4-Propylphenol Alters Membrane Integrity in Fungi Isolated from Walnut Anthracnose and Brown Spot
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Pathogens
2.2. Isolation and Identification of Pathogen HQ21 from Walnut Anthracnose Fruits
2.3. Pathogenicity Validation and Characterization of HQ21
2.4. Dose–Response Analysis of 4-Propylphenol on Mycelial Growth
2.5. Effects of 4-Propylphenol on Conidial Germination
2.6. Membrane Integrity Assessment
2.7. Quantification of Mycelial DNA Leakage
2.8. Protein Leakage from Conidia
2.9. Leaf Treatment and Pathogen Inoculation
2.10. Field Safety Evaluation
2.11. Optimization of Field Application Strategies
3. Results
3.1. Isolation, Identification, and Pathogenicity of Colletotrichum siamense in Huangqian Walnut Orchards
3.2. Virulence Analysis of 4-Propylphenol Against Target Pathogens
3.3. Inhibitory Effects of 4-Propylphenol on Conidial Germination
3.4. Membrane Disruption Effects of 4-Propylphenol on Target Pathogens
3.5. Dose-Dependent Induction of DNA Leakage by 4-Propylphenol
3.6. Protein Leakage Induced by 4-Propylphenol
3.7. Protective Effects of 4-Propylphenol Against C. siamense Infection in Detached Walnut Leaves
3.8. Field Safety Evaluation of 4-Propylphenol on Walnut Trees
3.9. Integrated Application Strategies for Disease Control Efficacy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations: Food and Agriculture Data. Available online: https://www.fao.org/faostat/en/#compare (accessed on 15 January 2025).
- Lio, D.D.; Cobo-Díaz, J.F.; Masson, C.; Chalopin, M.; Kebe, D.; Giraud, M.; Verhaeghe, A.; Nodet, P.; Sarrocco, S.; Floch, G.L.; et al. Combined Metabarcoding and Multi-locus approach for Genetic characterization of Colletotrichum species associated with common walnut (Juglans regia) anthracnose in France. Sci. Rep. 2018, 8, 10765. [Google Scholar] [CrossRef] [PubMed]
- Li, F.X.; Chen, J.W.; Chen, Q.; Liu, Z.Y.; Sun, J.Y.; Yan, Y.T.; Zhang, H.X.; Bi, Y. Identification, Pathogenicity, and Sensitivity to Fungicide of Colletotrichum Species That Causes Walnut Anthracnose in Beijing. Agronomy 2023, 13, 214. [Google Scholar] [CrossRef]
- Savian, L.G.; Muniz, M.F.B.; Poletto, T.; Maculan, L.G.; Rabuske, J.E.; Blume, E.; Sarzi, J.S. First Report of Colletotrichum nymphaeae Causing Anthracnose on Juglans regia Fruits in Southern Brazil. Plant Dis. 2019, 103, 3287. [Google Scholar] [CrossRef]
- Wang, Y.X.; Xu, X.W.; Cai, F.; Huang, F.X.; Chen, W.S.; Wang, Q.Z. First Report of Colletotrichum nymphaeae Causing Walnut Anthracnose in China. Plant Dis. 2022, 106, 2991. [Google Scholar] [CrossRef]
- Wang, F.H.; Liu, C.; Zeng, Q.; Zhou, Y.J.; Liu, F.; Xu, X.L.; Yang, H.B.; Liu, Y.G.; Yang, C.L. Identification and pathogenicity analysis of leaf brown spot of Juglans regia in China. Sci. Rep. 2023, 13, 6599. [Google Scholar] [CrossRef]
- Luongo, L.; Galli, M.; Garaguso, I.; Petrucci, M.; Vitale, S. First Report of Colletotrichum fioriniae and C. nymphaeae as Causal Agents of Anthracnose on Walnut in Italy. Plant Dis. 2022, 106, 327. [Google Scholar] [CrossRef]
- Wang, Q.H.; Li, G.Q.; Liu, X.H.; Duan, C.H.; Zhang, Y.; Niu, S.G.; Zhu, W.C.; Qi, Y.K. Seasonal Epidemic Dynamics and Control Measurement of Walnut Anthracnose in Shandong Province. J. West China For. Sci. 2017, 46, 13–17. [Google Scholar] [CrossRef]
- Belisario, A.; Maccaroni, M.; Coramusi, A.; Corazza, L.; Pryor, B.M.; Figuli, P. First Report of Alternaria Species Groups Involved in Disease Complexes of Hazelnut and Walnut Fruit. Plant Dis. 2004, 88, 426. [Google Scholar] [CrossRef]
- Belisario, A.; Maccaroni, M.; Corazza, L.; Balmas, V.; Valier, A. Occurrence and etiology of brown apical necrosis on Persian (English) walnut fruit. Plant Dis. 2002, 86, 599–602. [Google Scholar] [CrossRef]
- Yang, L.; Yang, S.Y.; Ma, W.J.; Zhou, J.H. Identification of Pathogen of Walnut Brown Spot and Investigation of the Disease Occurrence. For. Res. 2017, 30, 1004–1008. [Google Scholar] [CrossRef]
- Qu, W.W.; Yang, K.Q.; Liu, H.X.; Wang, J.Y. Main diseases of walnut and integrated management in Shandong. Plant Prot. 2011, 37, 136–140. [Google Scholar] [CrossRef]
- Chechi, A.; Stahlecker, J.; Dowling, M.E.; Schnabel, G. Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples. Pestic. Biochem. Physiol. 2019, 158, 18–24. [Google Scholar] [CrossRef]
- Cheng, S.H.; Lin, R.H.; Wang, L.M.; Qiu, Q.Y.; Qu, M.M.; Ren, X.D.; Zong, F.L.; Jiang, H.; Yu, C.H. Comparative susceptibility of thirteen selected pesticides to three different insect egg parasitoid Trichogramma species. Ecotoxicol. Environ. Saf. 2018, 166, 86–91. [Google Scholar] [CrossRef]
- Leite, F.G.; Sampaio, C.F.; Pires, J.A.C.; Oliveira, D.P.d.; Dorta, D.J. Toxicological impact of strobilurin fungicides on human and environmental health: A literature review. J. Environ. Sci. Health B 2024, 59, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Theenoor, R.; Ghosh, A.; Venkatesan, R. Harmonising control: Understanding the complex impact of pesticides on parasitoid wasps for enhanced pest management. Curr. Opin. Insect Sci. 2024, 65, 101236. [Google Scholar] [CrossRef]
- Jiao, C.; Chen, L.; Sun, C.; Jiang, Y.; Zhai, L.M.; Liu, H.B.; Shen, Z.Y. Evaluating national ecological risk of agricultural pesticides from 2004 to 2017 in China. Environ. Pollut. 2020, 259, 113778. [Google Scholar] [CrossRef] [PubMed]
- Brauer, V.S.; Rezende, C.P.; Pessoni, A.M.; Paula, R.G.D.; Rangappa, K.S.; Nayaka, S.C.; Gupta, V.K.; Almeida, F. Antifungal Agents in Agriculture: Friends and Foes of Public Health. Biomolecules 2019, 9, 521. [Google Scholar] [CrossRef] [PubMed]
- Shuping, D.S.S.; Eloff, J.N. The Use of Plants to Protect Plants and Food Against Fungal Pathogens: A Review. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 120–127. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Adeleke, B.S.; Akinola, S.A.; Fayose, C.A.; Adeyemi, U.T.; Gbadegesin, L.A.; Omole, R.K.; Johnson, R.M.; Uthman, Q.O.; Babalola, O.O. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef]
- Sun, Z.C.; Li, Q.L.; Zhang, J.W.; Sun, Z.H.; Wu, H.F.; Liang, H.Q.; Ma, M.; Huang, L.F.; Xu, X.D.; Ma, G.X. Phenolic constituents with antibacterial activity from Eleutherine bulbosa. Fitoterapia 2024, 172, 105787. [Google Scholar] [CrossRef]
- Wang, B.; Liu, F.; Li, Q.; Xu, S.; Zhao, X.Z.; Xue, P.L.; Feng, X. Antifungal activity of zedoary turmeric oil against Phytophthora capsici through damaging cell membrane. Pestic. Biochem. Physiol. 2019, 159, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Zacchino, S.A.; Butassi, E.; Liberto, M.D.; Raimondi, M.; Postigo, A.; Sortino, M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine 2017, 37, 27–48. [Google Scholar] [CrossRef] [PubMed]
- Füllemann, D.; Steinhaus, M. Characterization of Odorants Causing Smoky Off-Flavors in Cocoa. J. Agric. Food Chem. 2020, 68, 10833–10841. [Google Scholar] [CrossRef] [PubMed]
- Lukić, I.; Jedrejčić, N.; Ganić, K.K.; Staver, M.; Peršurić, Đ. Phenolic and Aroma Composition of White Wines Produced by Prolonged Maceration and Maturation in Wooden Barrels. Food Technol. Biotechnol. 2015, 53, 407–418. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Saeed, Y.S.; Ali, J.F. Antibacterial activity of phenolic compounds of Teucrium polium L. Pak. J. Pharm. Sci. 2023, 36, 1435–1442. [Google Scholar] [CrossRef]
- Sun, S.F.; Tang, N.W.; Han, K.; You, J.H.; Liu, A.R.; Wang, Q.Q.; Xu, Q. Antifungal Activity and Mechanism of 4-Propylphenol Against Fusarium graminearum, Agent of Wheat Scab, and Its Potential Application. J. Agric. Food Chem. 2024, 72, 5258–5268. [Google Scholar] [CrossRef]
- Wan, Y.L.; Wang, X.W.; Yang, L.; Li, Q.H.; Zheng, X.T.; Bai, T.Y.; Wang, X. Antibacterial Activity of Juglone Revealed in a Wound Model of Staphylococcus aureus Infection. Int. J. Mol. Sci. 2023, 24, 3931. [Google Scholar] [CrossRef]
- Anek, P.; Kumpangcum, S.; Roytrakul, S.; Khanongnuch, C.; Saenjum, C.; Phannachet, K. Antibacterial Activities of Phenolic Compounds in Miang Extract: Growth Inhibition and Change in Protein Expression of Extensively Drug-Resistant Klebsiella pneumoniae. Antibiotics 2024, 13, 536. [Google Scholar] [CrossRef]
- Templeton, M.D.; Rikkerink, E.H.A.; Solon, S.L.; Crowhurst, R.N. Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase-encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata. Gene 1992, 122, 225–230. [Google Scholar] [CrossRef]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef]
- Allen, G.C.; Flores-Vergara, M.A.; Krasynanski, S.; Kumar, S.; Thompson, W.F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 2006, 1, 2320–2325. [Google Scholar] [CrossRef]
- Weir, B.S.; Johnston, P.R.; Damm, U. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 2012, 73, 115–180. [Google Scholar] [CrossRef] [PubMed]
- Edgington, L.V. Fungitoxic Spectrum of Benzimidazole Compounds. Phytopathology 1971, 61, 42. [Google Scholar] [CrossRef]
- Stocks, S.M. Mechanism and use of the commercially available viability stain, BacLight. Cytom. Part A J. Int. Soc. Anal. Cytol. 2004, 61, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, L.L.; Liang, C.; Yu, L.H.; Zhang, Y. Colletotrichum species (Glomerellales, Glomerellaceae) causing walnut anthracnose in China. MycoKeys 2024, 108, 95–113. [Google Scholar] [CrossRef]
- Cho, S.E.; Oh, J.Y.; Lee, D.H.; Kim, C.W. First Report of Anthracnose on Juglans regia Caused by Colletotrichum siamense in Korea. Plant Dis. 2022, 107, 218. [Google Scholar] [CrossRef]
- Li, Y.X.; Lin, L.; Cao, J.; Gan, M.X.; Fan, X.L. Three new species of Colletotrichum (Glomerellales, Glomerellaceae) associated with walnut (Juglans regia) anthracnose from China. MycoKeys 2024, 108, 147–167. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, Y.Q.; Zhao, L.L.; Xie, Y.Q.; Han, J.; Zhang, Y. Two new species of Colletotrichum (Glomerellaceae, Glomerellales) causing walnut anthracnose in Beijing. MycoKeys 2023, 99, 131–152. [Google Scholar] [CrossRef]
- Zhang, T.N.; Lv, B.S.; Zhang, T.; Luan, F.G. First Report of Anthracnose caused by Colletotrichum siamense and C. gloeosporiodes on Cornus hongkongensis in China. Plant Dis. 2022, 106, 2988. [Google Scholar] [CrossRef]
- Qin, R.Y.; Zhang, Y.M.; Li, Q.L.; Huang, S.P.; Chen, X.L.; Guo, T.X.; Tang, L.H. Leaf Spot Caused by Colletotrichum siamense, C. fructicola, and C. aeschynomenes on Ixora chinensis in Guangxi, China. Plant Dis. 2023, 108, 225. [Google Scholar] [CrossRef]
- Hofer, K.M.; Braithwaite, M.; Braithwaite, L.J.; Sorensen, S.; Siebert, B.; Pather, V.; Goudie, L.; Williamson, L.; Alexander, B.J.R.; Toome-Heller, M. First report of Colletotrichum fructicola, C. perseae, and C. siamense causing anthracnose disease of avocado (Persea americana) in New Zealand. Plant Dis. 2021, 105, 1564. [Google Scholar] [CrossRef]
- Pérez-Mora, J.L.; Mora-Romero, G.A.; Beltrán-Peña, H.; García-León, E.; Lima, N.B.; Camacho-Tapia, M.; Tovar-Pedraza, J.M. First Report of Colletotrichum siamense and C. gloeosporioides Causing Anthracnose of Citrus spp. in Mexico. Plant Dis. 2020, 105, 496. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Xue, Y.; Bi, Q.Q.; Qin, D.K.; Du, Q.Z.; Jin, P. Enhanced antibacterial activity of eugenol-entrapped casein nanoparticles amended with lysozyme against gram-positive pathogens. Food Chem. 2021, 360, 130036. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, J.O.E.; Campolina, G.A.; Batista, L.R.; Alves, E.; Caetano, A.R.S.; Brandão, R.M.; Nelson, D.L.; Cardoso, M.D.G. Mechanism of action of various terpenes and phenylpropanoids against Escherichia coli and Staphylococcus aureus. FEMS Microbiol. Lett. 2021, 368, fnab052. [Google Scholar] [CrossRef]
- Liang, Q.L.; Wei, L.X.; Xu, B.L.; Liu, J.; Zhang, S.W.; Liu, L.L. Induction of resistance of Podosphaera xanthii (hull-less pumpkin powdery mildew) to triazole fungicides and its resistance mechanism. PLoS ONE 2022, 17, e0263068. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.Y.; Yao, S.J.; Cao, D.T.; Ju, C.; Yu, S.M.; Xu, S.J.; Fang, H.; Yu, Y.L. Increased triazole-resistance and cyp51A mutations in Aspergillus fumigatus after selection with a combination of the triazole fungicides difenoconazole and propiconazole. J. Hazard. Mater. 2020, 400, 123200. [Google Scholar] [CrossRef]
- Liu, X.L.; Li, H.; Qi, G.B.; Qian, Y.Y.; Li, B.W.; Shi, L.L.; Liu, B. Combating Fungal Infections and Resistance with a Dual-Mechanism Luminogen to Disrupt Membrane Integrity and Induce DNA Damage. J. Am. Chem. Soc. 2024, 146, 31656–31664. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Huang, Z.C.; Li, Y.; Li, H.; Huang, P.Y.; Cai, Y.Y.; Wang, J.Y.; Liu, X.H.; Lin, F.C.; et al. The endosomal-vacuolar transport system acts as a docking platform for the Pmk1 MAP kinase signaling pathway in Magnaporthe oryzae. New Phytol. 2025, 245, 722–747. [Google Scholar] [CrossRef]
- Gao, X.Q.; Gao, G.G.; Zheng, W.F.; Liu, H.B.; Pan, W.B.; Xia, X.; Zhang, D.M.; Lin, W.W.; Wang, Z.H.; Feng, B.M. PARylation of 14-3-3 proteins controls the virulence of Magnaporthe oryzae. Nat. Commun. 2024, 15, 8047. [Google Scholar] [CrossRef]
- Olea, A.F.; Bravo, A.; Martínez, R.; Thomas, M.; Sedan, C.; Espinoza, L.; Zambrano, E.; Carvajal, D.; Silva-Moreno, E.; Carrasco, H. Antifungal Activity of Eugenol Derivatives against Botrytis Cinerea. Molecules 2019, 24, 1239. [Google Scholar] [CrossRef]
- Chen, G.Q.; Zhu, L.N.; He, J.X.; Zhang, S.; Li, Y.H.; Guo, X.L.; Sun, D.; Tian, Y.E.; Liu, S.M.; Huang, X.B.; et al. Combinatorial Synthesis of Novel 1-sulfonyloxy/acyloxyeugenol Derivatives as Fungicidal Agents. Comb. Chem. High. Throughput Screen. 2022, 25, 1545–1551. [Google Scholar] [CrossRef]
- Salehan, N.M.; Meon, S.; Ismail, I.S. Antifungal activity of Cosmos caudatus extracts against seven economically important plant pathogens. Int. J. Agric. Biol. 2013, 15, 864–870. [Google Scholar]
- Wang, J.; Guo, Q.G.; Su, Z.H.; Dong, L.H.; Wang, P.P.; Zhang, X.Y.; Lu, X.Y.; Zhao, W.S.; Qu, Y.H.; Li, S.Z.; et al. Effect of Fengycin Produced by Bacillus subtilis NCD-2 on the Conidial Germination and Microsclerotia Formation of Verticillium dahliae. Acta Phytopathol. Sin. 2020, 50, 739–747. [Google Scholar] [CrossRef]
- Mochizuki, M.; Yamamoto, S.; Aoki, Y.; Suzuki, S. Isolation and characterization of Bacillus amyloliquefaciens S13-3 as a biological control agent for anthracnose caused by Colletotrichum gloeosporioides. Biocontrol Sci. Technol. 2012, 22, 697–709. [Google Scholar] [CrossRef]
Treatment | May 5 (Flowering) | June 10 (Fruiting) |
---|---|---|
T1 | 100 mg·L−1 canopy | Water spray |
T2 | 100 mg·L−1 canopy + ground | Water spray |
T3 | 100 mg·L−1 canopy + ground | 400 mg·L−1 canopy |
CK | Water spray | Water spray |
Pathogen | Toxicity Regression Equation | R2 | EC50 (mg·L−1) | 95% Confidence Interval (mg·L−1) |
---|---|---|---|---|
C. gloeosporioides | Y = −5.69 + 3.81X | 0.827 | 31.89 | 8.16–49.25 |
C. siamense | Y = −4.80 + 3.22X | 0.948 | 31.06 | 17.75–41.67 |
A. alternata | Y = −4.41 + 3.02X | 0.882 | 29.11 | 9.52–42.63 |
Pathogen | Toxicity Regression Equation | R2 | EC50 (mg·L−1) | 95% Confidence Interval (mg·L−1) |
---|---|---|---|---|
C. gloeosporioides | Y = −2.31 + 1.33X | 0.966 | 55.037 | 44.148–67.138 |
C. siamense | Y = −2.82 + 1.52X | 0.983 | 71.854 | 60.220–85.194 |
A. alternata | Y = −2.72 + 1.49X | 0.956 | 64.414 | 41.959–93.571 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Yang, S.; Su, P.; Bi, H.; Li, Y.; Peng, X.; Sun, X.; Wang, Q. 4-Propylphenol Alters Membrane Integrity in Fungi Isolated from Walnut Anthracnose and Brown Spot. J. Fungi 2025, 11, 610. https://doi.org/10.3390/jof11090610
Yu X, Yang S, Su P, Bi H, Li Y, Peng X, Sun X, Wang Q. 4-Propylphenol Alters Membrane Integrity in Fungi Isolated from Walnut Anthracnose and Brown Spot. Journal of Fungi. 2025; 11(9):610. https://doi.org/10.3390/jof11090610
Chicago/Turabian StyleYu, Xiaoli, Shuhan Yang, Panhong Su, Haiyao Bi, Yaxuan Li, Xingxing Peng, Xiaohui Sun, and Qunqing Wang. 2025. "4-Propylphenol Alters Membrane Integrity in Fungi Isolated from Walnut Anthracnose and Brown Spot" Journal of Fungi 11, no. 9: 610. https://doi.org/10.3390/jof11090610
APA StyleYu, X., Yang, S., Su, P., Bi, H., Li, Y., Peng, X., Sun, X., & Wang, Q. (2025). 4-Propylphenol Alters Membrane Integrity in Fungi Isolated from Walnut Anthracnose and Brown Spot. Journal of Fungi, 11(9), 610. https://doi.org/10.3390/jof11090610