Host Soluble Mediators: Defying the Immunological Inertness of Aspergillus fumigatus Conidia
Abstract
:1. Introduction
2. Complement Components Associated with Recognition of Dormant Conidia
3. Non-Complement Components Associated with the Recognition of Dormant Conidia
4. Immune Receptors
4.1. Complement Receptors and Fcγ Receptors
4.2. Calreticulin
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Latgé, J.P. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 1999, 12, 310–350. [Google Scholar] [PubMed]
- Lee, M.J.; Sheppard, D.C. Recent advances in the understanding of the Aspergillus fumigatus cell wall. J. Microbiol. 2016, 54, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Soubani, A.O.; Chandrasekar, P.H. The clinical spectrum of pulmonary aspergillosis. Chest 2002, 121, 1988–1999. [Google Scholar] [CrossRef] [PubMed]
- Aimanianda, V.; Bayry, J.; Bozza, S.; Kniemeyer, O.; Perruccio, K.; Elluru, S.R.; Clavaud, C.; Paris, S.; Brakhage, A.A.; Kaveri, S.V.; et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 2009, 460, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Aimanianda, V.; Latge, J.P. Fungal hydrophobins form a sheath preventing immune recognition of airborne conidia. Virulence 2010, 1, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Latgé, J. Tasting the fungal cell wall. Cell. Microbiol. 2010, 12, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Delves, P.; Roitt, I. The immune system. N. Engl. J. Med. 2000, 343, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Balloy, V.; Chignard, M. The innate immune response to Aspergillus fumigatus. Microbes. Infect. 2009, 11, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Tanida, T.; Wei, B.; Ueta, E.; Yamamoto, T.; Osaki, T. Regulation of fungal infection by a combination of amphotericin B and peptide 2, a lactoferrin peptide that activates neutrophils. Clin. Diagn. Lab. Immunol. 2004, 11, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Lupetti, A.; van Dissel, J.; Brouwer, C.; Nibbering, P. Human antimicrobial peptides’ antifungal activity against Aspergillus fumigatus. Eur. J. Clin. Microbiol. Infect. Dis. 2008, 27, 1125–1129. [Google Scholar] [CrossRef] [PubMed]
- Walport, M.J. Complement. N. Engl. J. Med. 2001, 344, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Ratnoff, W.D.; Fearon, D.T.; Austen, K.F. The role of antibody in the activation of the alternative complement pathway. Springer Semin. Immunopathol. 1983, 6, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T. Evolution of the lectin–complement pathway and its role in innate immunity. Nat. Rev. Immunol. 2002, 2, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Speth, C.; Rambach, G. Complement attack against Aspergillus and corresponding evasion mechanisms. Interdiscip. Perspect. Infect. Dis. 2012, 2012, 463794. [Google Scholar] [CrossRef] [PubMed]
- Kozel, T.R.; Wilson, M.A.; Farrell, T.P.; Levitz, S.M. Activation of C3 and binding to Aspergillus fumigatus conidia and hyphae. Infect. Immun. 1989, 57, 3412–3417. [Google Scholar] [PubMed]
- Dumestre-Perard, C.; Lamy, B.; Aldebert, D.; Lemaire-Vieille, C.; Grillot, R.; Brion, J.-P.; Gagnon, J.; Cesbron, J.-Y. Aspergillus conidia activate the complement by the mannan-binding lectin C2 bypass mechanism. J. Immunol. 2008, 181, 7100–7105. [Google Scholar] [CrossRef] [PubMed]
- Braem, S.G.E.; Rooijakkers, S.H.M.; van Kessel, K.P.M.; de Cock, H.; Wösten, H.A.B.; van Strijp, J.A.G.; Haas, P.J.A. Effective neutrophil phagocytosis of Aspergillus fumigatus is mediated by classical pathway complement activation. J. Innate Immun. 2015, 7, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Sturtevant, J.E.; Latge, J.P. Interactions between conidia of Aspergillus fumigatus and human complement component C3. Infect. Immun. 1992, 60, 1913–1918. [Google Scholar] [PubMed]
- Eddie, W.K.; Kazue, I.; Ezekowitz, T.R.A.; Stuart, L.M.; Ip, W.K.; Takahashi, K.; Ezekowitz, R.A.; Alan, R. Mannose-binding lectin and innate immunity. Immunol. Rev. 2009, 230, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Neth, O.; Jack, D.L.; Dodds, A.W.; Holzel, H.; Klein, N.J.; Turner, M.W. Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect. Immun. 2000, 68, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, M. Ficolins: Complement-activating lectins involved in innate immunity. J. Innate Immun. 2009, 2, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Hummelshøj, T.; Ma, Y.J.; Munthe-Fog, L.; Bjarnsholt, T.; Moser, C.; Skjoedt, M.O.; Romani, L.; Fujita, T.; Endo, Y.; Garred, P. The interaction pattern of murine serum ficolin-A with microorganisms. PLoS ONE 2012, 7, e38196. [Google Scholar] [CrossRef] [PubMed]
- Bidula, S.; Sexton, D.W.; Yates, M.; Abdolrasouli, A.; Shah, A.; Wallis, R.; Reed, A.; Armstrong-James, D.; Schelenz, S. H-ficolin binds Aspergillus fumigatus leading to activation of the lectin complement pathway and modulation of lung epithelial immune responses. Immunology 2015, 146, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Bidula, S.; Kenawy, H.; Ali, Y.M.; Sexton, D.; Schwaeble, W.J.; Schelenz, S. Role of ficolin-A and lectin complement pathway in the innate defense against pathogenic Aspergillus species. Infect. Immun. 2013, 81, 1730–1740. [Google Scholar] [CrossRef] [PubMed]
- Schønheyder, H.; Andersen, P. Complement-binding antibodies to Aspergillus fumigatus in patients with pulmonary aspergillosis. Acta Pathol. Microbiol. Immunol. Scand. B 1983, 91, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rosbjerg, A.; Genster, N.; Pilely, K.; Skjoedt, M.; Stahl, G.L.; Garred, P. Complementary roles of the classical and lectin complement pathways in the defense against Aspergillus fumigatus. Front. Immunol. 2016, 7, 473. [Google Scholar] [CrossRef] [PubMed]
- Rosas, Á.L.; MacGill, R.S.; Nosanchuk, J.D.; Kozel, T.R.; Casadevall, A. Activation of the alternative complement pathway by fungal melanins. Clin. Diagn. Lab. Immunol. 2002, 9, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.K.; Gajjar, D.U.; Vasavada, A.R. DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species. Med. Mycol. 2014, 52, 10–18. [Google Scholar] [PubMed]
- Williamson, P.R.; Wakamatsu, K.; Ito, S.; Williamson, P.R.; Wakamatsu, K. Melanin biosynthesis in Cryptococcus neoformans. J. Bacteriol. 1998, 180, 1570–1572. [Google Scholar] [PubMed]
- Youngchim, S.; Morris-Jones, R.; Hay, R.J.; Hamilton, A.J. Production of melanin by Aspergillus fumigatus. J. Med. Microbiol. 2004, 53, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Gabay, C.; Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Kishore, U.; Greenhough, T.J.; Waters, P.; Shrive, A.K.; Ghai, R.; Kamran, M.F.; Bernal, A.L.; Reid, K.B.M.; Madan, T.; Chakraborty, T. Surfactant proteins SP-A and SP-D: Structure, function and receptors. Mol. Immunol. 2006, 43, 1293–1315. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, J.C.; Swyers, A.H.; Fisher, J.H.; Wright, J.R. Surfactant proteins A and D increase in response to intratracheal lipopolysaccharide. Am. J. Respir. Cell Mol. Biol. 1996, 15, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Atochina, E.N.; Beers, M.F.; Tomer, Y.; Scanlon, S.T.; Russo, S.J.; Panettieri, R.A.; Haczku, A. Attenuated allergic airway hyperresponsiveness in C57BL/6 mice is associated with enhanced surfactant protein (SP)-D production following allergic sensitization. Respir. Res. 2003, 4, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madan, T.; Kaur, S.; Saxena, S.; Singh, M.; Kishore, U.; Thiel, S.; Reid, K.B.M.; Sarma, P.U. Role of collectins in innate immunity against aspergillosis. Med. Mycol. 2005, 43, S155–S163. [Google Scholar] [CrossRef] [PubMed]
- Madan, T.; Eggleton, P.; Kishore, U.; Strong, P.; Aggrawal, S.S.; Sarma, P.U.; Reid, K.B.M. Binding of pulmonary surfactant proteins A and D to Aspergillus fumigatus conidia enhances phagocytosis and killing by human neutrophils and alveolar macrophages. Infect. Immun. 1997, 65, 3171–3179. [Google Scholar] [PubMed]
- Allen, M.J.; Harbeck, R.; Smith, B.; Voelker, D.R.; Mason, R.J. Binding of rat and human surfactant proteins A and D to Aspergillus fumigatus conidia. Infect. Immun. 1999, 67, 4563–4569. [Google Scholar] [PubMed]
- Ma, Y.J.; Skjoedt, M.O.; Garred, P. Collectin-11/MASP complex formation triggers activation of the lectin complement pathway—The fifth lectin pathway initiation complex. J. Innate Immun. 2013, 5, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.J.; Hein, E.; Munthe-Fog, L.; Skjoedt, M.-O.; Bayarri-Olmos, R.; Romani, L.; Garred, P. Soluble collectin-12 (CL-12) is a pattern recognition molecule initiating complement activation via the alternative pathway. J. Immunol. 2015, 195, 3365–3373. [Google Scholar] [CrossRef] [PubMed]
- Moalli, F.; Doni, A.; Deban, L.; Zelante, T.; Zagarella, S.; Bottazzi, B.; Romani, L.; Mantovani, A.; Garlanda, C. Role of complement and Fcγ receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus. Blood 2010, 116, 5170–5181. [Google Scholar] [CrossRef] [PubMed]
- Garlanda, C.; Hirsch, E.; Bozza, S.; Salustri, A.; De Acetis, M.; Nota, R.; Maccagno, A.; Riva, F.; Bottazzi, B.; Peri, G.; et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 2002, 420, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Bottazzi, B.; Vouret-Craviari, V.; Bastone, A.; De Gioia, L.; Matteucci, C.; Peri, G.; Spreafico, F.; Pausa, M.; D’Ettorre, C.; Gianazza, E.; et al. Multimer formation and ligand recognition by the long pentraxin PTX3. J. Biol. Chem. 1997, 272, 32817–32823. [Google Scholar] [CrossRef] [PubMed]
- Chai, L.Y.A.; Netea, M.G.; Teerenstra, S.; Earnest, A.; Vonk, A.G.; Schlamm, H.T.; Herbrecht, R.; Troke, P.F.; Kullberg, B. Early proinflammatory cytokines and C-reactive protein trends as predictors of outcome in invasive aspergillosis. J. Infect. Dis. 2010, 202, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Roques, M.; Chretien, M.L.; Favennec, C.; Lafon, I.; Ferrant, E.; legouge, C.; Plocque, A.; Golfier, C.; Duvillard, L.; Amoureux, L.; et al. Evolution of procalcitonin, C-reactive protein and fibrinogen levels in neutropenic leukaemia patients with invasive pulmonary aspergillosis or mucormycosis. Mycoses 2016, 59, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Du Clos, T.W. Function of C-reactive protein. Ann. Med. 2000, 32, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.D.B.; Schonheyder, H.; Andersen, P.; Stenderup, A. Binding of C-reactive protein to Aspergillus fumigatus fractions. J. Med. Microbiol. 1986, 21, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Richardson, M.D.; Shankland, G.S.; Gray, C.A. Opsonizing activity of C-reactive protein in phagocytosis of Aspergillus fumigatus conidia by human neutrophils. Mycoses 1991, 34, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Ross, G.D.; Vĕtvicka, V. CR3 (CD11b, CD18): A phagocyte and NK cell membrane receptor with multiple ligand specificities and functions. Clin. Exp. Immunol. 1993, 92, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Myones, B.L.; Dalzell, J.G.; Hogg, N.; Ross, G.D. Neutrophil and monocyte cell surface p150,95 has iC3b-receptor (CR4) activity resembling CR3. J. Clin. Investig. 1988, 82, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, J.; Wang, J.-H.; Springer, T.A. Distinct recognition of complement iC3b by integrins αXβ2 and αMβ2. Proc. Natl. Acad. Sci. USA 2017, 114, 3403–3408. [Google Scholar] [CrossRef] [PubMed]
- Ross, G.D. Complement receptors. In Encyclopedia of Immunology, 2nd ed.; Delves, P.J., Ed.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 629–634. [Google Scholar]
- Caron, E.; Hall, A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 1998, 282, 1717–1721. [Google Scholar] [CrossRef] [PubMed]
- Lukácsi, S.; Nagy-Baló, Z.; Erdei, A.; Sándor, N.; Bajtay, Z. The role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in complement-mediated phagocytosis and podosome formation by human phagocytes. Immunol. Lett. 2017, 189, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Klickstein, L.B.; Barbashov, S.F.; Liu, T.; Jack, R.M.; Nicholson-Weller, A. Complement receptor type 1 (CR1, CD35) is a receptor for C1q. Immunity 1997, 7, 345–355. [Google Scholar] [CrossRef]
- Ghiran, I.; Barbashov, S.F.; Klickstein, L.B.; Tas, S.W.; Jensenius, J.C.; Nicholson-Weller, A. Complement receptor 1/Cd35 is a receptor for mannan-binding lectin. J. Exp. Med. 2000, 192, 1797–1808. [Google Scholar] [CrossRef] [PubMed]
- Fällman, M.; Andersson, R.; Andersson, T. Signaling properties of CR3 (CD11b/CD18) and CR1 (CD35) in relation to phagocytosis of complement-opsonized particles. J. Immunol. 1993, 151, 330–338. [Google Scholar] [PubMed]
- Philippe, B.; Ibrahim-Granet, O.; Prevost, M.C.; Gougerot-Pocidalo, M.A.; Perez, M.S.; Van der Meeren, A.; Latge, J.P. Killing of Aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect. Immun. 2003, 71, 3034–3042. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.D.; Silverstein, S.C. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J. Exp. Med. 1983, 158, 2016–2023. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.J.; Brown, E.J. CR3 (Mac-1, alpha M beta 2, CD11b/CD18) and Fcγ RIII cooperate in generation of a neutrophil respiratory burst: Requirement for Fcγ RIII and tyrosine phosphorylation. J. Cell. Biol. 1994, 125, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Ogden, C.A.; DeCathelineau, A.; Hoffmann, P.R.; Bratton, D.; Ghebrehiwet, B.; Fadok, V.A.; Henson, P.M. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med. 2001, 194, 781–796. [Google Scholar] [CrossRef] [PubMed]
- Vandivier, R.W.; Ogden, C.A.; Fadok, V.A.; Hoffmann, P.R.; Brown, K.K.; Botto, M.; Walport, M.J.; Fisher, J.H.; Henson, P.M.; Greene, K.E. Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: Calreticulin and CD91 as a common collectin receptor complex. J. Immunol. 2002, 169, 3978–3986. [Google Scholar] [CrossRef] [PubMed]
- Gardai, S.J.; Xiao, Y.Q.; Dickinson, M.; Nick, J.A.; Voelker, D.R.; Greene, K.E.; Henson, P.M. By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 2003, 115, 13–23. [Google Scholar] [CrossRef]
- Bobak, D.A.; Frank, M.M.; Tenner, A.J. Characterization of C1q receptor expression on human phagocytic cells: Effects of PDBu and fMLP. J. Immunol. 1986, 136, 4604–4610. [Google Scholar] [PubMed]
- Ma, Y.J.; Doni, A.; Hummelshøj, T.; Honoré, C.; Bastone, A.; Mantovani, A.; Thielens, N.M.; Garred, P. Synergy between ficolin-2 and pentraxin 3 boosts innate immune recognition and complement deposition. J. Biol. Chem. 2009, 284, 28263–28275. [Google Scholar] [CrossRef] [PubMed]
- Rosbjerg, A.; Genster, N.; Hansen, K.P.; Skjoedt, M.-O.; Gal, P.; Stahl, G.L.; Garred, P. Mannose-binding lectin (MBL) is the main complement activator on Aspergillus fumigatus conidia under immunocompromised conditions. J. Immunol. 2016, 196 (1 supplement), 63.6. [Google Scholar]
Soluble Mediator | Immune Receptor | Effective Immune Cells | Function | Reference |
---|---|---|---|---|
C3: C3b/iC3b | CR1, CR3, CR4 | Macrophages, dendritic cells, neutrophils, monocytes | C3b and iC3b opsonizes conidia facilitating phagocytosis Opsonization interferes with dissemination of A. fumigatus (antimicrobial effect) | [14,15,17,18] |
C3: C3d | CR2 (CD35) | B cells | C3d-opsonized conidia lowers threshold for B cell activation | [14] |
C1q | C1qR | Monocytes, polymorphonuclear leukocytes | Interaction with Ptx3 activates classical pathway on A. fumigatus conidia | [63] |
Ficolin-2 and Ficolin-3 | Their interaction with the immune cells is rather indirect, through activation of lectin pathway | Form complex with MASPs, activating C3 Ficolin-2 interacts with Ptx3, activating lectin pathway MBL has been shown to activate C3 directly Ficolin-3 opsonizes conidia and activates lectin pathway | [23,64] | |
Mannose-binding lectin (MBL) | [16,65] | |||
C-reactive protein | FcγR | Neutrophils | Opsonization and phagocytosis | [45,47] |
Surfactant proteins A and D (SP-A & SP-D) | Calreticulin-CD91 complex, C1qR | Neutrophils, alveolar macrophages | Opsonization and conidial agglutination | [36] |
Collectins 11 and 12 (CL-K1 & CL-P1) | No direct binding, but through complement activation | Binding and activation of lectin complement pathway | [38,39] | |
Pentraxin, Ptx3 | Through FcγR and CR3 | Neutrophils | Opsonization and activation of alternative pathway Interaction with C1q or ficolin-2 to activate classical and lectin pathways, respectively, thus leading to conidial opsonization by C3b | [14,40,64] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, S.S.W.; Aimanianda, V. Host Soluble Mediators: Defying the Immunological Inertness of Aspergillus fumigatus Conidia. J. Fungi 2018, 4, 3. https://doi.org/10.3390/jof4010003
Wong SSW, Aimanianda V. Host Soluble Mediators: Defying the Immunological Inertness of Aspergillus fumigatus Conidia. Journal of Fungi. 2018; 4(1):3. https://doi.org/10.3390/jof4010003
Chicago/Turabian StyleWong, Sarah Sze Wah, and Vishukumar Aimanianda. 2018. "Host Soluble Mediators: Defying the Immunological Inertness of Aspergillus fumigatus Conidia" Journal of Fungi 4, no. 1: 3. https://doi.org/10.3390/jof4010003
APA StyleWong, S. S. W., & Aimanianda, V. (2018). Host Soluble Mediators: Defying the Immunological Inertness of Aspergillus fumigatus Conidia. Journal of Fungi, 4(1), 3. https://doi.org/10.3390/jof4010003