Exploring the Antifungal Potential of Lawsone-Loaded Mesoporous Silica Nanoparticles Against Candida albicans and Candida glabrata: Growth Inhibition and Biofilm Disruption
Abstract
1. Introduction
2. Materials and Methods
2.1. Candida spp. and Culture Conditions
2.2. Preparation of Lawsone-Loaded Mesoporous Silica Nanoparticles (LAW-MSN)
2.3. Physicochemical Characterization of MSNs
2.4. Antifungal Susceptibility Testing (AFST) of LAW and LAW-MSN
2.5. Effect of LAW and LAW-MSN on Biofilm Formation
2.6. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.7. Cell Viability Assay
2.8. Statistical Analysis
3. Results
3.1. LAW-MSNs Synthesis and Characterization
3.2. Antifungal Activity of LAW and LAW-MSNs Against Candida Isolates
3.3. Effect of LAW and LAW-MSNs on Biofilm Formation
3.4. ALS1 Gene Expression
3.5. EPA1 Gene Expression
3.6. Viability of HDF Cells Exposed to LAW
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galocha, M.; Pais, P.; Cavalheiro, M.; Pereira, D.; Viana, R.; Teixeira, M.C. Divergent Approaches to Virulence in C. albicans and C. glabrata: Two Sides of the Same Coin. Int. J. Mol. Sci. 2019, 20, 2345. [Google Scholar] [CrossRef]
- Olson, M.L.; Jayaraman, A.; Kao, K.C. Relative Abundances of Candida albicans and Candida glabrata in In Vitro Coculture Biofilms Impact Biofilm Structure and Formation. Appl. Environ. Microbiol. 2018, 84, e02769-17. [Google Scholar] [CrossRef]
- Soriano, A.; Honore, P.M.; Puerta-Alcalde, P.; Garcia-Vidal, C.; Pagotto, A.; Gonçalves-Bradley, D.C.; Verweij, P.E. Invasive Candidiasis: Current Clinical Challenges and Unmet Needs in Adult Populations. J. Antimicrob. Chemother. 2023, 78, 1569–1585. [Google Scholar] [CrossRef]
- Sadeghi, A.; Houri, H.; Lotfali, E.; Ghadirzadeh, E.; Rajabnia, M. Biliary Co-Infection by Multidrug-Resistant Candida Glabrata and Candida Albicans in a Case of Pancreatic Cancer with Cholangitis: A Case Report and Review of Literature. Med. Mycol. Case Rep. 2024, 43, 100625. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Henriques, M.; Hayes, A.; Oliveira, R.; Azeredo, J.; Williams, D.W. Candida glabrata and Candida albicans Co-Infection of an in Vitro Oral Epithelium. J. Oral. Pathol. Med. 2011, 40, 421–427. [Google Scholar] [CrossRef]
- Maraki, S.; Mavromanolaki, V.E.; Stafylaki, D.; Nioti, E.; Hamilos, G.; Kasimati, A. Epidemiology and Antifungal Susceptibility Patterns of Candida Isolates from Greek Women with Vulvovaginal Candidiasis. Mycoses 2019, 62, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Costa-de-Oliveira, S.; Rodrigues, A.G. Candida albicans Antifungal Resistance and Tolerance in Bloodstream Infections: The Triad Yeast-Host-Antifungal. Microorganisms 2020, 8, 154. [Google Scholar] [CrossRef] [PubMed]
- El-Ganiny, A.M.; Yossef, N.; Kamel, H. Prevalence and Antifungal Drug Resistance of Nosocomial Candida Species Isolated from Two University Hospitals in Egypt. Curr. Med. Mycol. 2021, 7, 31–37. [Google Scholar] [CrossRef]
- World Health Organization (Ed.) WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization: Geneva, Switzerland, 2022; ISBN 9789240060241. [Google Scholar]
- D’Enfert, C.; Janbon, G. Biofilm Formation in Candida glabrata: What Have We Learnt from Functional Genomics Approaches? FEMS Yeast Res. 2016, 16, fov111. [Google Scholar] [CrossRef]
- Finkel, J.; Mitchell, A. Genetic Control of Candida albicans Biofilm Development. Nat. Rev. Microbiol. 2011, 9, 109–118. [Google Scholar] [CrossRef]
- Nikoomanesh, F.; Roudbarmohammadi, S.; Roudbary, M.; Bayat, M.; Heidari, G. Investigation of Bcr1 Gene Expression in Candida albicans Isolates by RT-PCR Technique and Its Impact on Biofilm Formation. Infect. Epidemiol. Med. 2016, 2, 22–24. [Google Scholar] [CrossRef]
- Nikoomanesh, F.; Roudbary, M.; Saeif, F. New Aspect of Candida Spp. In fections. In The Book of Fungal Pathogens; dos Santos, A.L.S., Barnquinha, M.H., Roudbary, M., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2022; pp. 21–23. [Google Scholar]
- Tsai, P.W.; Chen, U.T.; Hsu, P.C.; Lan, C.Y. Study of Candida albicans and Its Interactions with the Host: A Mini Review. Biomedicine 2013, 3, 51–64. [Google Scholar] [CrossRef]
- Khajeh, E.; Hosseini Shokouh, S.J.; Rajabibazl, M.; Roudbary, M.; Rafiei, S.; Aslani, P.; Farahnejad, Z. Antifungal Effect of Echinophora Platyloba on Expression of CDR1 and CDR2 Genes in Fluconazole-Resistant Candida albicans. Br. J. Biomed. Sci. 2016, 37, 44–48. [Google Scholar] [CrossRef]
- Nikoomanesh, F.; Falahatinejad, M.; Černáková, L.; Dos Santos, A.L.S.; Roudbar Mohammadi, S.H.; Rafiee, M.; Rodrigues, C.F.; Roudbary, M. Combination of Farnesol with Common Antifungal Drugs: Inhibitory Effect against Candida Species Isolated from Women with RVVC. Med. B Aires 2023, 59, 743. [Google Scholar] [CrossRef] [PubMed]
- Zare-Bidaki, M.; Ghasemi, F.; Allahyari, E.; Ashrafipour, M.; Mohammadparast Tabas, P.; Nikoomanesh, F. Investigated Inhibitory Effect of Aqueous Extract of Pistachio Leaf (Pistacia Atlantica) on Isolates of Pathogenic Escherichia coli and Candida albicans from Urinary and Vaginal Samples. J. Birjand Univ. Med. Sci. 2022, 29, 275–284. [Google Scholar]
- Roudbary, M.; Alimohammadi, A.; Tavallaei, M.R.; Zarimeidani, Z.; Nikoomanesh, F. Antifungal Activity of Thymus Kotschyanus Extract: An in Vitro Study on the Expression of CDR1, CDR2 Genes in Clinical Isolates of Candida albicans. J. Herb. Med. 2023, 38, 100644. [Google Scholar] [CrossRef]
- Nouri, N.; Mohammadi, S.R.; Beardsley, J.; Aslani, P.; Ghaffarifar, F.; Roudbary, M.; Rodrigues, C.F. Thymoquinone Antifungal Activity against Candida glabrata Oral Isolates from Patients in Intensive Care Units-An In Vitro Study. Metabolites 2023, 13, 580. [Google Scholar] [CrossRef]
- Semwal, R.B.; Semwal, K.D.; Combrinck, S.; Cartwright-Jones, C.; Viljoen, A. Lawsonia inermis L. (Henna): Ethnobotanical, Phytochemical and Pharmacological Aspects. J. Ethnopharmacol. 2014, 155, 80–103. [Google Scholar] [CrossRef]
- Rasouliyan, F.; Eskandani, M.; Jaymand, M.; Nakhjavani, S.A.; Farahzadi, R.; Vandghanooni, S.; Eskandani, M. Preparation, Physicochemical Characterization, and Anti-Proliferative Properties of Lawsone-Loaded Solid Lipid Nanoparticles. Chem. Phys. Lipids 2021, 239, 105123. [Google Scholar] [CrossRef]
- Yaralizadeh, M.; Abedi, P.; Namjoyan, F.; Fatahinia, M.; Chegini, S.N.A. Comparison of the Effects of Lawsonia Inermis (Iranian Henna), Clotrimazole on Candida albicans in Rats. J. Mycol. Med. 2018, 28, 419–423. [Google Scholar] [CrossRef]
- Rahmoun, N.M.; Boucherit-Otmani, Z.; Boucherit, K.; Benabdallah, M.; Villemin, D.; Choukchou-Braham, N. Antibacterial and Antifungal Activity of Lawsone and Novel Naphthoquinone Derivatives. Med. Mal. Infect. 2012, 42, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Yiğit, D. Antifungal Activity of Lawsonia Inermis L. (Henna) Against Clinical Candida Isolates. Erzincan Univ. J. Sci. Technol. 2017, 10, 196–202. [Google Scholar] [CrossRef]
- Farzanegan, A.; Roudbary, M.; Falahati, M.; Khoobi, M.; Gholibegloo, E.; Farahyar, S.; Karimi, P.; Khanmohammadi, M. Synthesis, Characterization and Antifungal Activity of a Novel Formulated Nanocomposite Containing Indolicidin and Graphene Oxide against Disseminated Candidiasis. J. Mycol. Med. 2018, 28, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, H.; Roudbarmohammadi, S.; Delavari, H.; Roudbary, M. Antifungal Effects of Indolicidin-Conjugated Gold Nanoparticles against Fluconazole-Resistant Strains of Candida albicans Isolated from Patients with Burn Infection. Int. J. Nanomed. 2019, 17, 5323–5338. [Google Scholar] [CrossRef]
- Nikoomanesh, F.; Roudbarmohammadi, S.; Khoobi, M.; Haghighi, F.; Roudbary, M. Design and Synthesis of Mucoadhesive Nanogel Containing Farnesol: Investigation of the Effect on HWP1, SAP6 and Rim101 Genes Expression of Candida albicans in Vitro. Artif. Cells Nanomed. Biotechnol. 2019, 47, 64–72. [Google Scholar] [CrossRef]
- Zare-Bidaki, M.; Ghasemi, F.; Allahyari, E.; Ashrafipour, M.; Mohammadparast Tabas, P.; Ghanbarzadeh, N.; Noferesti, F.; Nikoomanesh, F. Using Single Multiplex PCR Reaction to Identify Candida Species in Vaginal Isolates: Comparison between Phenotypic and Molecular Methods. Infect. Epidemiol. Microbiol. 2020, 8, 337–344. [Google Scholar] [CrossRef]
- Sedighi, M.; Rahimi, F.; Shahbazi, M.A.; Rezayan, A.H.; Kettiger, H.; Einfalt, T.; Huwyler, J.; Witzigmann, D. Controlled Tyrosine Kinase Inhibitor Delivery to Liver Cancer Cells by Gate-Capped Mesoporous Silica Nanoparticles. ACS Appl. Bio. Mater. 2020, 3, 239–251. [Google Scholar] [CrossRef]
- CLSI M27-A3; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition. Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2017.
- CLSI M27-S4; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Fourth Informational Supplement. Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2017.
- Dos Santos, E.R.; Dal Forno, C.F.; Hernandez, M.G.; Kubiça, T.F.; Venturini, T.P.; Chassot, F.; Santurio, J.M.; Alves, S.H. Suscetibilidade de Candida Spp. Isoladas de Hemocultivos, Avaliadas Pelos Breakpoints Dos Documentos M27-A3 e M27-S4 Do CLSI. Rev. Inst. Med. Trop. Sao Paulo 2014, 56, 477–480. [Google Scholar] [CrossRef]
- Kumar, M.; Kaur, P.; Kumar, S.; Kaur, S. Antiproliferative Apoptosis Inducing Effects of Non-Polar Fractions from Lawsonia Inermis L. in Cervical (HeLa) Cancer Cells. Physiol. Mol. Biol. Plants 2015, 21, 249–260. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Sadraei, J.; Roudbarmohammadi, S.H.; Nikoomanesh, F. The effect of acetone extract of moringa peregrina on trichomonas vaginalis, Candida albicans and macrophage cells in vitro. Sci. J. Kurdistan Univ. Med. Sci. 2018, 23, 45–56. [Google Scholar]
- Zarimeidani, R.; Roudbar Mohammadi, S.; Roudbary, M.; Nikoomanesh, F.; Aslani, P.; Yaalimadad, S. In-Vitro Antifungal Activity of Nano Encapsulated Caprylic Acid and EFG1 Gene Expression Profile in Candida albicans. Infect. Epidemiol. Microbiol. 2021, 7, 229–236. [Google Scholar] [CrossRef]
- Katiraee, F.; AhamadiAfshar, S.; Rahimi Pirmahalleh, S.F.; Shokri, H. In Vitro Antifungal Activity of Essential Oils Extracted from Plants against Fluconazole-Susceptible and -Resistant Candida albicans. Curr. Med. Mycol. 2017, 3, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Barani, M.; Mirzaei, M.; Torkzadeh-Mahani, M.; Nematollahi, M.H. Lawsone-Loaded Niosome and Its Antitumor Activity in MCF-7 Breast Cancer Cell Line: ANano-Herbal Treatment for Cancer. DARU J. Pharm. Sci. 2018, 26, 11–17. [Google Scholar] [CrossRef]
- Nawasrah, A.; Al Nimr, A.; Ali, A.A. Antifungal Effect of Henna against Candida albicans Adhered to Acrylic Resin as a Possible Method for Prevention of Denture Stomatitis. Int. J. Environ. Res. Public Health 2016, 13, 520. [Google Scholar] [CrossRef]
- Singla, S.; Gupta, R.; Puri, A.; Bhardawaj, V.S.; Roy, S. Comparison of Anticandidal Activity of Punica Granatum (Pomegranate) and Lawsonia Inermis (Henna Leaves): An in-Vitro Study. Int. J. Dent. Res. 2013, 1, 8–13. [Google Scholar] [CrossRef]
- Navarro-Tovar, G.; Vega-Rodríguez, S.; Leyva, E.; Loredo-Carrillo, S.; de Loera, D.; López-López, L.I. The Relevance and Insights on 1,4-Naphthoquinones as Antimicrobial and Antitumoral Molecules: A Systematic Review. Pharmaceuticals 2023, 16, 469. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Li, S.; Shi, R.; Liu, H. Multifunctional Mesoporous Silica Nanoparticles for Biomedical Applications. Signal Transduct. Target. Ther. 2023, 8, 435. [Google Scholar] [CrossRef] [PubMed]
- Croissant, G.J.; Fatieiev, Y.; Almalik, A.; Khashab, N.M. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Adv. Healthc. Mater. 2018, 7, 1700831. [Google Scholar] [CrossRef]
- Leroy, O.; Bailly, S.; Gangneux, J.P.; Mira, J.P.; Devos, P.; Dupont, H.; Al, E. Systemic Antifungal Therapy for Proven or Suspected Invasive Candidiasis: The AmarCAND 2 Study. Ann. Intensive Care 2016, 6, 2. [Google Scholar] [CrossRef]
Gene | Primer 3′→5′ |
---|---|
ALS1 | Forward GAC TAG TGA ACC AAC AAA TAC CAG Reverse ACC AGA AGA AAC AGC AGG TG |
EPA1 | Forward TTC AGA CCA AAA GTA ACT GGC TTC Reverse CCT AAT AGG GTA ATA TAGC GCC CG |
ACT1 | Forward CCA GCT TTC TAC GTT TCC Reverse CTG TAA CCA CGT TCA GAC |
Candida Isolates | Compounds | |||
---|---|---|---|---|
LAW | LAW-MNS | |||
MIC Range | MFC Range | MIC Range | MFC Range | |
Susceptible C. albicans isolates (n = 10) | 0.31–1.25 | 0.62–2.5 | 0.31–0.62 | 0.62–1.25 |
Resistant C. albicans isolates (n = 10) | 1.25–2.5 | 2.5–5 | 0.31–0.62 | 0.62–1.25 |
Susceptible C. glabrata isolates (n = 10) | 0.62–2.5 | 1.25–5 | 0.31–1.25 | 0.62–2.5 |
Resistant C. glabrata isolates (n = 10) | 2.5–5 | 2.5–5 | 1.25–2.5 | 2.5–5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikoomanesh, F.; Sedighi, M.; Bourang, M.M.; Rafiee, M.; Santos, A.L.S.d.; Roudbary, M. Exploring the Antifungal Potential of Lawsone-Loaded Mesoporous Silica Nanoparticles Against Candida albicans and Candida glabrata: Growth Inhibition and Biofilm Disruption. J. Fungi 2025, 11, 427. https://doi.org/10.3390/jof11060427
Nikoomanesh F, Sedighi M, Bourang MM, Rafiee M, Santos ALSd, Roudbary M. Exploring the Antifungal Potential of Lawsone-Loaded Mesoporous Silica Nanoparticles Against Candida albicans and Candida glabrata: Growth Inhibition and Biofilm Disruption. Journal of Fungi. 2025; 11(6):427. https://doi.org/10.3390/jof11060427
Chicago/Turabian StyleNikoomanesh, Fatemeh, Mahsa Sedighi, Mahdi Mahmmoodi Bourang, Mitra Rafiee, André Luis Souza dos Santos, and Maryam Roudbary. 2025. "Exploring the Antifungal Potential of Lawsone-Loaded Mesoporous Silica Nanoparticles Against Candida albicans and Candida glabrata: Growth Inhibition and Biofilm Disruption" Journal of Fungi 11, no. 6: 427. https://doi.org/10.3390/jof11060427
APA StyleNikoomanesh, F., Sedighi, M., Bourang, M. M., Rafiee, M., Santos, A. L. S. d., & Roudbary, M. (2025). Exploring the Antifungal Potential of Lawsone-Loaded Mesoporous Silica Nanoparticles Against Candida albicans and Candida glabrata: Growth Inhibition and Biofilm Disruption. Journal of Fungi, 11(6), 427. https://doi.org/10.3390/jof11060427