A Comprehensive Overview of Candida albicans as the Leading Pathogen in Vulvovaginal Candidiasis
Abstract
1. Introduction
2. Candida albicans
Diseases Caused by Candida albicans
3. Vulvovaginal Candidiasis
3.1. Pathophysiology
3.2. Epidemiology
3.3. Clinical Manifestations
3.4. Diagnostic Considerations
3.5. Treatment
3.6. Special Conditions
3.6.1. Pregnancy
3.6.2. HIV Infections
3.6.3. Diabetes Mellitus (DM)
3.7. Prevention
4. Possible Future Treatment Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Seagle, E.E.; Williams, S.L.; Chiller, T.M. Recent Trends in the Epidemiology of Fungal Infections. Infect. Dis. Clin. N. Am. 2021, 35, 237–260. [Google Scholar] [CrossRef]
- Casadevall, A. Fungal Diseases in the 21st Century: The Near and Far Horizons. Pathog. Immun. 2018, 3, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Janeczko, M.; Skrzypek, T. Relationships Between Candida Auris and the Rest of the Candida World—Analysis of Dual-Species Biofilms and Infections. Pathogens 2025, 14, 40. [Google Scholar] [CrossRef]
- Macias-Paz, I.U.; Pérez-Hernández, S.; Tavera-Tapia, A.; Luna-Arias, J.P.; Guerra-Cárdenas, J.E.; Reyna-Beltrán, E. Candida albicans the Main Opportunistic Pathogenic Fungus in Humans. Rev. Argent. Microbiol. 2023, 55, 189–198. [Google Scholar] [CrossRef]
- Turner, S.A.; Butler, G. The Candida Pathogenic Species Complex. Cold Spring Harb. Perspect. Med. 2014, 4, a019778. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.C.; Correia, A.F.; da Silva, Z.D.L.; de Resende, C.N.; Brandão, F.; Almeida, R.M.; de Medeiros Nóbrega, Y.K. Vulvovaginal Candidiasis and Current Perspectives: New Risk Factors and Laboratory Diagnosis by Using MALDI TOF for Identifying Species in Primary Infection and Recurrence. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1681–1693. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, G. The White Album. BMJ 1998, 317, 797. [Google Scholar] [CrossRef]
- Mir, M.A.; Rasool, U.; Aisha, S.; Alshehri, B.; Hamadani, S.S. Chapter 1—Human Pathogenic Microbes (Bacterial and Fungal) and Associated Diseases. In Human Pathogenic Microbes; Mir, M.A., Ed.; Developments in Microbiology; Academic Press: Cambridge, MA, USA, 2022; pp. 1–30. ISBN 978-0-323-96127-1. [Google Scholar]
- Candida albicans (C.-P.Robin) Berkhout. 1923. Available online: https://www.gbif.org/species/144093749 (accessed on 18 February 2025).
- Candida albicans SC5314 Genome Snapshot/Overview. Available online: http://www.candidagenome.org/cache/C_albicans_SC5314_genomeSnapshot.html (accessed on 18 February 2025).
- Bonfim-Mendonça, P.d.S.; Tobaldini-Valério, F.K.; Capoci, I.R.; Faria, D.R.; Sakita, K.M.; Arita, G.S.; Negri, M.; Kioshima, É.S.; Svidzinski, T.I. Different Expression Levels of ALS and SAP Genes Contribute to Recurrent Vulvovaginal Candidiasis by Candida albicans. Future Microbiol. 2021, 16, 211–219. [Google Scholar] [CrossRef]
- Pereira, R.; Dos Santos Fontenelle, R.O.; de Brito, E.H.S.; de Morais, S.M. Biofilm of Candida albicans: Formation, Regulation and Resistance. J. Appl. Microbiol. 2021, 131, 11–22. [Google Scholar] [CrossRef]
- Ciurea, C.N.; Kosovski, I.-B.; Mare, A.D.; Toma, F.; Pintea-Simon, I.A.; Man, A. Candida and Candidiasis—Opportunism Versus Pathogenicity: A Review of the Virulence Traits. Microorganisms 2020, 8, 857. [Google Scholar] [CrossRef]
- Talapko, J.; Juzbašić, M.; Matijević, T.; Pustijanac, E.; Bekić, S.; Kotris, I.; Škrlec, I. Candida albicans—The Virulence Factors and Clinical Manifestations of Infection. J. Fungi 2021, 7, 79. [Google Scholar] [CrossRef]
- Reyna-Beltrán, E.; Méndez, C.I.B.; Iranzo, M.; Mormeneo, S.; Luna-Arias, J.P.; Reyna-Beltrán, E.; Méndez, C.I.B.; Iranzo, M.; Mormeneo, S.; Luna-Arias, J.P. The Cell Wall of Candida albicans: A Proteomics View. In Candida albicans; IntechOpen: London, UK, 2019; ISBN 978-1-83880-160-1. [Google Scholar]
- Garcia-Rubio, R.; de Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2020, 10, 2993. [Google Scholar] [CrossRef] [PubMed]
- Jordá, T.; Puig, S. Regulation of Ergosterol Biosynthesis in Saccharomyces Cerevisiae. Genes 2020, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Viana, R.; Dias, O.; Lagoa, D.; Galocha, M.; Rocha, I.; Teixeira, M.C. Genome-Scale Metabolic Model of the Human Pathogen Candida albicans: A Promising Platform for Drug Target Prediction. J. Fungi 2020, 6, 171. [Google Scholar] [CrossRef]
- Moyes, D.L.; Wilson, D.; Richardson, J.P.; Mogavero, S.; Tang, S.X.; Wernecke, J.; Höfs, S.; Gratacap, R.L.; Robbins, J.; Runglall, M.; et al. Candidalysin Is a Fungal Peptide Toxin Critical for Mucosal Infection. Nature 2016, 532, 64–68. [Google Scholar] [CrossRef]
- Kornitzer, D. Regulation of Candida albicans Hyphal Morphogenesis by Endogenous Signals. J. Fungi 2019, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.M.; White, N.A. Introduction to Fungal Physiology. In Fungi; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–35. ISBN 978-1-119-37431-2. [Google Scholar]
- Tsui, C.; Kong, E.F.; Jabra-Rizk, M.A. Pathogenesis of Candida albicans Biofilm. Pathog. Dis. 2016, 74, ftw018. [Google Scholar] [CrossRef]
- Noble, S.M.; Gianetti, B.A.; Witchley, J.N. Candida albicans Cell-Type Switching and Functional Plasticity in the Mammalian Host. Nat. Rev. Microbiol. 2017, 15, 96–108. [Google Scholar] [CrossRef]
- Hanaoka, M.; Domae, E. IL-1α Released from Oral Epithelial Cells upon Candidalysin Exposure Initiates an Early Innate Epithelial Response. Int. Immunol. 2021, 33, 161–170. [Google Scholar] [CrossRef]
- Soll, D.R. White-Opaque Switching in Candida albicans: Cell Biology, Regulation, and Function. Microbiol. Mol. Biol. Rev. MMBR 2024, 88, e0004322. [Google Scholar] [CrossRef]
- Mallick, E.M.; Bergeron, A.C.; Jones, S.K.; Newman, Z.R.; Brothers, K.M.; Creton, R.; Wheeler, R.T.; Bennett, R.J. Phenotypic Plasticity Regulates Candida albicans Interactions and Virulence in the Vertebrate Host. Front. Microbiol. 2016, 7, 780. [Google Scholar] [CrossRef]
- Brimacombe, C.A.; Sierocinski, T.; Dahabieh, M.S. A White-to-Opaque-like Phenotypic Switch in the Yeast Torulaspora Microellipsoides. Commun. Biol. 2020, 3, 86. [Google Scholar] [CrossRef] [PubMed]
- Nobile, C.J.; Johnson, A.D. Candida albicans Biofilms and Human Disease. Annu. Rev. Microbiol. 2015, 69, 71–92. [Google Scholar] [CrossRef]
- Priya, A.; Pandian, S.K. Piperine Impedes Biofilm Formation and Hyphal Morphogenesis of Candida albicans. Front. Microbiol. 2020, 11, 756. [Google Scholar] [CrossRef] [PubMed]
- Talapko, J.; Škrlec, I. The Principles, Mechanisms, and Benefits of Unconventional Agents in the Treatment of Biofilm Infection. Pharmaceuticals 2020, 13, 299. [Google Scholar] [CrossRef]
- Andes, D.R.; Safdar, N.; Baddley, J.W.; Playford, G.; Reboli, A.C.; Rex, J.H.; Sobel, J.D.; Pappas, P.G.; Kullberg, B.J. Mycoses Study Group Impact of Treatment Strategy on Outcomes in Patients with Candidemia and Other Forms of Invasive Candidiasis: A Patient-Level Quantitative Review of Randomized Trials. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2012, 54, 1110–1122. [Google Scholar] [CrossRef]
- Murillo, L.A.; Newport, G.; Lan, C.-Y.; Habelitz, S.; Dungan, J.; Agabian, N.M. Genome-Wide Transcription Profiling of the Early Phase of Biofilm Formation by Candida albicans. Eukaryot. Cell 2005, 4, 1562–1573. [Google Scholar] [CrossRef] [PubMed]
- Bonhomme, J.; d’Enfert, C. Candida albicans Biofilms: Building a Heterogeneous, Drug-Tolerant Environment. Curr. Opin. Microbiol. 2013, 16, 398–403. [Google Scholar] [CrossRef]
- Mukaremera, L.; Lee, K.K.; Mora-Montes, H.M.; Gow, N.A.R. Candida albicans Yeast, Pseudohyphal, and Hyphal Morphogenesis Differentially Affects Immune Recognition. Front. Immunol. 2017, 8, 629. [Google Scholar] [CrossRef]
- Vila, T.; Romo, J.A.; Pierce, C.G.; McHardy, S.F.; Saville, S.P.; Lopez-Ribot, J.L. Targeting Candida albicans Filamentation for Antifungal Drug Development. Virulence 2016, 8, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Rosiana, S.; Razzaq, I.; Shapiro, R.S. Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. J. Fungi 2019, 5, 17. [Google Scholar] [CrossRef]
- Costa-de-Oliveira, S.; Rodrigues, A.G. Candida albicans Antifungal Resistance and Tolerance in Bloodstream Infections: The Triad Yeast-Host-Antifungal. Microorganisms 2020, 8, 154. [Google Scholar] [CrossRef]
- Jacobsen, I.D.; Wilson, D.; Wächtler, B.; Brunke, S.; Naglik, J.R.; Hube, B. Candida albicans Dimorphism as a Therapeutic Target. Expert Rev. Anti Infect. Ther. 2012, 10, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Liu, Y.; Liu, Y.; Lv, R.; Sun, W.; Ding, W.; Cai, Y.; Li, W.; Liu, X.; Qu, W. Candida albicans Biofilms: Antifungal Resistance, Immune Evasion, and Emerging Therapeutic Strategies. Int. J. Antimicrob. Agents 2022, 60, 106673. [Google Scholar] [CrossRef]
- Talapko, J.; Meštrović, T.; Škrlec, I. Growing Importance of Urogenital Candidiasis in Individuals with Diabetes: A Narrative Review. World J. Diabetes 2022, 13, 809–821. [Google Scholar] [CrossRef] [PubMed]
- d’Enfert, C.; Kaune, A.-K.; Alaban, L.-R.; Chakraborty, S.; Cole, N.; Delavy, M.; Kosmala, D.; Marsaux, B.; Fróis-Martins, R.; Morelli, M.; et al. The Impact of the Fungus-Host-Microbiota Interplay upon Candida albicans Infections: Current Knowledge and New Perspectives. FEMS Microbiol. Rev. 2020, 45, fuaa060. [Google Scholar] [CrossRef]
- Barantsevich, N.; Barantsevich, E. Diagnosis and Treatment of Invasive Candidiasis. Antibiotics 2022, 11, 718. [Google Scholar] [CrossRef]
- Lass-Flörl, C.; Kanj, S.S.; Govender, N.P.; Thompson, G.R.; Ostrosky- Zeichner, L.; Govrins, M.A. Invasive Candidiasis. Nat. Rev. Dis. Primer 2024, 10, 20. [Google Scholar] [CrossRef]
- Jeanmonod, R.; Chippa, V.; Jeanmonod, D. Vaginal Candidiasis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.; Benjamin, D.K.; Calandra, T.F.; Edwards, J.E.; Filler, S.G.; Fisher, J.F.; Kullberg, B.-J.; Ostrosky-Zeichner, L.; et al. Clinical Practice Guidelines for the Management of Candidiasis: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2009, 48, 503–535. [Google Scholar] [CrossRef] [PubMed]
- Vulvovaginal Candidiasis—STI Treatment Guidelines. Available online: https://www.cdc.gov/std/treatment-guidelines/candidiasis.htm (accessed on 30 January 2025).
- CDC. Candidiasis Basics. Available online: https://www.cdc.gov/candidiasis/about/index.html (accessed on 30 January 2025).
- Horng, H.-C.; Xu, J.-W.; Kuo, Y.-S.; Chen, Y.-S.; Chiu, Y.-H.; Tsui, K.-H.; Tung, Y.-T. Dual Mechanisms of Action: Anti-Candida and Anti-Inflammatory Potential of Lactobacillus Fermentation Broth in Treating Vulvovaginal Candidiasis. J. Fungi 2024, 11, 18. [Google Scholar] [CrossRef]
- Peters, B.M.; Palmer, G.E.; Nash, A.K.; Lilly, E.A.; Fidel, P.L.; Noverr, M.C. Fungal Morphogenetic Pathways Are Required for the Hallmark Inflammatory Response during Candida albicans Vaginitis. Infect. Immun. 2014, 82, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Roselletti, E.; Pericolini, E.; Nore, A.; Takacs, P.; Kozma, B.; Sala, A.; De Seta, F.; Comar, M.; Usher, J.; Brown, G.D.; et al. Zinc Prevents Vaginal Candidiasis by Inhibiting Expression of an Inflammatory Fungal Protein. Sci. Transl. Med. 2023, 15, eadi3363. [Google Scholar] [CrossRef]
- Messina, A.; Mariani, A.; Brandolisio, R.; Tavella, E.; Germano, C.; Lipari, G.; Leo, L.; Masturzo, B.; Manzoni, P. Candidiasis in Pregnancy: Relevant Aspects of the Pathology for the Mother and the Fetus and Therapeutic Strategies. Trop. Med. Infect. Dis. 2024, 9, 114. [Google Scholar] [CrossRef]
- Lopes, J.P.; Lionakis, M.S. Pathogenesis and Virulence of Candida albicans. Virulence 2022, 13, 89–121. [Google Scholar] [CrossRef]
- Loh, J.T.; Lam, K.-P. Fungal Infections: Immune Defense, Immunotherapies and Vaccines. Adv. Drug Deliv. Rev. 2023, 196, 114775. [Google Scholar] [CrossRef]
- Biofilm Formation by the Interaction of Fungi (Candida Tropicalis) with Various Bacteria. Available online: https://www.bsmiab.org/jabet/178-1655275227-biofilm-formation-by-the-interaction-of-fungi-candida-tropicalis-with-various-bacteria (accessed on 17 February 2025).
- Russell, C.M.; Rybak, J.A.; Miao, J.; Peters, B.M.; Barrera, F.N. Candidalysin: Connecting the Pore Forming Mechanism of This Virulence Factor to Its Immunostimulatory Properties. J. Biol. Chem. 2023, 299, 102829. [Google Scholar] [CrossRef]
- Gonçalves, B.; Ferreira, C.; Alves, C.T.; Henriques, M.; Azeredo, J.; Silva, S. Vulvovaginal Candidiasis: Epidemiology, Microbiology and Risk Factors. Crit. Rev. Microbiol. 2016, 42, 905–927. [Google Scholar] [CrossRef]
- Willems, H.M.E.; Ahmed, S.S.; Liu, J.; Xu, Z.; Peters, B.M. Vulvovaginal Candidiasis: A Current Understanding and Burning Questions. J. Fungi 2020, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Denning, D.W.; Kneale, M.; Sobel, J.D.; Rautemaa-Richardson, R. Global Burden of Recurrent Vulvovaginal Candidiasis: A Systematic Review. Lancet Infect. Dis. 2018, 18, e339–e347. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.; Chamula, M.; Weinberg, S.; Jbueen, F.; Rautemaa-Richardson, R. Compliance with the Updated BASHH Recurrent Vulvovaginal Candidiasis Guidelines Improves Patient Outcomes. J. Fungi 2022, 8, 924. [Google Scholar] [CrossRef]
- Arfiputri, D.S.; Hidayati, A.N.; Handayani, S.; Ervianti, E. RISK FACTORS OF VULVOVAGINAL CANDIDIASIS IN DERMATO-VENEREOLOGY OUTPATIENTS CLINIC OF SOETOMO GENERAL HOSPITAL, SURABAYA, INDONESIA. Afr. J. Infect. Dis. 2018, 12, 90–94. [Google Scholar] [CrossRef]
- Moshfeghy, Z.; Tahari, S.; Janghorban, R.; Najib, F.S.; Mani, A.; Sayadi, M. Association of Sexual Function and Psychological Symptoms Including Depression, Anxiety and Stress in Women with Recurrent Vulvovaginal Candidiasis. J. Turk. Ger. Gynecol. Assoc. 2020, 21, 90–96. [Google Scholar] [CrossRef]
- Denning, D.W. Global Incidence and Mortality of Severe Fungal Disease. Lancet Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, Z.; Yue, X. Evaluating the Accuracy and Diagnostic Value of CFW and a New Fluorescent Reagents, Fluorescent Brightener 85, for the Diagnosis of Vulvovaginal Candidiasis. J. Clin. Lab. Anal. 2021, 35, e23891. [Google Scholar] [CrossRef]
- Alizadeh, M.; Kolecka, A.; Boekhout, T.; Zarrinfar, H.; Ghanbari Nahzag, M.A.; Badiee, P.; Rezaei-Matehkolaei, A.; Fata, A.; Dolatabadi, S.; Najafzadeh, M.J. Identification of Candida Species Isolated from Vulvovaginitis in Mashhad, Iran by Use of MALDI-TOF MS. Curr. Med. Mycol. 2017, 3, 21–25. [Google Scholar] [CrossRef]
- Malani, A.N.; Kauffman, C.A. Candida Urinary Tract Infections: Treatment Options. Expert Rev. Anti Infect. Ther. 2007, 5, 277–284. [Google Scholar] [CrossRef]
- Facchini, N.; Wernli, L.; Rieken, M.; Bonkat, G.; Wirz, D.; Braissant, O. Again and Again—Survival of Candida albicans in Urine Containing Antifungals. Pharmaceutics 2024, 16, 605. [Google Scholar] [CrossRef]
- Soriano, A.; Honore, P.M.; Puerta-Alcalde, P.; Garcia-Vidal, C.; Pagotto, A.; Gonçalves-Bradley, D.C.; Verweij, P.E. Invasive Candidiasis: Current Clinical Challenges and Unmet Needs in Adult Populations. J. Antimicrob. Chemother. 2023, 78, 1569–1585. [Google Scholar] [CrossRef]
- Phillips, N.A.; Bachmann, G.; Haefner, H.; Martens, M.; Stockdale, C. Topical Treatment of Recurrent Vulvovaginal Candidiasis: An Expert Consensus. Womens Health Rep. 2022, 3, 38–42. [Google Scholar] [CrossRef]
- Donders, G.G.G.; Grinceviciene, S.; Bellen, G.; Jaeger, M.; Ten Oever, J.; Netea, M.G. Is Non-Response to Fluconazole Maintenance Therapy for Recurrent Candida Vaginitis Related to Sensitization to Atopic Reactions? Am. J. Reprod. Immunol. 2018, 79, e12811. [Google Scholar] [CrossRef]
- Qin, F.; Wang, Q.; Zhang, C.; Fang, C.; Zhang, L.; Chen, H.; Zhang, M.; Cheng, F. Efficacy of Antifungal Drugs in the Treatment of Vulvovaginal Candidiasis: A Bayesian Network Meta-Analysis. Infect. Drug Resist. 2018, 11, 1893–1901. [Google Scholar] [CrossRef]
- Benitez, L.L.; Carver, P.L. Adverse Effects Associated with Long-Term Administration of Azole Antifungal Agents. Drugs 2019, 79, 833–853. [Google Scholar] [CrossRef]
- Admin Side Effects of Long-Term Azole Therapy—Life Worldwide. Available online: https://en.fungaleducation.org/blog/2019/06/07/side-effects-of-long-term-azole-therapy/ (accessed on 4 February 2025).
- Wang, X.; Chen, L.; Ruan, H.; Xiong, Z.; Wang, W.; Qiu, J.; Song, W.; Zhang, C.; Xue, F.; Qin, T.; et al. Oteseconazole versus Fluconazole for the Treatment of Severe Vulvovaginal Candidiasis: A Multicenter, Randomized, Double-Blinded, Phase 3 Trial. Antimicrob. Agents Chemother. 2023, 68, e00778-23. [Google Scholar] [CrossRef]
- Siddiqui, T.; Kumar, K.A.; Iqbal, A.; Doultani, P.R.; Ashraf, T.; Eqbal, F.; Siddiqui, S.I. Efficacy and Safety of Oteseconazole in Recurrent Vulvovaginal Candidiasis (RVVC)—A Systematic Review and Meta-Analysis. Heliyon 2023, 9, e20495. [Google Scholar] [CrossRef]
- Kaur, G.; Chawla, S.; Kumar, P.; Singh, R. Advancing Vaccine Strategies against Candida Infections: Exploring New Frontiers. Vaccines 2023, 11, 1658. [Google Scholar] [CrossRef]
- Sahadevan, N.V. Drug Interactions of Azole Antifungals. J. Ski. Sex. Transm. Dis. 2023, 5, 50–54. [Google Scholar] [CrossRef]
- Kotey, F.C.; Dayie, N.T.; Tetteh-Uarcoo, P.B.; Donkor, E.S. Candida Bloodstream Infections: Changes in Epidemiology and Increase in Drug Resistance. Infect. Dis. 2021, 14, 11786337211026927. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, D.; Bille, J.; Sanglard, D. A Novel Multidrug Efflux Transporter Gene of the Major Facilitator Superfamily from Candida albicans (FLU1) Conferring Resistance to Fluconazole. Microbiol. Read. Engl. 2000, 146 Pt 11, 2743–2754. [Google Scholar] [CrossRef]
- Sanglard, D.; Ischer, F.; Monod, M.; Bille, J. Cloning of Candida albicans Genes Conferring Resistance to Azole Antifungal Agents: Characterization of CDR2, a New Multidrug ABC Transporter Gene. Microbiol. Read. Engl. 1997, 143 Pt 2, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Farr, A.; Effendy, I.; Frey Tirri, B.; Hof, H.; Mayser, P.; Petricevic, L.; Ruhnke, M.; Schaller, M.; Schaefer, A.P.A.; Sustr, V.; et al. Guideline: Vulvovaginal Candidosis (AWMF 015/072, Level S2k). Mycoses 2021, 64, 583–602. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D.; Sobel, R. Current Treatment Options for Vulvovaginal Candidiasis Caused by Azole-Resistant Candida Species. Expert Opin. Pharmacother. 2018, 19, 971–977. [Google Scholar] [CrossRef]
- Morris, G.C.; Dean, G.; Soni, S.; Sundaram, S.; Fearnley, N.; Wilson, J.D. Outcomes and Experiences of Using Oral Voriconazole with or without Concomitant Topical Agents to Treat Refractory Vulvovaginal Yeast Infections. Int. J. STD AIDS 2022, 33, 1134–1141. [Google Scholar] [CrossRef]
- Voriconazole (Oral Route). Available online: https://www.mayoclinic.org/drugs-supplements/voriconazole-oral-route/description/drg-20095248 (accessed on 5 February 2025).
- Angotti, L.B.; Lambert, L.C.; Soper, D.E. Vaginitis: Making Sense of over-the-Counter Treatment Options. Infect. Dis. Obstet. Gynecol. 2007, 2007, 97424. [Google Scholar] [CrossRef]
- Oliveira, T.; Jesus, Â.; Martins, J.P.; Correia, P.; Moreira, F. Knowledge of Vulvovaginal Candidiasis Characteristics, Signs, Symptoms, and Appropriate Treatment Among Portuguese Pharmacy Professionals. Healthcare 2025, 13, 402. [Google Scholar] [CrossRef] [PubMed]
- Duarte, G.; Linhares, I.M.; Kreitchmann, R.; Tristão, A.d.R.; Traina, E.; Canti, I.; Takimura, M.; Andrade, J.Q. Vulvovaginitis in Pregnant Women. Rev. Bras. Ginecol. E Obstet. Rev. Fed. Bras. Soc. Ginecol. E Obstet. 2024, 46, e-FPS03. [Google Scholar] [CrossRef]
- Duerr, A.; Heilig, C.M.; Meikle, S.F.; Cu-Uvin, S.; Klein, R.S.; Rompalo, A.; Sobel, J.D. HER Study Group Incident and Persistent Vulvovaginal Candidiasis among Human Immunodeficiency Virus-Infected Women: Risk Factors and Severity. Obstet. Gynecol. 2003, 101, 548–556. [Google Scholar] [CrossRef]
- Spinillo, A.; Michelone, G.; Cavanna, C.; Colonna, L.; Capuzzo, E.; Nicola, S. Clinical and Microbiological Characteristics of Symptomatic Vulvovaginal Candidiasis in HIV-Seropositive Women. Genitourin. Med. 1994, 70, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Foessleitner, P.; Petricevic, L.; Boerger, I.; Steiner, I.; Kiss, H.; Rieger, A.; Touzeau-Roemer, V.; Farr, A. HIV Infection as a Risk Factor for Vaginal Dysbiosis, Bacterial Vaginosis, and Candidosis in Pregnancy: A Matched Case-Control Study. Birth 2021, 48, 139–146. [Google Scholar] [CrossRef] [PubMed]
- O’Laughlin, D.J.; McCoy, R.G. Diabetes and Vulvovaginal Conditions. Clin. Diabetes Publ. Am. Diabetes Assoc. 2023, 41, 458–464. [Google Scholar] [CrossRef]
- Aguin, T.J.; Sobel, J.D. Vulvovaginal Candidiasis in Pregnancy. Curr. Infect. Dis. Rep. 2015, 17, 30. [Google Scholar] [CrossRef]
- Gigi, R.M.S.; Buitrago-Garcia, D.; Taghavi, K.; Dunaiski, C.-M.; van de Wijgert, J.H.H.M.; Peters, R.P.H.; Low, N. Vulvovaginal Yeast Infections during Pregnancy and Perinatal Outcomes: Systematic Review and Meta-Analysis. BMC Womens Health 2023, 23, 116. [Google Scholar] [CrossRef] [PubMed]
- Varnasiri, M.; Salmanzadeh, S.; Mahmoudabadi, A.Z.; Halvaeezadeh, M.; Taghipour, S.; Molavi, S.; Alavi, S.M.; Nezhad, K.H.; Choghakabodi, P.M. The Occurrence of Vulvovaginal Candida Species and Their Antifungal Susceptibility Pattern in HIV Seropositive Women in Ahvaz, Southwest Iran. Clin. Epidemiol. Glob. Health 2020, 8, 903–907. [Google Scholar] [CrossRef]
- Nyirjesy, P.; Brookhart, C.; Lazenby, G.; Schwebke, J.; Sobel, J.D. Vulvovaginal Candidiasis: A Review of the Evidence for the 2021 Centers for Disease Control and Prevention of Sexually Transmitted Infections Treatment Guidelines. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2022, 74, S162–S168. [Google Scholar] [CrossRef]
- Saxon Lead Author, G.D.G.C.; Edwards, A.; Rautemaa-Richardson, R.; Owen, C.; Nathan, B.; Palmer, B.; Wood, C.; Ahmed, H.; Ahmad Patient Representatives, S.; FitzGerald Ceg Editor, M. British Association for Sexual Health and HIV National Guideline for the Management of Vulvovaginal Candidiasis (2019). Int. J. STD AIDS 2020, 31, 1124–1144. [Google Scholar] [CrossRef]
- Mohammed, L.; Jha, G.; Malasevskaia, I.; Goud, H.K.; Hassan, A. The Interplay Between Sugar and Yeast Infections: Do Diabetics Have a Greater Predisposition to Develop Oral and Vulvovaginal Candidiasis? Cureus 2021, 13, e13407. [Google Scholar] [CrossRef]
- Bassyouni, R.H.; Wegdan, A.A.; Abdelmoneim, A.; Said, W.; AboElnaga, F. Phospholipase and Aspartyl Proteinase Activities of Candida Species Causing Vulvovaginal Candidiasis in Patients with Type 2 Diabetes Mellitus. J. Microbiol. Biotechnol. 2015, 25, 1734–1741. [Google Scholar] [CrossRef] [PubMed]
- Goderidze, T.; Durglishvili, N.; Durglishvili, G.; Machitidze, M.; Odzelashvili, I. Frequency of Vaginal Candida in Diabetes Patients—Overview. Georgian Sci. 2022, 4, 315–322. [Google Scholar] [CrossRef]
- Sustr, V.; Foessleitner, P.; Kiss, H.; Farr, A. Vulvovaginal Candidosis: Current Concepts, Challenges and Perspectives. J. Fungi Basel Switz. 2020, 6, 267. [Google Scholar] [CrossRef]
- Chatzivasileiou, P.; Vyzantiadis, T.-A. Vaginal Yeast Colonisation: From a Potential Harmless Condition to Clinical Implications and Management Approaches-A Literature Review. Mycoses 2019, 62, 638–650. [Google Scholar] [CrossRef] [PubMed]
- Van Ende, M.; Wijnants, S.; Van Dijck, P. Sugar Sensing and Signaling in Candida albicans and Candida glabrata. Front. Microbiol. 2019, 10, 99. [Google Scholar] [CrossRef]
- Candidal Vaginitis—Gynecology and Obstetrics. Available online: https://www.msdmanuals.com/professional/gynecology-and-obstetrics/vaginitis-cervicitis-and-pelvic-inflammatory-disease/candidal-vaginitis (accessed on 11 February 2025).
- Kalra, B.; Kalra, S. Vulvovaginitis and Diabetes. JPMA J. Pak. Med. Assoc. 2017, 67, 143–145. [Google Scholar]
- de Vos, M.G.J.; Bollenbach, T. Suppressive Drug Interactions between Antifungals. Chem. Biol. 2014, 21, 439–440. [Google Scholar] [CrossRef]
- Gupta, A.K.; Versteeg, S.G.; Shear, N.H. Common Drug-Drug Interactions in Antifungal Treatments for Superficial Fungal Infections. Expert Opin. Drug Metab. Toxicol. 2018, 14, 387–398. [Google Scholar] [CrossRef]
- Wiesner-Kiełczewska, A.; Zagrodzki, P.; Gawalska, A.; Paśko, P. Chemometric Methods-A Valuable Tool for Investigating the Interactions Between Antifungal Drugs (Including Antifungal Antibiotics) and Food. Antibiotics 2025, 14, 70. [Google Scholar] [CrossRef]
- Seth, S.; Gandhi, A.B.; Purandare, A.; Athota, K.; Kumar, P.G.; Tandon, S.; Shah, P. Vulvovaginal Candidiasis: Epidemiology, Treatment and Prevention Strategies. Indian J. Obstet. Gynecol. Res. 2022, 9, 4. [Google Scholar] [CrossRef]
- Calin, A.M.; Nechita, A.; Bratu, A.M.; Dinu, C.A.; Salcianu, I.A.; Topor, G.; Stefanescu, V.; Gutu, C.; Bogdan Goroftei, E.R. POSSIBILITIES OF GYNECOLOGICAL DRUG TREATMENTS IN VAGINAL AND VULVAR CANDIDIASIS CAUSED BY DIABETES ASSOCIATED WITH ORAL PATHOLOGY. Rom. J. Oral Rehabil. 2024, 16, 587–589. [Google Scholar] [CrossRef]
- CDC. Preventing Candidiasis. Available online: https://www.cdc.gov/candidiasis/prevention/index.html (accessed on 10 February 2025).
- Yeast Infection (Vaginal)—Symptoms and Causes. Available online: https://www.mayoclinic.org/diseases-conditions/yeast-infection/symptoms-causes/syc-20378999 (accessed on 10 February 2025).
- Chen, Y.; Bruning, E.; Rubino, J.; Eder, S.E. Role of Female Intimate Hygiene in Vulvovaginal Health: Global Hygiene Practices and Product Usage. Womens Health 2017, 13, 58–67. [Google Scholar] [CrossRef]
- Falagas, M.E.; Betsi, G.I.; Athanasiou, S. Probiotics for Prevention of Recurrent Vulvovaginal Candidiasis: A Review. J. Antimicrob. Chemother. 2006, 58, 266–272. [Google Scholar] [CrossRef]
- Bhosale, V.B.; Koparde, A.A.; Thorat, V.M. Vulvovaginal Candidiasis-An Overview of Current Trends and the Latest Treatment Strategies. Microb. Pathog. 2025, 200, 107359. [Google Scholar] [CrossRef]
- Xavier-Santos, D.; Bedani, R.; de Almeida Vieira, I.; Padilha, M.; Lima, C.M.G.; Silva, J.D.R.; Ferreira, B.M.; Giraldo, P.C.; Pagnossa, J.P.; Sivieri, K.; et al. Exploring the Potential Use of Probiotics, Prebiotics, Synbiotics, and Postbiotics as Adjuvants for Modulating the Vaginal Microbiome: A Bibliometric Review. Probiotics Antimicrob. Proteins 2025. [Google Scholar] [CrossRef]
- Bae, M.; Yoon, J.; Kang, H.; Kim, T. Influences of Perfectionism and Motivational Climate on Attitudes towards Doping among Korean National Athletes: A Cross Sectional Study. Subst. Abus. Treat. Prev. Policy 2017, 12, 52. [Google Scholar] [CrossRef]
- Bertarello, C.; Savio, D.; Morelli, L.; Bouzalov, S.; Davidova, D.; Bonetti, A. Efficacy and Safety of Lactobacillus Plantarum P 17630 Strain Soft Vaginal Capsule in Vaginal Candidiasis: A Randomized Non-Inferiority Clinical Trial. Eur. Rev. Med. Pharmacol. Sci. 2024, 28, 384–391. [Google Scholar] [CrossRef]
- Parolin, C.; Croatti, V.; Giordani, B.; Vitali, B. Vaginal Lactobacillus Impair Candida Dimorphic Switching and Biofilm Formation. Microorganisms 2022, 10, 2091. [Google Scholar] [CrossRef]
- Phillips, N.A.; Rocktashel, M.; Merjanian, L. Ibrexafungerp for the Treatment of Vulvovaginal Candidiasis: Design, Development and Place in Therapy. Drug Des. Devel. Ther. 2023, 17, 363–367. [Google Scholar] [CrossRef]
- Jallow, S.; Govender, N.P. Ibrexafungerp: A First-in-Class Oral Triterpenoid Glucan Synthase Inhibitor. J. Fungi 2021, 7, 163. [Google Scholar] [CrossRef]
- Sobel, J.D.; Donders, G.; Degenhardt, T.; Person, K.; Curelop, S.; Ghannoum, M.; Brand, S.R. Efficacy and Safety of Oteseconazole in Recurrent Vulvovaginal Candidiasis. NEJM Evid. 2022, 1, EVIDoa2100055. [Google Scholar] [CrossRef]
- Warrilow, A.G.S.; Hull, C.M.; Parker, J.E.; Garvey, E.P.; Hoekstra, W.J.; Moore, W.R.; Schotzinger, R.J.; Kelly, D.E.; Kelly, S.L. The Clinical Candidate VT-1161 Is a Highly Potent Inhibitor of Candida albicans CYP51 but Fails to Bind the Human Enzyme. Antimicrob. Agents Chemother. 2014, 58, 7121–7127. [Google Scholar] [CrossRef]
- Saville, S.P.; Lazzell, A.L.; Chaturvedi, A.K.; Monteagudo, C.; Lopez-Ribot, J.L. Efficacy of a Genetically Engineered Candida albicans Tet-NRG1 Strain as an Experimental Live Attenuated Vaccine against Hematogenously Disseminated Candidiasis. Clin. Vaccine Immunol. CVI 2009, 16, 430–432. [Google Scholar] [CrossRef]
- Nami, S.; Mohammadi, R.; Vakili, M.; Khezripour, K.; Mirzaei, H.; Morovati, H. Fungal Vaccines, Mechanism of Actions and Immunology: A Comprehensive Review. Biomed. Pharmacother. Biomed. Pharmacother. 2019, 109, 333–344. [Google Scholar] [CrossRef] [PubMed]
- De Bernardis, F.; Boccanera, M.; Adriani, D.; Girolamo, A.; Cassone, A. Intravaginal and Intranasal Immunizations Are Equally Effective in Inducing Vaginal Antibodies and Conferring Protection against Vaginal Candidiasis. Infect. Immun. 2002, 70, 2725–2729. [Google Scholar] [CrossRef]
- Vilanova, M.; Teixeira, L.; Caramalho, I.; Torrado, E.; Marques, A.; Madureira, P.; Ribeiro, A.; Ferreira, P.; Gama, M.; Demengeot, J. Protection against Systemic Candidiasis in Mice Immunized with Secreted Aspartic Proteinase 2. Immunology 2004, 111, 334–342. [Google Scholar] [CrossRef]
- De Bernardis, F.; Amacker, M.; Arancia, S.; Sandini, S.; Gremion, C.; Zurbriggen, R.; Moser, C.; Cassone, A. A Virosomal Vaccine against Candidal Vaginitis: Immunogenicity, Efficacy and Safety Profile in Animal Models. Vaccine 2012, 30, 4490–4498. [Google Scholar] [CrossRef]
- Xin, H.; Dziadek, S.; Bundle, D.R.; Cutler, J.E. Synthetic Glycopeptide Vaccines Combining Beta-Mannan and Peptide Epitopes Induce Protection against Candidiasis. Proc. Natl. Acad. Sci. USA 2008, 105, 13526–13531. [Google Scholar] [CrossRef]
- Xin, H.; Cartmell, J.; Bailey, J.J.; Dziadek, S.; Bundle, D.R.; Cutler, J.E. Self-Adjuvanting Glycopeptide Conjugate Vaccine against Disseminated Candidiasis. PLoS ONE 2012, 7, e35106. [Google Scholar] [CrossRef]
- Ibrahim, A.S.; Luo, G.; Gebremariam, T.; Lee, H.; Schmidt, C.S.; Hennessey, J.P.; French, S.W.; Yeaman, M.R.; Filler, S.G.; Edwards, J.E. NDV-3 Protects Mice from Vulvovaginal Candidiasis through T- and B-Cell Immune Response. Vaccine 2013, 31, 5549–5556. [Google Scholar] [CrossRef]
- Cárdenas-Freytag, L.; Cheng, E.; Mayeux, P.; Domer, J.E.; Clements, J.D. Effectiveness of a Vaccine Composed of Heat-Killed Candida albicans and a Novel Mucosal Adjuvant, LT(R192G), against Systemic Candidiasis. Infect. Immun. 1999, 67, 826–833. [Google Scholar] [CrossRef]
- Zare, H.; Izadi Amoli, R.; Rezapour, M.; Zaboli, F.; Kaboosi, H. Characterization of Vaginal Lactobacilli with Potential Probiotic Properties Isolated from Healthy Women in Northern Iran. Indian J. Microbiol. 2024, 64, 529–539. [Google Scholar] [CrossRef]
- Zhang, J.; Li, K.; Cao, T.; Duan, Z. Characterization of a Lactobacillus Gasseri Strain as a Probiotic for Female Vaginitis. Sci. Rep. 2024, 14, 14426. [Google Scholar] [CrossRef] [PubMed]
- Martinez, R.C.R.; Seney, S.L.; Summers, K.L.; Nomizo, A.; De Martinis, E.C.P.; Reid, G. Effect of Lactobacillus Rhamnosus GR-1 and Lactobacillus Reuteri RC-14 on the Ability of Candida albicans to Infect Cells and Induce Inflammation. Microbiol. Immunol. 2009, 53, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Reid, G.; Charbonneau, D.; Erb, J.; Kochanowski, B.; Beuerman, D.; Poehner, R.; Bruce, A.W. Oral Use of Lactobacillus Rhamnosus GR-1 and L. Fermentum RC-14 Significantly Alters Vaginal Flora: Randomized, Placebo-Controlled Trial in 64 Healthy Women. FEMS Immunol. Med. Microbiol. 2003, 35, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Stabile, G.; Gentile, R.M.; Carlucci, S.; Restaino, S.; De Seta, F. A New Therapy for Uncomplicated Vulvovaginal Candidiasis and Its Impact on Vaginal Flora. Healthcare 2021, 9, 1555. [Google Scholar] [CrossRef] [PubMed]
- Martinez, R.C.R.; Franceschini, S.A.; Patta, M.C.; Quintana, S.M.; Candido, R.C.; Ferreira, J.C.; De Martinis, E.C.P.; Reid, G. Improved Treatment of Vulvovaginal Candidiasis with Fluconazole plus Probiotic Lactobacillus Rhamnosus GR-1 and Lactobacillus Reuteri RC-14. Lett. Appl. Microbiol. 2009, 48, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Satora, M.; Grunwald, A.; Zaremba, B.; Frankowska, K.; Żak, K.; Tarkowski, R.; Kułak, K. Treatment of Vulvovaginal Candidiasis—An Overview of Guidelines and the Latest Treatment Methods. J. Clin. Med. 2023, 12, 5376. [Google Scholar] [CrossRef]
C. albicans | Non–Albicans |
---|---|
Nakaseomyces glebaratus (C. glabrata) | |
Pichia kudriavzevii (C. krusei) | |
C. parapsilosis | |
C. tropicalis |
Classification: | Uncomplicated | Complicated |
---|---|---|
sporadic or infrequent VVC mild-to-moderate VVC | recurrent VVC severe VVC non-albicans VVC | |
Symptoms: vaginal soreness, genital pruritus, burning sensation, irritation, dyspareunia, dysuria, an abnormal vaginal discharge, erythema of the vulva and vagina, edema | Mild to moderate symptoms | Severe symptoms (extensive vulvar erythema, prominent edema, excoriation, and fissure formations) |
Frequency: | <4 times a year | >4 times a year |
Name | Type of Medicine | How to Use | Duration of Treatment |
---|---|---|---|
Clotrimazole 5 g | 1% cream | intravaginally | daily for 7–14 days |
Clotrimazole 5 g | 2% cream | intravaginally | daily for 3 days |
Miconazole 5 g | 2% cream | intravaginally | daily for 7 days |
Miconazole 5 g | 4% cream | intravaginally | daily for 3 days |
Miconazole 100 mg | vaginal suppository | intravaginally | one suppository daily for 7 days |
Miconazole 200 mg | vaginal suppository | Intravaginally | one suppository for 3 days |
Miconazole 1200 mg | vaginal suppository | intravaginally | one suppository for 1 day |
Tioconazole 5 g | 6.5% ointment | intravaginally | a single application |
Butoconazole 5 g | 2% cream | intravaginally | a single application |
Terconazole 5 g | 0.4% cream | intravaginally | daily for 7 days |
Terconazole 5 g | 0.8% cream | intravaginally | daily for 3 days |
Terconazole 80 mg | vaginal suppository | intravaginally | one suppository daily for 3 days |
Fluconazole 150 mg | capsule | orally | a single dose |
Oteseconazole | capsules | orally | day 1: 600 mg (single dose), day 2: 450 mg (single dose), day 14: 150 mg once a week (every 7 days) for 11 weeks |
Ibrexafungerp | 300 mg tablets | orally | two tablets of 150 mg twice a day for 1 day |
Condition | Modes of Transmission | Clinical Outcomes | Risk Assessments | Diagnostic Techniques | Interpretation Challenges | Ref. |
---|---|---|---|---|---|---|
Pregnancy | due to immunologic alterations, higher estrogen levels, increased vaginal glycogen production | premature membrane rupture, preterm labor, chorioamnionitis, congenital cutaneous candidiasis | 30% of pregnant women | Wet mount vaginal swab of the vaginal contents to complement the clinical examination | Controversy regarding the safety of oral antifungals during pregnancy | [86] |
HIV | Opportunistic infection correlates with the severity of immunodeficiency | decreased levels of CD4+ T-cells | Higher rates than among those without HIV Prevalence is correlated with the immunological status of the host | microscopy, yeast culture, clinical examination | higher incidence and greater persistence, but not greater severity | [59,87,88,89] |
Diabetes mellitus | decreases in leukocyte chemotaxis and phagocytosis, impairment in vascular reaction | may also develop as an adverse effect of treatment with sodium–glucose cotransporter 2 (SGLT2) inhibitors | Higher prevalence rates than among those without DM | Based on clinical evidence, vaginal or swab test | highly prevalent non-infectious vulvovaginal conditions: skin disorders (e.g., acanthosis nigricans, skin tags, and vitiligo), pelvic organ prolapse, and pelvic pain | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srb, N.; Talapko, J.; Meštrović, T.; Fureš, R.; Stupnišek, M.; Srb, A.M.; Škrlec, I. A Comprehensive Overview of Candida albicans as the Leading Pathogen in Vulvovaginal Candidiasis. J. Fungi 2025, 11, 632. https://doi.org/10.3390/jof11090632
Srb N, Talapko J, Meštrović T, Fureš R, Stupnišek M, Srb AM, Škrlec I. A Comprehensive Overview of Candida albicans as the Leading Pathogen in Vulvovaginal Candidiasis. Journal of Fungi. 2025; 11(9):632. https://doi.org/10.3390/jof11090632
Chicago/Turabian StyleSrb, Nika, Jasminka Talapko, Tomislav Meštrović, Rajko Fureš, Mirjana Stupnišek, Andrea Milostić Srb, and Ivana Škrlec. 2025. "A Comprehensive Overview of Candida albicans as the Leading Pathogen in Vulvovaginal Candidiasis" Journal of Fungi 11, no. 9: 632. https://doi.org/10.3390/jof11090632
APA StyleSrb, N., Talapko, J., Meštrović, T., Fureš, R., Stupnišek, M., Srb, A. M., & Škrlec, I. (2025). A Comprehensive Overview of Candida albicans as the Leading Pathogen in Vulvovaginal Candidiasis. Journal of Fungi, 11(9), 632. https://doi.org/10.3390/jof11090632