Insights from Mass Spectrometry-Based Proteomics on Cryptococcus neoformans
Abstract
1. Introduction
2. Approaches to C. neoformans Proteomics Analysis
3. Proteomics of the C. neoformans Organism
3.1. Capsule and Cell Wall
3.2. Extracellular Vesicles and Secretome
3.3. Host Envrionmental Stress Response
3.4. Ubiquitin–Proteasome Pathway
3.5. Spores and Biofilms
3.6. Acteylation
3.7. Other Discoveries
4. Proteomics of Cryptococcosis
4.1. Human Cryptococcosis
4.2. Infection Modeling
5. Evaluating Novel Clinical Interventions
5.1. Antifungals and Vaccines
5.2. Clinical Identification Using Mass Spectrometry
6. Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nelson, B.N.; Hawkins, A.N.; Wozniak, K.L. Pulmonary Macrophage and Dendritic Cell Responses to Cryptococcus neoformans. Front. Cell. Infect. Microbiol. 2020, 10, 37. [Google Scholar] [CrossRef]
- Goldman, D.L.; Khine, H.; Abadi, J.; Lindenberg, D.J.; Pirofski, L.; Niang, R.; Casadevall, A. Serologic Evidence for Cryptococcus neoformansInfection in Early Childhood. Pediatrics 2001, 107, e66. [Google Scholar] [CrossRef] [PubMed]
- Rajasingham, R.; Govender, N.P.; Jordan, A.; Loyse, A.; Shroufi, A.; Denning, D.W.; Meya, D.B.; Chiller, T.M.; Boulware, D.R. The Global Burden of HIV-Associated Cryptococcal Infection in Adults in 2020: A Modelling Analysis. Lancet Infect. Dis. 2022, 22, 1748–1755. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Smith, K.D.; Wiesner, D.L.; Nielsen, J.N.; Jackson, K.M.; Nielsen, K. Use of Clinical Isolates to Establish Criteria for a Mouse Model of Latent Cryptococcus Neoformans Infection. Front. Cell. Infect. Microbiol. 2022, 11, 804059. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Denning, D.W. The WHO Fungal Priority Pathogens List as a Game-Changer. Nat. Rev. Microbiol. 2023, 21, 211–212. [Google Scholar] [CrossRef]
- Muselius, B.; Roux-Dalvai, F.; Droit, A.; Geddes-McAlister, J. Resolving the Temporal Splenic Proteome during Fungal Infection for Discovery of Putative Dual Perspective Biomarker Signatures. J. Am. Soc. Mass Spectrom. 2023, 34, 1928–1940. [Google Scholar] [CrossRef]
- Rose, S.; Misharin, A.; Perlman, H. A Novel Ly6C/Ly6G-Based Strategy to Analyze the Mouse Splenic Myeloid Compartment. Cytom. Part J. Int. Soc. Anal. Cytol. 2012, 81, 343–350. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Tompkins, K.C.; McNamara, A.; Jain, A.V.; Moore, B.B.; Toews, G.B.; Huffnagle, G.B.; Olszewski, M.A. Robust Th1 and Th17 Immunity Supports Pulmonary Clearance but Cannot Prevent Systemic Dissemination of Highly Virulent Cryptococcus Neoformans H99. Am. J. Pathol. 2009, 175, 2489–2500. [Google Scholar] [CrossRef]
- Hevey, M.A.; Presti, R.M.; O’Halloran, J.A.; Larson, L.; Raval, K.; Powderly, W.G.; Spec, A. Mortality Following Cryptococcal Infection in the Modern Antiretroviral Therapy Era. J. Acquir. Immune Defic. Syndr. 2019, 82, 81–87. [Google Scholar] [CrossRef]
- Pasquier, E.; Kunda, J.; De Beaudrap, P.; Loyse, A.; Temfack, E.; Molloy, S.F.; Harrison, T.S.; Lortholary, O. Long-Term Mortality and Disability in Cryptococcal Meningitis: A Systematic Literature Review. Clin. Infect. Dis. 2018, 66, 1122–1132. [Google Scholar] [CrossRef]
- Vidal, J.E.; Boulware, D.R. Lateral Flow Assay for Cryptococcal Antigen: An Important Advance to Improve the Continuum of HIV Care and Reduce Cryptococcal Meningitis-Related Mortality. Rev. Inst. Med. Trop. São Paulo 2015, 57, 38–45. [Google Scholar] [CrossRef]
- Boulware, D.R.; Rolfes, M.A.; Rajasingham, R.; von Hohenberg, M.; Qin, Z.; Taseera, K.; Schutz, C.; Kwizera, R.; Butler, E.K.; Meintjes, G.; et al. Multisite Validation of Cryptococcal Antigen Lateral Flow Assay and Quantification by Laser Thermal Contrast. Emerg. Infect. Dis. 2014, 20, 45–53. [Google Scholar] [CrossRef]
- Bongomin, F.; Govender, N.P.; Chakrabarti, A.; Robert-Gangneux, F.; Boulware, D.R.; Zafar, A.; Oladele, R.O.; Richardson, M.D.; Gangneux, J.-P.; Alastruey-Izquierdo, A.; et al. Essential in Vitro Diagnostics for Advanced HIV and Serious Fungal Diseases: International Experts’ Consensus Recommendations. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1581–1584. [Google Scholar] [CrossRef] [PubMed]
- Roell, M.; Baker, K. Seronegative Disseminated Cryptococcosis: A Case Report. Case Rep. Med. 2025, 2025, 5564622. [Google Scholar] [CrossRef] [PubMed]
- Nanfuka, V.; Mkhoi, M.L.; Gakuru, J.; Kwizera, R.; Baluku, J.B.; Bongomin, F.; Meya, D.B. Symptomatic Cryptococcal Meningitis with Negative Serum and Cerebrospinal Fluid Cryptococcal Antigen Tests. HIVAIDS—Res. Palliat. Care 2021, 13, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Cryptococcosis: Adult and Adolescent OIs|NIH. Available online: https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-opportunistic-infections/cryptococcosis (accessed on 3 June 2025).
- Mpoza, E.; Rhein, J.; Abassi, M. Emerging Fluconazole Resistance: Implications for the Management of Cryptococcal Meningitis. Med. Mycol. Case Rep. 2017, 19, 30–32. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Yang, S.; Lu, H.; Yu, H.; Wang, X.; Jia, X.; Tang, D.; Wu, L.; Huang, S.; et al. Epidemiology of Cryptococcal Meningitis and Fluconazole Heteroresistance in Cryptococcus Neoformans Isolates from a Teaching Hospital in Southwestern China. Microbiol. Spectr. 2024, 12, e00725-24. [Google Scholar] [CrossRef]
- Zafar, H.; Altamirano, D.S.; Ballou, E.R.; Nielsen, K. A Titanic Drug Resistance Threat in Cryptococcus Neoformans. Curr. Opin. Microbiol. 2019, 52, 158–164. [Google Scholar] [CrossRef]
- Altamirano, S.; Jackson, K.M.; Nielsen, K. The Interplay of Phenotype and Genotype in Cryptococcus Neoformans Disease. Biosci. Rep. 2020, 40, BSR20190337. [Google Scholar] [CrossRef]
- Wiesner, D.L.; Specht, C.A.; Lee, C.K.; Smith, K.D.; Mukaremera, L.; Lee, S.T.; Lee, C.G.; Elias, J.A.; Nielsen, J.N.; Boulware, D.R.; et al. Chitin Recognition via Chitotriosidase Promotes Pathologic Type-2 Helper T Cell Responses to Cryptococcal Infection. PLoS Pathog. 2015, 11, e1004701. [Google Scholar] [CrossRef]
- Betancourt, J.J.; Ding, M.; Yoder, J.M.; Mutyaba, I.; Atkins, H.M.; De la Cruz, G.; Meya, D.B.; Nielsen, K. Pulmonary Granuloma Formation during Latent Cryptococcus Neoformans Infection in C3HeB/FeJ Mice Involves Progression through Three Immunological Phases. mBio 2025, 16, e03610-24. [Google Scholar] [CrossRef]
- Jarvis, J.N.; Meintjes, G.; Rebe, K.; Williams, G.N.; Bicanic, T.; Williams, A.; Schutz, C.; Bekker, L.-G.; Wood, R.; Harrison, T.S. Adjunctive Interferon-γ Immunotherapy for the Treatment of HIV-Associated Cryptococcal Meningitis. AIDS 2012, 26, 1105–1113. [Google Scholar] [CrossRef]
- Alspaugh, J.A. Virulence Mechanisms and Cryptococcus Neoformans Pathogenesis. Fungal Genet. Biol. 2015, 78, 55–58. [Google Scholar] [CrossRef]
- Almeida, F.; Wolf, J.M.; Casadevall, A. Virulence-Associated Enzymes of Cryptococcus Neoformans. Eukaryot. Cell 2015, 14, 1173–1185. [Google Scholar] [CrossRef]
- Geddes, J.M.H.; Caza, M.; Croll, D.; Stoynov, N.; Foster, L.J.; Kronstad, J.W. Analysis of the Protein Kinase A-Regulated Proteome of Cryptococcus Neoformans Identifies a Role for the Ubiquitin-Proteasome Pathway in Capsule Formation. mBio 2016, 7, e01862-15. [Google Scholar] [CrossRef] [PubMed]
- Karkowska-Kuleta, J.; Kozik, A. Cell Wall Proteome of Pathogenic Fungi. Acta Biochim. Pol. 2015, 62, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Calegari-Alves, Y.P.; da Rosa, R.L.; Costa, R.P.; Innocente-Alves, C.; Faustino, A.M.; Yates, J.R., 3rd; Beys-da-Silva, W.O.; Santi, L. Lavandula Angustifolia Oil Induces Oxidative Stress, Stiffening of Membranes, and Cell Wall in Cryptococcus Spp. Can. J. Microbiol. 2025, 71, 1–13. [Google Scholar] [CrossRef]
- Baker, R.P.; Chrissian, C.; Stark, R.E.; Casadevall, A. Cryptococcus Neoformans Melanization Incorporates Multiple Catecholamines to Produce Polytypic Melanin. J. Biol. Chem. 2021, 298, 101519. [Google Scholar] [CrossRef]
- Camacho, E.; Vij, R.; Chrissian, C.; Prados-Rosales, R.; Gil, D.; O’Meally, R.N.; Cordero, R.J.B.; Cole, R.N.; McCaffery, J.M.; Stark, R.E.; et al. The Structural Unit of Melanin in the Cell Wall of the Fungal Pathogen Cryptococcus Neoformans. J. Biol. Chem. 2019, 294, 10471–10489. [Google Scholar] [CrossRef]
- Khajo, A.; Bryan, R.A.; Friedman, M.; Burger, R.M.; Levitsky, Y.; Casadevall, A.; Magliozzo, R.S.; Dadachova, E. Protection of Melanized Cryptococcus Neoformans from Lethal Dose Gamma Irradiation Involves Changes in Melanin’s Chemical Structure and Paramagnetism. PLoS ONE 2011, 6, e25092. [Google Scholar] [CrossRef]
- Rizzo, J.; Wong, S.S.W.; Gazi, A.D.; Moyrand, F.; Chaze, T.; Commere, P.-H.; Novault, S.; Matondo, M.; Péhau-Arnaudet, G.; Reis, F.C.G.; et al. Cryptococcus Extracellular Vesicles Properties and Their Use as Vaccine Platforms. J. Extracell. Vesicles 2021, 10, e12129. [Google Scholar] [CrossRef]
- Rodrigues, M.L.; Nakayasu, E.S.; Oliveira, D.L.; Nimrichter, L.; Nosanchuk, J.D.; Almeida, I.C.; Casadevall, A. Extracellular Vesicles Produced by Cryptococcus Neoformans Contain Protein Components Associated with Virulence. Eukaryot. Cell 2008, 7, 58–67. [Google Scholar] [CrossRef]
- Qu, X.; Bhalla, K.; Horianopoulos, L.C.; Hu, G.; Alcázar Magaña, A.; Foster, L.J.; Roque da Silva, L.B.; Kretschmer, M.; Kronstad, J.W. Phosphate Availability Conditions Caspofungin Tolerance, Capsule Attachment and Titan Cell Formation in Cryptococcus Neoformans. Front. Fungal Biol. 2024, 5, 1447588. [Google Scholar] [CrossRef] [PubMed]
- Zaragoza, O.; Nielsen, K. Titan Cells in Cryptococcus Neoformans: Cells with a Giant Impact. Curr. Opin. Microbiol. 2013, 16, 409–413. [Google Scholar] [CrossRef] [PubMed]
- García-Rodas, R.; de Oliveira, H.C.; Trevijano-Contador, N.; Zaragoza, O. Cryptococcal Titan Cells: When Yeast Cells Are All Grown Up. In Fungal Physiology and Immunopathogenesis; Springer: Cham, Switzerland, 2018; pp. 101–120. ISBN 978-3-030-30237-5. [Google Scholar]
- Chew, S.Y.; Brown, A.J.P.; Lau, B.Y.C.; Cheah, Y.K.; Ho, K.L.; Sandai, D.; Yahaya, H.; Than, L.T.L. Transcriptomic and Proteomic Profiling Revealed Reprogramming of Carbon Metabolism in Acetate-Grown Human Pathogen Candida Glabrata. J. Biomed. Sci. 2021, 28, 1. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017, 55, 182–196. [Google Scholar] [CrossRef]
- Hanash, S. Disease Proteomics. Nature 2003, 422, 226–232. [Google Scholar] [CrossRef]
- Saleh, S.; Staes, A.; Deborggraeve, S.; Gevaert, K. Targeted Proteomics for Studying Pathogenic Bacteria. Proteomics 2019, 19, 1800435. [Google Scholar] [CrossRef]
- Zhang, N.; Park, Y.-D.; Williamson, P.R. New Technology and Resources for Cryptococcal Research. Fungal Genet. Biol. 2015, 78, 99–107. [Google Scholar] [CrossRef]
- Selvan, L.D.N.; Renuse, S.; Kaviyil, J.E.; Sharma, J.; Pinto, S.M.; Yelamanchi, S.D.; Puttamallesh, V.N.; Ravikumar, R.; Pandey, A.; Prasad, T.S.K.; et al. Phosphoproteome of Cryptococcus Neoformans. J. Proteom. 2014, 97, 287–295. [Google Scholar] [CrossRef]
- Muselius, B.; Durand, S.-L.; Geddes-McAlister, J. Proteomics of Cryptococcus Neoformans: From the Lab to the Clinic. Int. J. Mol. Sci. 2021, 22, 12390. [Google Scholar] [CrossRef]
- Wu, C.C.; MacCoss, M.J. Shotgun Proteomics: Tools for the Analysis of Complex Biological Systems. Curr. Opin. Mol. Ther. 2002, 4, 242–250. [Google Scholar]
- Santi, L.; Beys-Da-Silva, W.O.; Berger, M.; Calzolari, D.; Guimarães, J.A.; Moresco, J.J.; Yates, J.R. Proteomic Profile of Cryptococcus Neoformans Biofilm Reveals Changes in Metabolic Processes. J. Proteome Res. 2014, 13, 1545–1559. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Sui, M.; Li, M.; Wang, J.; Meng, Y.; Sun, T.; Liang, Q.; Suo, C.; Gao, X.; et al. Fungal Acetylome Comparative Analysis Identifies an Essential Role of Acetylation in Human Fungal Pathogen Virulence. Commun. Biol. 2019, 2, 154. [Google Scholar] [CrossRef]
- Ball, B.; Sukumaran, A.; Krieger, J.R.; Geddes-McAlister, J. Comparative Cross-Kingdom DDA- and DIA-PASEF Proteomic Profiling Reveals Novel Determinants of Fungal Virulence and a Putative Druggable Target. J. Proteome Res. 2024, 23, 3917–3932. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, M.C.; Nakayasu, E.S.; Matsuo, A.L.; Sobreira, T.J.P.; Longo, L.V.G.; Ganiko, L.; Almeida, I.C.; Puccia, R. Vesicle and Vesicle-Free Extracellular Proteome of Paracoccidioides Brasiliensis: Comparative Analysis with Other Pathogenic Fungi. J. Proteome Res. 2012, 11, 1676–1685. [Google Scholar] [CrossRef] [PubMed]
- Altincicek, B.; Linder, M.; Linder, D.; Preissner, K.T.; Vilcinskas, A. Microbial Metalloproteinases Mediate Sensing of Invading Pathogens and Activate Innate Immune Responses in the Lepidopteran Model Host Galleria Mellonella. Infect. Immun. 2007, 75, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Chiou, C.-C.; Ahmad, S.; Islam, Z.U.; Tanaka, T.; Alouffi, A.; Chen, C.-C.; Almutairi, M.M.; Ali, A. Subtractive Proteomics and Reverse-Vaccinology Approaches for Novel Drug Target Identification and Chimeric Vaccine Development against Bartonella Henselae Strain Houston-1. Bioengineering 2024, 11, 505. [Google Scholar] [CrossRef]
- Zhu, F.; Zhou, Z.; Ma, S.; Xu, Y.; Tan, C.; Yang, H.; Zhang, P.; Qin, R.; Luo, Y.; Pan, P.; et al. Design of a Cryptococcus Neoformans Vaccine by Subtractive Proteomics Combined with Immunoinformatics. Int. Immunopharmacol. 2024, 135, 112242. [Google Scholar] [CrossRef]
- Ball, B.; Sukumaran, A.; Geddes-McAlister, J. Label-Free Quantitative Proteomics Workflow for Discovery-Driven Host-Pathogen Interactions. J. Vis. Exp. JoVE 2020, 164, e61881. [Google Scholar] [CrossRef]
- Gouw, J.W.; Krijgsveld, J.; Heck, A.J.R. Quantitative Proteomics by Metabolic Labeling of Model Organisms. Mol. Cell. Proteomics MCP 2010, 9, 11–24. [Google Scholar] [CrossRef]
- Ball, B.; Krieger, J.R.; Geddes-McAlister, J. Phosphoproteomic Sample Preparation for Global Phosphorylation Profiling of a Fungal Pathogen. Methods Mol. Biol. Clifton NJ 2022, 2456, 141–151. [Google Scholar] [CrossRef]
- Pandey, A.; Ding, S.L.; Qin, Q.-M.; Gupta, R.; Gomez, G.; Lin, F.; Feng, X.; Fachini da Costa, L.; Chaki, S.P.; Katepalli, M.; et al. Global Reprogramming of Host Kinase Signaling in Response to Fungal Infection. Cell Host Microbe 2017, 21, 637–649.e6. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Chen, B.; Li, M.; Zhou, Y.; Ren, S.; Xu, Q.; Chen, M.; Wang, S. FPD: A Comprehensive Phosphorylation Database in Fungi. Fungal Biol. 2017, 121, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cao, Y.; Niu, K.; Qiu, J.; Wang, H.; You, Y.; Li, D.; Luo, Y.; Zhu, Z.; Zhang, Y.; et al. Quantitative Acetylomics Reveals Dynamics of Protein Lysine Acetylation in Mouse Livers During Aging and Upon the Treatment of Nicotinamide Mononucleotide. Mol. Cell. Proteom. 2022, 21, 100276. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.; Butter, F. Proteotranscriptomics—A Facilitator in Omics Research. Comput. Struct. Biotechnol. J. 2022, 20, 3667–3675. [Google Scholar] [CrossRef]
- Culibrk, L.; Croft, C.A.; Tebbutt, S.J. Systems Biology Approaches for Host-Fungal Interactions: An Expanding Multi-Omics Frontier. Omics J. Integr. Biol. 2016, 20, 127–138. [Google Scholar] [CrossRef]
- Erpf, P.E.; Chua, S.M.H.; Phung, T.K.; Kerr, E.D.; Rothnagel, J.A.; Schulz, B.L.; Fraser, J.A. Identification and Characterisation of sPEPs in Cryptococcus Neoformans. Fungal Genet. Biol. 2022, 160, 103688. [Google Scholar] [CrossRef]
- Nesvizhskii, A.I. Proteogenomics: Concepts, Applications and Computational Strategies. Nat. Methods 2014, 11, 1114–1125. [Google Scholar] [CrossRef]
- Muselius, B.; Bodein, A.; Roux-Dalvai, F.; Droit, A.; Geddes-McAlister, J. Proteomic Profiling of Samples Derived from a Murine Model Following Cryptococcus Neoformans Infection. Methods Mol. Biol. Clifton NJ 2024, 2775, 127–137. [Google Scholar] [CrossRef]
- Basenko, E.Y.; Pulman, J.A.; Shanmugasundram, A.; Harb, O.S.; Crouch, K.; Starns, D.; Warrenfeltz, S.; Aurrecoechea, C.; Stoeckert, C.J.; Kissinger, J.C.; et al. FungiDB: An Integrated Bioinformatic Resource for Fungi and Oomycetes. J. Fungi 2018, 4, 39. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bandla, C.; Kundu, D.J.; Kamatchinathan, S.; Bai, J.; Hewapathirana, S.; John, N.S.; Prakash, A.; Walzer, M.; Wang, S.; et al. The PRIDE Database at 20 Years: 2025 Update. Nucleic Acids Res. 2025, 53, D543–D553. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, L.A.; Fraser, J.A.; Dietrich, F.S. Recent Evolution of the Human Pathogen Cryptococcus Neoformans by Intervarietal Transfer of a 14-Gene Fragment. Mol. Biol. Evol. 2006, 23, 1879–1890. [Google Scholar] [CrossRef] [PubMed]
- Demichev, V.; Messner, C.B.; Vernardis, S.I.; Lilley, K.S.; Ralser, M. DIA-NN: Neural Networks and Interference Correction Enable Deep Proteome Coverage in High Throughput. Nat. Methods 2020, 17, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Vita, R.; Blazeska, N.; Marrama, D.; Duesing, S.; Bennett, J.; Greenbaum, J.; De Almeida Mendes, M.; Mahita, J.; Wheeler, D.K.; Cantrell, J.R.; et al. The Immune Epitope Database (IEDB): 2024 Update. Nucleic Acids Res. 2024, 53, D436–D443. [Google Scholar] [CrossRef]
- Parreira, V.d.S.C.; Santos, L.G.C.; Rodrigues, M.L.; Passetti, F. ExVe: The Knowledge Base of Orthologous Proteins Identified in Fungal Extracellular Vesicles. Comput. Struct. Biotechnol. J. 2021, 19, 2286–2296. [Google Scholar] [CrossRef]
- Jung, K.-W.; Yang, D.-H.; Maeng, S.; Lee, K.-T.; So, Y.-S.; Hong, J.; Choi, J.; Byun, H.-J.; Kim, H.; Bang, S.; et al. Systematic Functional Profiling of Transcription Factor Networks in Cryptococcus Neoformans. Nat. Commun. 2015, 6, 6757. [Google Scholar] [CrossRef]
- Kim, H.; Jung, K.; Maeng, S.; Chen, Y.; Shin, J.; Shim, J.; Hwang, S.; Janbon, G.; Kim, T.; Heitman, J.; et al. Network-Assisted Genetic Dissection of Pathogenicity and Drug Resistance in the Opportunistic Human Pathogenic Fungus Cryptococcus Neoformans. Sci. Rep. 2015, 5, 8767. [Google Scholar] [CrossRef]
- Bernhard, M.; Worasilchai, N.; Kangogo, M.; Bii, C.; Trzaska, W.J.; Weig, M.; Groß, U.; Chindamporn, A.; Bader, O. CryptoType—Public Datasets for MALDI-TOF-MS Based Differentiation of Cryptococcus Neoformans/Gattii Complexes. Front. Cell. Infect. Microbiol. 2021, 11, 634382. [Google Scholar] [CrossRef]
- O’Meara, T.R.; Alspaugh, J.A. The Cryptococcus Neoformans Capsule: A Sword and a Shield. Clin. Microbiol. Rev. 2012, 25, 387–408. [Google Scholar] [CrossRef]
- García-Rodas, R.; Zaragoza, O. Catch Me If You Can: Phagocytosis and Killing Avoidance by Cryptococcus Neoformans. FEMS Immunol. Med. Microbiol. 2012, 64, 147–161. [Google Scholar] [CrossRef]
- Vecchiarelli, A.; Pericolini, E.; Gabrielli, E.; Kenno, S.; Perito, S.; Cenci, E.; Monari, C. Elucidating the Immunological Function of the Cryptococcus Neoformans Capsule. Future Microbiol. 2013, 8, 1107–1116. [Google Scholar] [CrossRef]
- Casadevall, A.; Coelho, C.; Cordero, R.J.B.; Dragotakes, Q.; Jung, E.; Vij, R.; Wear, M.P. The Capsule of Cryptococcus Neoformans. Virulence 2018, 10, 822–831. [Google Scholar] [CrossRef] [PubMed]
- Levitz, S.M.; Specht, C.A. The Molecular Basis for the Immunogenicity of Cryptococcus Neoformans Mannoproteins. FEMS Yeast Res. 2006, 6, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Geddes, J.M.H.; Croll, D.; Caza, M.; Stoynov, N.; Foster, L.J.; Kronstad, J.W. Secretome Profiling of Cryptococcus Neoformans Reveals Regulation of a Subset of Virulence-Associated Proteins and Potential Biomarkers by Protein Kinase A. BMC Microbiol. 2015, 15, 206. [Google Scholar] [CrossRef]
- Huffnagle, G.B.; Chen, G.H.; Curtis, J.L.; McDonald, R.A.; Strieter, R.M.; Toews, G.B. Down-Regulation of the Afferent Phase of T Cell-Mediated Pulmonary Inflammation and Immunity by a High Melanin-Producing Strain of Cryptococcus Neoformans. J. Immunol. 1995, 155, 3507–3516. [Google Scholar] [CrossRef]
- Rodrigues, M.L.; Nakayasu, E.S.; Almeida, I.C.; Nimrichter, L. The Impact of Proteomics on the Understanding of Functions and Biogenesis of Fungal Extracellular Vesicles. J. Proteom. 2014, 97, 177–186. [Google Scholar] [CrossRef]
- Lev, S.; Crossett, B.; Cha, S.Y.; Desmarini, D.; Li, C.; Chayakulkeeree, M.; Wilson, C.F.; Williamson, P.R.; Sorrell, T.C.; Djordjevic, J.T. Identification of Aph1, a Phosphate-Regulated, Secreted, and Vacuolar Acid Phosphatase in Cryptococcus Neoformans. mBio 2014, 5, e01649-14. [Google Scholar] [CrossRef]
- Clarke, S.C.; Dumesic, P.A.; Homer, C.M.; O’Donoghue, A.J.; La Greca, F.; Pallova, L.; Majer, P.; Madhani, H.D.; Craik, C.S. Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus Neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence. PLoS Pathog. 2016, 12, e1006051. [Google Scholar] [CrossRef]
- Santiago-Tirado, F.H.; Hurtaux, T.; Geddes-McAlister, J.; Nguyen, D.; Helms, V.; Doering, T.L.; Römisch, K. The ER Protein Translocation Channel Subunit Sbh1 Controls Virulence of Cryptococcus Neoformans. mBio 2023, 14, e0338422. [Google Scholar] [CrossRef]
- Park, H.-S.; Chow, E.W.L.; Fu, C.; Soderblom, E.J.; Moseley, M.A.; Heitman, J.; Cardenas, M.E. Calcineurin Targets Involved in Stress Survival and Fungal Virulence. PLoS Pathog. 2016, 12, e1005873. [Google Scholar] [CrossRef] [PubMed]
- Odom, A.; Muir, S.; Lim, E.; Toffaletti, D.L.; Perfect, J.; Heitman, J. Calcineurin Is Required for Virulence of Cryptococcus Neoformans. EMBO J. 1997, 16, 2576–2589. [Google Scholar] [CrossRef] [PubMed]
- Kozubowski, L.; Thompson, J.W.; Cardenas, M.E.; Moseley, M.A.; Heitman, J. Association of Calcineurin with the COPI Protein Sec28 and the COPII Protein Sec13 Revealed by Quantitative Proteomics. PLoS ONE 2011, 6, e25280. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Tatu, U. Heat Shock Protein 90 Localizes to the Surface and Augments Virulence Factors of Cryptococcus Neoformans. PLoS Negl. Trop. Dis. 2017, 11, e0005836. [Google Scholar] [CrossRef]
- Fu, C.; Beattie, S.R.; Jezewski, A.J.; Robbins, N.; Whitesell, L.; Krysan, D.J.; Cowen, L.E. Genetic Analysis of Hsp90 Function in Cryptococcus Neoformans Highlights Key Roles in Stress Tolerance and Virulence. Genetics 2022, 220, iyab164. [Google Scholar] [CrossRef]
- Ball, B.; Woroszchuk, E.; Sukumaran, A.; West, H.; Afaq, A.; Carruthers-Lay, D.; Muselius, B.; Gee, L.; Langille, M.; Pladwig, S.; et al. Proteome and Secretome Profiling of Zinc Availability in Cryptococcus Neoformans Identifies Wos2 as a Subtle Influencer of Fungal Virulence Determinants. BMC Microbiol. 2021, 21, 341. [Google Scholar] [CrossRef]
- Ball, B.; Sukumaran, A.; Pladwig, S.; Kazi, S.; Chan, N.; Honeywell, E.; Modrakova, M.; Geddes-McAlister, J. Proteome Signatures Reveal Homeostatic and Adaptive Oxidative Responses by a Putative Co-Chaperone, Wos2, to Influence Fungal Virulence Determinants in Cryptococcosis. Microbiol. Spectr. 2024, 12, e00152-24. [Google Scholar] [CrossRef]
- Vargas-Muñiz, J.M.; Renshaw, H.; Richards, A.D.; Lamoth, F.; Soderblom, E.J.; Moseley, M.A.; Juvvadi, P.R.; Steinbach, W.J. The Aspergillus Fumigatus Septins Play Pleiotropic Roles in Septation, Conidiation, and Cell Wall Stress, but Are Dispensable for Virulence. Fungal Genet. Biol. 2015, 81, 41–51. [Google Scholar] [CrossRef]
- Kozubowski, L.; Heitman, J. Septins Enforce Morphogenetic Events during Sexual Reproduction and Contribute to Virulence of Cryptococcus Neoformans. Mol. Microbiol. 2010, 75, 658–675. [Google Scholar] [CrossRef]
- Barrera, S.M.; Hatchell, E.; Byrum, S.D.; Mackintosh, S.G.; Kozubowski, L. Quantitative Analysis of Septin Cdc10 & Cdc3-Associated Proteome during Stress Response in the Fungal Pathogen Cryptococcus Neoformans. PLoS ONE 2024, 19, e0313444. [Google Scholar] [CrossRef]
- Gross, N.T.; Nessa, K.; Camner, P.; Jarstrand, C. Production of Nitric Oxide by Rat Alveolar Macrophages Stimulated by Cryptococcus Neoformans or Aspergillus Fumigatus. Med. Mycol. 1999, 37, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Missall, T.A.; Pusateri, M.E.; Lodge, J.K. Thiol Peroxidase Is Critical for Virulence and Resistance to Nitric Oxide and Peroxide in the Fungal Pathogen, Cryptococcus Neoformans. Mol. Microbiol. 2004, 51, 1447–1458. [Google Scholar] [CrossRef] [PubMed]
- Missall, T.A.; Pusateri, M.E.; Donlin, M.J.; Chambers, K.T.; Corbett, J.A.; Lodge, J.K. Posttranslational, Translational, and Transcriptional Responses to Nitric Oxide Stress in Cryptococcus Neoformans: Implications for Virulence. Eukaryot. Cell 2006, 5, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Skowyra, D.; Craig, K.L.; Tyers, M.; Elledge, S.J.; Harper, J.W. F-Box Proteins Are Receptors That Recruit Phosphorylated Substrates to the SCF Ubiquitin-Ligase Complex. Cell 1997, 91, 209–219. [Google Scholar] [CrossRef]
- Liu, T.-B.; Wang, Y.; Stukes, S.; Chen, Q.; Casadevall, A.; Xue, C. The F-Box Protein Fbp1 Regulates Sexual Reproduction and Virulence in Cryptococcus Neoformans. Eukaryot. Cell 2011, 10, 791–802. [Google Scholar] [CrossRef]
- Liu, T.-B.; Xue, C. Fbp1-Mediated Ubiquitin-Proteasome Pathway Controls Cryptococcus Neoformans Virulence by Regulating Fungal Intracellular Growth in Macrophages. Infect. Immun. 2014, 82, 557–568. [Google Scholar] [CrossRef]
- Han, L.-T.; Wu, Y.-J.; Liu, T.-B. The F-Box Protein Fbp1 Regulates Virulence of Cryptococcus Neoformans Through the Putative Zinc-Binding Protein Zbp1. Front. Cell. Infect. Microbiol. 2021, 11, 794661. [Google Scholar] [CrossRef]
- Lee, J.R.E.; Oestreich, A.J.; Payne, J.A.; Gunawan, M.S.; Norgan, A.P.; Katzmann, D.J. The HECT Domain of the Ubiquitin Ligase Rsp5 Contributes to Substrate Recognition*. J. Biol. Chem. 2009, 284, 32126–32137. [Google Scholar] [CrossRef]
- Telzrow, C.L.; Nichols, C.B.; Castro-Lopez, N.; Wormley, F.L.; Alspaugh, J.A. A Fungal Arrestin Protein Contributes to Cell Cycle Progression and Pathogenesis. mBio 2019, 10, e02682-19. [Google Scholar] [CrossRef]
- du Plooy, L.M.; Telzrow, C.L.; Nichols, C.B.; Probst, C.; Castro-Lopez, N.; Wormley, F.L.J.; Alspaugh, J.A. A Fungal Ubiquitin Ligase and Arrestin Binding Partner Contribute to Pathogenesis and Survival during Cellular Stress. mBio 2024, 15, e0098124. [Google Scholar] [CrossRef]
- Huang, M.; Hebert, A.S.; Coon, J.J.; Hull, C.M. Protein Composition of Infectious Spores Reveals Novel Sexual Development and Germination Factors in Cryptococcus. PLoS Genet. 2015, 11, e1005490. [Google Scholar] [CrossRef]
- Huang, M.; Hull, C.M. Sporulation: How to Survive on Planet Earth (and Beyond). Curr. Genet. 2017, 63, 831–838. [Google Scholar] [CrossRef]
- Wyatt, T.T.; Wösten, H.A.B.; Dijksterhuis, J. Chapter Two—Fungal Spores for Dispersion in Space and Time. In Advances in Applied Microbiology; Sariaslani, S., Gadd, G.M., Eds.; Academic Press: Cham, Switzerland, 2013; Volume 85, pp. 43–91. [Google Scholar]
- Martinez, L.R.; Casadevall, A. Cryptococcus Neoformans Biofilm Formation Depends on Surface Support and Carbon Source and Reduces Fungal Cell Susceptibility to Heat, Cold, and UV Light. Appl. Environ. Microbiol. 2007, 73, 4592–4601. [Google Scholar] [CrossRef]
- Banerjee, U.; Gupta, K.; Venugopal, P. A Case of Prosthetic Valve Endocarditis Caused by Cryptococcus Neoformans Var. Neoformans. J. Med. Vet. Mycol. Bi-Mon. Publ. Int. Soc. Hum. Anim. Mycol. 1997, 35, 139–141. [Google Scholar]
- Braun, D.K.; Janssen, D.A.; Marcus, J.R.; Kauffman, C.A. Cryptococcal Infection of a Prosthetic Dialysis Fistula. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 1994, 24, 864–867. [Google Scholar] [CrossRef] [PubMed]
- Martinez, L.R.; Casadevall, A. Specific Antibody Can Prevent Fungal Biofilm Formation and This Effect Correlates with Protective Efficacy. Infect. Immun. 2005, 73, 6350–6362. [Google Scholar] [CrossRef] [PubMed]
- Martinez, L.R.; Casadevall, A. Susceptibility of Cryptococcus Neoformans Biofilms to Antifungal Agents In Vitro. Antimicrob. Agents Chemother. 2006, 50, 1021–1033. [Google Scholar] [CrossRef] [PubMed]
- Santi, L.; Berger, M.; Guimarães, J.A.; Calegari-Alves, Y.P.; Vainstein, M.H.; Yates, J.R., 3rd; Beys-da-Silva, W.O. Proteomic Profile of Cryptococcus Gattii Biofilm: Metabolic Shift and the Potential Activation of Electron Chain Transport. J. Proteom. 2024, 290, 105022. [Google Scholar] [CrossRef]
- Ngamskulrungroj, P.; Chang, Y.; Sionov, E.; Kwon-Chung, K.J. The Primary Target Organ of Cryptococcus Gattii Is Different from That of Cryptococcus Neoformans in a Murine Model. mBio 2012, 3, e00103-12. [Google Scholar] [CrossRef]
- Imai, S.; Armstrong, C.M.; Kaeberlein, M.; Guarente, L. Transcriptional Silencing and Longevity Protein Sir2 Is an NAD-Dependent Histone Deacetylase. Nature 2000, 403, 795–800. [Google Scholar] [CrossRef]
- Arras, S.D.M.; Chitty, J.L.; Wizrah, M.S.I.; Erpf, P.E.; Schulz, B.L.; Tanurdzic, M.; Fraser, J.A. Sirtuins in the Phylum Basidiomycota: A Role in Virulence in Cryptococcus Neoformans. Sci. Rep. 2017, 7, 46567. [Google Scholar] [CrossRef]
- Choi, J.-T.; Choi, Y.; Lee, Y.; Lee, S.-H.; Kang, S.; Lee, K.-T.; Bahn, Y.-S. The Hybrid RAVE Complex Plays V-ATPase-Dependent and -Independent Pathobiological Roles in Cryptococcus Neoformans. PLoS Pathog. 2023, 19, e1011721. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Yu, S.-R.; Lee, Y.; Na, A.-Y.; Lee, S.; Heitman, J.; Seo, R.; Lee, H.-S.; Lee, J.-S.; Bahn, Y.-S. Casein Kinase 2 Complex: A Central Regulator of Multiple Pathobiological Signaling Pathways in Cryptococcus Neoformans. mBio 2024, 15, e0327523. [Google Scholar] [CrossRef] [PubMed]
- de Melo, A.T.; Martho, K.F.; Roberto, T.N.; Nishiduka, E.S.; Machado, J.J.; Brustolini, O.J.B.; Tashima, A.K.; Vasconcelos, A.T.; Vallim, M.A.; Pascon, R.C. The Regulation of the Sulfur Amino Acid Biosynthetic Pathway in Cryptococcus Neoformans: The Relationship of Cys3, Calcineurin, and Gpp2 Phosphatases. Sci. Rep. 2019, 9, 11923. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pawar, S.; Dutta, O.; Wang, K.; Rivera, A.; Xue, C. Macrophage Mediated Immunomodulation During Cryptococcus Pulmonary Infection. Front. Cell. Infect. Microbiol. 2022, 12, 859049. [Google Scholar] [CrossRef]
- Selvan, L.D.N.; Sreenivasamurthy, S.K.; Kumar, S.; Yelamanchi, S.D.; Madugundu, A.K.; Anil, A.K.; Renuse, S.; Nair, B.G.; Gowda, H.; Mathur, P.P.; et al. Characterization of Host Response to Cryptococcus Neoformans through Quantitative Proteomic Analysis of Cryptococcal Meningitis Co-Infected with HIV. Mol. Biosyst. 2015, 11, 2529–2540. [Google Scholar] [CrossRef]
- Pacifici, N.; Cruz-Acuña, M.; Diener, A.; Tu, A.; Senthil, N.; Han, H.; Lewis, J.S. Vomocytosis of Cryptococcus Neoformans Cells from Murine, Bone Marrow-Derived Dendritic Cells. PLoS ONE 2023, 18, e0280692. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J.; Zou, L. Innate Immune Evasion Strategies against Cryptococcal Meningitis Caused by Cryptococcus Neoformans (Review). Exp. Ther. Med. 2017, 14, 5243–5250. [Google Scholar] [CrossRef]
- Davis, M.J.; Eastman, A.J.; Qiu, Y.; Gregorka, B.; Kozel, T.R.; Osterholzer, J.J.; Curtis, J.L.; Swanson, J.A.; Olszewski, M.A. Cryptococcus Neoformans-Induced Macrophage Lysosome Damage Crucially Contributes to Fungal Virulence. J. Immunol. 2015, 194, 2219–2231. [Google Scholar] [CrossRef]
- Sukumaran, A.; Ball, B.; Krieger, J.R.; Geddes-McAlister, J. Cross-Kingdom Infection of Macrophages Reveals Pathogen- and Immune-Specific Global Reprogramming and Adaptation. mBio 2022, 13, e0168722. [Google Scholar] [CrossRef]
- Qin, Q.-M.; Luo, J.; Lin, X.; Pei, J.; Li, L.; Ficht, T.A.; de Figueiredo, P. Functional Analysis of Host Factors That Mediate the Intracellular Lifestyle of Cryptococcus Neoformans. PLoS Pathog. 2011, 7, e1002078. [Google Scholar] [CrossRef] [PubMed]
- Coelho, C.; Bocca, A.L.; Casadevall, A. The Intracellular Life of Cryptococcus Neoformans. Annu. Rev. Pathol. Mech. Dis. 2014, 9, 219–238. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.-K.; Corey, S.; Alvarez, X.; Williams, K. Monocyte/Macrophage Traffic in HIV and SIV Encephalitis. J. Leukoc. Biol. 2003, 74, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Schorey, J.S.; Cheng, Y.; Singh, P.P.; Smith, V.L. Exosomes and Other Extracellular Vesicles in Host–Pathogen Interactions. EMBO Rep. 2015, 16, 24–43. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, K.; Li, H.; Coelho, C.; de Souza Gonçalves, D.; Fu, M.S.; Li, X.; Nakayasu, E.S.; Kim, Y.-M.; Liao, W.; et al. Cryptococcus Neoformans-Infected Macrophages Release Proinflammatory Extracellular Vesicles: Insight into Their Components by Multi-Omics. mBio 2021, 12, e00279-21. [Google Scholar] [CrossRef]
- Nixon, G.L.; McEntee, L.; Johnson, A.; Farrington, N.; Whalley, S.; Livermore, J.; Natal, C.; Washbourn, G.; Bibby, J.; Berry, N.; et al. Repurposing and Reformulation of the Antiparasitic Agent Flubendazole for Treatment of Cryptococcal Meningoencephalitis, a Neglected Fungal Disease. Antimicrob. Agents Chemother. 2018, 62, e01909-17. [Google Scholar] [CrossRef]
- Joffe, L.S.; Schneider, R.; Lopes, W.; Azevedo, R.; Staats, C.C.; Kmetzsch, L.; Schrank, A.; Del Poeta, M.; Vainstein, M.H.; Rodrigues, M.L. The Anti-Helminthic Compound Mebendazole Has Multiple Antifungal Effects against Cryptococcus Neoformans. Front. Microbiol. 2017, 8, 535. [Google Scholar] [CrossRef]
- de Oliveira, H.C.; Joffe, L.S.; Simon, K.S.; Castelli, R.F.; Reis, F.C.G.; Bryan, A.M.; Borges, B.S.; Medeiros, L.C.S.; Bocca, A.L.; Del Poeta, M.; et al. Fenbendazole Controls In Vitro Growth, Virulence Potential, and Animal Infection in the Cryptococcus Model. Antimicrob. Agents Chemother. 2020, 64, e00286-20. [Google Scholar] [CrossRef]
- de Oliveira, H.C.; Santos, M.D.M.; Camillo-Andrade, A.C.; Castelli, R.F.; Dos Reis, F.C.G.; Carvalho, P.C.; Rodrigues, M.L. Proteomics Reveals That the Antifungal Activity of Fenbendazole against Cryptococcus Neoformans Requires Protein Kinases. Int. J. Antimicrob. Agents 2024, 63, 107157. [Google Scholar] [CrossRef]
- Gutierrez-Gongora, D.; Raouf-Alkadhimi, F.; Prosser, R.S.; Geddes-McAlister, J. Differentiated Extracts from Freshwater and Terrestrial Mollusks Inhibit Virulence Factor Production in Cryptococcus Neoformans. Sci. Rep. 2023, 13, 4928. [Google Scholar] [CrossRef]
- Gutierrez-Gongora, D.; Woods, M.; Prosser, R.S.; Geddes-McAlister, J. Natural Compounds from Freshwater Mussels Disrupt Fungal Virulence Determinants and Influence Fluconazole Susceptibility in the Presence of Macrophages in Cryptococcus Neoformans. Microbiol. Spectr. 2024, 12, e0284123. [Google Scholar] [CrossRef]
- Vernel-Pauillac, F.; Laurent-Winter, C.; Fiette, L.; Janbon, G.; Aimanianda, V.; Dromer, F. Cryptococcus Neoformans Infections: Aspartyl Protease Potential to Improve Outcome in Susceptible Hosts. mBio 2024, 15, e0273324. [Google Scholar] [CrossRef]
- Caballero Van Dyke, M.C.; Wormley, F.L. A Call to Arms: Quest for a Cryptococcal Vaccine. Trends Microbiol. 2018, 26, 436–446. [Google Scholar] [CrossRef]
- Chaturvedi, A.K.; Weintraub, S.T.; Lopez-Ribot, J.L.; Wormley, F.L.J. Identification and Characterization of Cryptococcus Neoformans Protein Fractions That Induce Protective Immune Responses. Proteomics 2013, 13, 3429–3441. [Google Scholar] [CrossRef]
- De Groot, A.S.; Moise, L.; Terry, F.; Gutierrez, A.H.; Hindocha, P.; Richard, G.; Hoft, D.F.; Ross, T.M.; Noe, A.R.; Takahashi, Y.; et al. Better Epitope Discovery, Precision Immune Engineering, and Accelerated Vaccine Design Using Immunoinformatics Tools. Front. Immunol. 2020, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Rhomberg, P.R.; Wiederhold, N.P.; Gibas, C.; Sanders, C.; Fan, H.; Mele, J.; Kovanda, L.L.; Castanheira, M. In Vitro Activity of Isavuconazole against Opportunistic Fungal Pathogens from Two Mycology Reference Laboratories. Antimicrob. Agents Chemother. 2018, 62, e01230-18. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Hernández, A.; Castro-Bonilla, N.; Cob-Delgado, M. Chromogenic, Biochemical and Proteomic Identification of Yeast and Yeast-like Microorganisms Isolated from Clinical Samples from Animals of Costa Rica. J. Fungi 2024, 10, 218. [Google Scholar] [CrossRef] [PubMed]
- Klein, K.R.; Hall, L.; Deml, S.M.; Rysavy, J.M.; Wohlfiel, S.L.; Wengenack, N.L. Identification of Cryptococcus Gattii by Use of L-Canavanine Glycine Bromothymol Blue Medium and DNA Sequencing. J. Clin. Microbiol. 2009, 47, 3669–3672. [Google Scholar] [CrossRef]
- Stevenson, L.G.; Drake, S.K.; Shea, Y.R.; Zelazny, A.M.; Murray, P.R. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Clinically Important Yeast Species. J. Clin. Microbiol. 2010, 48, 3482–3486. [Google Scholar] [CrossRef]
- Tarumoto, N.; Sakai, J.; Kodana, M.; Kawamura, T.; Ohno, H.; Maesaki, S. Identification of Disseminated Cryptococcosis Using MALDI-TOF MS and Clinical Evaluation. Med. Mycol. J. 2016, 57, E41–E46. [Google Scholar] [CrossRef]
- Firacative, C.; Trilles, L.; Meyer, W. MALDI-TOF MS Enables the Rapid Identification of the Major Molecular Types within the Cryptococcus Neoformans/C. Gattii Species Complex. PLoS ONE 2012, 7, e37566. [Google Scholar] [CrossRef] [PubMed]
- McTaggart, L.R.; Lei, E.; Richardson, S.E.; Hoang, L.; Fothergill, A.; Zhang, S.X. Rapid Identification of Cryptococcus Neoformans and Cryptococcus Gattii by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2011, 49, 3050–3053. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Cao, J.-R.; Xue, X.-Y.; Wu, H.; Wang, L.-F.; Guo, L.; Shen, D.-X. Clinical and Microbiological Characteristics of Cryptococcus Gattii Isolated from 7 Hospitals in China. BMC Microbiol. 2020, 20, 73. [Google Scholar] [CrossRef] [PubMed]
- Hagen, F.; Illnait-Zaragozí, M.-T.; Meis, J.F.; Chew, W.H.M.; Curfs-Breuker, I.; Mouton, J.W.; Hoepelman, A.I.M.; Spanjaard, L.; Verweij, P.E.; Kampinga, G.A.; et al. Extensive Genetic Diversity within the Dutch Clinical Cryptococcus Neoformans Population. J. Clin. Microbiol. 2012, 50, 1918–1926. [Google Scholar] [CrossRef]
- Cogliati, M. Global Molecular Epidemiology of Cryptococcus Neoformans and Cryptococcus Gattii: An Atlas of the Molecular Types. Scientifica 2013, 2013, 675213. [Google Scholar] [CrossRef]
- Pini, G.; Faggi, E.; Bravetti, E. Molecular Typing of Clinical and Environmental Cryptococcus Neoformans Strains Isolated in Italy. Open J. Med. Microbiol. 2017, 7, 77–85. [Google Scholar] [CrossRef]
- Mukaremera, L.; McDonald, T.R.; Nielsen, J.N.; Molenaar, C.J.; Akampurira, A.; Schutz, C.; Taseera, K.; Muzoora, C.; Meintjes, G.; Meya, D.B.; et al. The Mouse Inhalation Model of Cryptococcus Neoformans Infection Recapitulates Strain Virulence in Humans and Shows That Closely Related Strains Can Possess Differential Virulence. Infect. Immun. 2019, 87, e00046-19. [Google Scholar] [CrossRef]
- Jackson, K.M.; Kono, T.J.Y.; Betancourt, J.J.; Wang, Y.; Kabbale, K.D.; Ding, M.; Kezh, P.; Ha, G.; Yoder, J.M.; Fulton, S.R.; et al. Single Nucleotide Polymorphisms Are Associated with Strain-Specific Virulence Differences among Clinical Isolates of Cryptococcus Neoformans. Nat. Commun. 2024, 15, 10491. [Google Scholar] [CrossRef]
Strain | Cryptococcus Species | Serotype | Origin | Characteristics | UniProt Proteome ID/Number of Proteins |
---|---|---|---|---|---|
H99 | C. neoformans | A | Isolated in 1978 from an American patient with Hodgkin’s Lymphoma | Representative of environmentally derived C. neoformans, mating type locus α | UP000010091/7429 |
KN99α | C. neoformans | A | Laboratory-generated strain derived from H99 | Virulent in in vivo models and reproduce robustly, mating type locus α | UP000232048/7422 |
JEC21 | C. deneoformans | D | Laboratory-generated strain | Representative of C. deneoformans, mating type locus α | UP000002149/6740 |
R265 | C. gattii/C. deuterogattii | B | Isolated from 1999 Vancouver Island Outbreak | Virulent in immunocompetent individuals, mating type locus α | UP000029445/2945 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betancourt, J.J.; Nielsen, K. Insights from Mass Spectrometry-Based Proteomics on Cryptococcus neoformans. J. Fungi 2025, 11, 529. https://doi.org/10.3390/jof11070529
Betancourt JJ, Nielsen K. Insights from Mass Spectrometry-Based Proteomics on Cryptococcus neoformans. Journal of Fungi. 2025; 11(7):529. https://doi.org/10.3390/jof11070529
Chicago/Turabian StyleBetancourt, Jovany Jordan, and Kirsten Nielsen. 2025. "Insights from Mass Spectrometry-Based Proteomics on Cryptococcus neoformans" Journal of Fungi 11, no. 7: 529. https://doi.org/10.3390/jof11070529
APA StyleBetancourt, J. J., & Nielsen, K. (2025). Insights from Mass Spectrometry-Based Proteomics on Cryptococcus neoformans. Journal of Fungi, 11(7), 529. https://doi.org/10.3390/jof11070529