 2017, 17, e403–e411. [Google Scholar] [CrossRef]
- Neblett Fanfair, R.; Benedict, K.; Bos, J.; Bennett, S.D.; Lo, Y.-C.; Adebanjo, T.; Etienne, K.; Deak, E.; Derado, G.; Shieh, W.-J.; et al. Necrotising cutaneous mucormycosis after a tornado in Joplin, Missouri, in 2011. N. Eng. J. Med. 2012, 367, 2214–2225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meis, J.F.; Chakrabarti, A. Changing epidemiology of an emerging infection: Zygomycosis. Clin. Microbiol. Infect. 2009, 15, 10–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flannigan, B.; Miller, J.D. Microbial growth in indoor environments. In Microorganisms in Home and Indoor Work Environments: Diversity, Health Impacts, Investigation and Control; Robert, A., Sampson, J., Miller, D., Eds.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Samson, R. Ecology and general characteristics of indoor fungi. In Fundamentals of Mold Growth in Indoor Environments and Strategies for Healthy Living; Adan, O.C.G., Samson, R.A., Eds.; Wageningen Academic Publishers: Wageningen, The Nederlands, 2011; pp. 101–116. [Google Scholar]
- Caetano, L.A.; Faria, T.; Springer, J.; Loeffler, J.; Viegas, C. Antifungal-resistant Mucorales in different indoor environments. Mycology 2018, 10, 75–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouakline, A.; Lacroix, C.; Roux, N.; Gangneux, J.P.; Derouin, F. Fungal contamination of food in haematology units. J. Clin. Microbiol. 2000, 38, 4272–4273. [Google Scholar] [PubMed]
- Snyder, A.B.; Worobo, R.W. Risk mitigation for immunocompromised consumers of mucormycete spoiled and fermented foods: Germane guidance and remaining needs. Microorganisms 2018, 6, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousavi, B.; Botterel, F.; Costa, J.-M.; Arne, P.; Guillot, J.; Dannaoui, E. Occurrence and species diversity of human-pathogenic Mucorales in commercial food-stuffs purchased in Paris area. Med. Mycol. 2018. [Google Scholar] [CrossRef]
- Babic, M.N.; Gunde-Cimerman, N.; Vargha, M.; Tischner, Z.; Magyar, D.; Verissimo, C.; Sabino, R.; Viegas, C.; Meyer, W.; Brandao, J. Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. Int. J. Environ. Res. Public Health 2017, 14, 636. [Google Scholar] [CrossRef] [Green Version]
- Jennings, D.H. Some aspects of the physiology and biochemistry of marine fungi. Biol. Rev. 1985, 58, 423–459. [Google Scholar] [CrossRef]
- Qudiesat, K.; Abu-Elteen, K.; Elkarmi, A.; Hamad, M.; Abussaud, M. Assessment of airborne pathogens in healthcare settings. Afr. J. Microbiol. Res. 2009, 3, 66–76. [Google Scholar]
- Rammaert, B.; Lanternier, F.; Zahar, J.-R.; Dannaoui, E.; Bougnoux, M.-E.; Lecuit, M.; Lortholary, O. Healthcare-associated mucormycosis. Clin. Infect. Dis. 2012, 54, S44–S51. [Google Scholar] [CrossRef] [Green Version]
- Davoudi, S.; Graviss, L.S.; Kontoyiannis, D.P. Healthcare-associated outbreaks due to Mucorales and other uncommon fungi. Eur. J. Clin. Investig. 2015, 45, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.; Harris, J.; Gade, L.; Sehulster, L.; Newhouse, E.; O’Connell, H.; Noble-Wang, J.; Rao, C.; Balajee, S.A.; Chiller, T. Mucormycosis outbreak associated with hospital linens. Pediatr. Infect. Dis. 2014, 33, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Cheng, V.C.C.; Chen, J.H.K.; Wong, S.C.Y.; Leung, S.S.M.; So, S.Y.C.; Lung, D.C.; Lee, W.-M.; Trendell-Smith, N.J.; Chan, W.-M.; Ng, D.; et al. Hospital outbreak of pulmonary and cutaneous zygomycosis due to contaminated linen items from substandard laundry. Clin. Infect. Dis. 2016, 62, 714–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundermann, A.J.; Clancy, C.J.; Pasculle, A.W.; Liu, G.; Cumbie, R.B.; Driscoll, E.; Ayres, A.; Donahue, L.; Pergam, S.A.; Abbo, L.; et al. How clean is the linen at my hospital? The Mucorales on unclean linen discovery study of large United States Transplant and cancer Centers. Clin. Infect. Dis. 2019, 68, 850–853. [Google Scholar] [CrossRef] [PubMed]
Geographical Location | Type of Soil | Taxa/Species Isolated |
---|---|---|
India, Haryana, Punjab, Himachal Pradesh, Tamil Nadu [10] | Agricultural, non-agricultural, low nitrogen content | Rhizopus arrhizus |
Lichtheimia spp. | ||
Cunninghamella species | ||
Rhizopus microsporus | ||
Apophysomyces species | ||
Apophysomyces viariabilis | ||
Mexico [12] | Intensive papaya producing orchards in Colima, Oaxaca and Veracruz states | Gilbertella persicaria |
Rhizopus oryzae | ||
Rhizopus stolonifera | ||
Mucor circinelloides | ||
Mucor hiemalis | ||
Choanephora cucurbitarum | ||
Mucor ellipsoideus | ||
Rhizopus homothallicus | ||
Rhizopus microspores | ||
Rhizopus schipperae | ||
Lichtheimia | ||
Gongronella butleri | ||
Cunninghamella bertholletia | ||
Cunninghamella blakesleena | ||
Brazil [13] | Semi-arid | Absidia (Lichtheimia) |
Cunninghamella | ||
Gongronella | ||
Mucor | ||
Rhizopus | ||
Synchephalastrum | ||
Argentina, Buenos Aires [14] | No tillage for 13 years, Petrocalcic Argiudoll type and topsoil with a sandy clay loam texture, different cropping regimens | Rhizopus stolonifer |
France, different regions [15] | Arable fields, flower beds | Rhizopus arrhizus |
Mucor circinelloides | ||
Lichtheimia corymbifera | ||
Rhizopus microsporus | ||
Cunninghamella bertholletiae | ||
Israel, Negev Desert [16] | Desert sand, loess soils, stony debris | Mortierella |
Rhizopus spp. | ||
Iran, Isfahan [17] | Parks, gardens | Mucor circinelloides |
M. racemosus | ||
M. plumbeus | ||
Rhizopmucor pusillus | ||
Rhizopus arrhizus | ||
R. stolonifera | ||
Lichtheimia corymbifera | ||
Cunninghamella bertholletiae | ||
Mortierella wolfii | ||
Israel, White Sea [18] | Bottom soils, sediments | Mucor hiemalis |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richardson, M.D.; Rautemaa-Richardson, R. Biotic Environments Supporting the Persistence of Clinically Relevant Mucormycetes. J. Fungi 2020, 6, 4. https://doi.org/10.3390/jof6010004
Richardson MD, Rautemaa-Richardson R. Biotic Environments Supporting the Persistence of Clinically Relevant Mucormycetes. Journal of Fungi. 2020; 6(1):4. https://doi.org/10.3390/jof6010004
Chicago/Turabian StyleRichardson, Malcolm D., and Riina Rautemaa-Richardson. 2020. "Biotic Environments Supporting the Persistence of Clinically Relevant Mucormycetes" Journal of Fungi 6, no. 1: 4. https://doi.org/10.3390/jof6010004
APA StyleRichardson, M. D., & Rautemaa-Richardson, R. (2020). Biotic Environments Supporting the Persistence of Clinically Relevant Mucormycetes. Journal of Fungi, 6(1), 4. https://doi.org/10.3390/jof6010004