Comprehensive Metabolomic and Transcriptomic Analysis Revealed the Molecular Basis of the Effects of Different Refrigeration Durations on the Metabolism of Agaricus bisporus Cultivation Spawn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Detection of Extracellular Enzyme Activity
2.3. Metabolomic Analysis
2.4. RNA-Seq and Analysis
2.5. Data Processing and Visualization
3. Results
3.1. Shifts in Extracellular Enzyme Activity and Multiomic Differences
3.2. 148 Cellulase-Correlated Metabolites Identified
3.3. 514 Cellulase-Correlated Genes Detected
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, D.Y.; Jiang, A.L.; Hu, W.Z.; Yang, L.; Chen, C. The preservation and anti-browning treatment progress of Agaricus bisporus. Food Ferment. Ind. 2016, 42, 254–259. (In Chinese) [Google Scholar] [CrossRef]
- Ramos, M.; Burgos, N.; Barnard, A.; Evans, G.; Preece, J.; Graz, M.; Ruthes, A.C.; Jiménez-Quero, A.; Martínez-Abad, A.; Vilaplana, F.; et al. Agaricus bisporus and its by-products as a source of valuable extracts and bioactive compounds. Food Chem. 2019, 292, 176–187. [Google Scholar] [CrossRef]
- Baars, J.J.P.; Scholtmeijer, K.; Sonnenberg, A.S.M.; van Peer, A.V. Critical Factors Involved in Primordia Building in Agaricus bisporus: A Review. Molecules 2020, 25, 2984. [Google Scholar] [CrossRef] [PubMed]
- Boonsiriwit, A.; Xiao, Y.; Kathuria, A.; Lee, Y.S. Effect of moisture-controlled packaging treatment with acid-modified expanded vermiculite-calcium chloride on the quality of fresh mushrooms (Agaricus bisporus) during low-temperature storage. J. Sci. Food Agric. 2022, 102, 3029–3037. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Luo, Z.; Jannatizadeh, A.; Farmani, B. Exogenous adenosine triphosphate application retards cap browning in Agaricus bisporus during low temperature storage. Food Chem. 2019, 293, 285–290. [Google Scholar] [CrossRef]
- Li, D.; Qin, X.; Tian, P.; Wang, J. Toughening and its association with the postharvest quality of king oyster mushroom (Pleurotus eryngii) stored at low temperature. Food Chem. 2016, 196, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Zha, L.; Chen, M.; Yu, C.; Guo, Q.; Zhao, X.; Li, Z.; Zhao, Y.; Li, C.; Yang, H. Differential proteomics study of postharvest Volvariella volvacea during storage at 4 °C. Sci. Rep. 2020, 10, 13134. [Google Scholar] [CrossRef] [PubMed]
- Bernas, E.; Jaworska, G. Culinary-Medicinal Mushroom Products as a Potential Source of Vitamin D. Int. J. Med. Mushrooms 2017, 19, 925–935. [Google Scholar] [CrossRef]
- Salmones, D.; Ballesteros Hernández, H.; Zulueta, R.; Mata, G. Determinación de las características productivas de cepas mexicanas silvestres de Agaricus bisporus, para su potencial uso comercial. Rev. Mex. Micol. 2012, 36, 9–16. [Google Scholar]
- Sanchez, J.E.; Royse, D.J. Scytalidium thermophilum-colonized grain, corncobs and chopped wheat straw substrates for the production of Agaricus bisporus. Bioresour. Technol. 2009, 100, 1670–1674. [Google Scholar] [CrossRef]
- Wang, Q.; Xiao, T.; Juan, J.; Qian, W.; Zhang, J.; Chen, H.; Shen, X.; Huang, J. Lignocellulose Degradation Efficiency of Agaricus bisporus Strains Grown on Wheat Straw-Based Compost. J. Agric. Food Chem. 2023, 71, 10607–10615. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.; Santos, C.; Simões, M.F.; Soares, C.; Santos, C.; Lima, N. Polyphasic, Including MALDI-TOF MS, Evaluation of Freeze-Drying Long-Term Preservation on Aspergillus (Section Nigri) Strains. Microorganisms 2019, 7, 291. [Google Scholar] [CrossRef]
- Gong, M.; Huang, T.; Li, Y.; Li, J.; Tang, L.; Su, E.; Zou, G.; Bao, D. Multi-Omics Analysis of Low-Temperature Fruiting Highlights the Promising Cultivation Application of the Nutrients Accumulation in Hypsizygus marmoreus. J. Fungi 2022, 8, 695. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Gao, Q.; Fan, Y.; Song, S.; Yan, D.; Zhao, J.; Chen, Y.; Liu, Y.; Wang, S. Two Strains of Lentinula edodes Differ in Their Transcriptional and Metabolic Patterns and Respond Differently to Thermostress. J. Fungi 2023, 9, 179. [Google Scholar] [CrossRef]
- Ng, M.J.; Mohamad Razif, M.F.; Kong, B.H.; Yap, H.Y.; Ng, S.T.; Tan, C.S.; Fung, S.Y. RNA-seq transcriptome and pathway analysis of the medicinal mushroom Lignosus tigris (Polyporaceae) offer insights into its bioactive compounds with anticancer and antioxidant potential. J. Ethnopharmacol. 2024, 328, 118073. [Google Scholar] [CrossRef]
- Ying, X.B.; Lu, N.; Lin, J.Y. Changes of Extracellular Enzymes Activities, Polysaccharides Content and Monosaccharide Composition in Agaricus bisporus under Cold Stimulation. Edible Fungi China 2022, 41, 48–59. (In Chinese) [Google Scholar] [CrossRef]
- Kabel, M.A.; Jurak, E.; Mäkelä, M.R.; de Vries, R.P. Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation. Appl. Microbiol. Biotechnol. 2017, 101, 4363–4369. [Google Scholar] [CrossRef]
- NakilcioğLu-Taş, E.; ÖTleş, S. Kinetics of colour and texture changes of button mushrooms (Agaricus bisporus) coated with chitosan during storage at low temperature. An. Acad. Bras. Cienc. 2020, 92, e20181387. [Google Scholar] [CrossRef]
- Zhang, F. Browning Metabolism Research During the Storage of Agaricus bisporus. Master’s Thesis, Fujian Agricultural and Forestry University, Fuzhou, China, 2012. (In Chinese). [Google Scholar]
- Liu, Y.; Huang, F.; Yang, H.; Ibrahim, S.A.; Wang, Y.F.; Huang, W. Effects of preservation methods on amino acids and 5′-nucleotides of Agaricus bisporus mushrooms. Food Chem. 2014, 149, 221–225. [Google Scholar] [CrossRef]
- Wu, M.X.; Zou, Y.; Yu, Y.H.; Chen, B.X.; Zheng, Q.W.; Ye, Z.W.; Wei, T.; Ye, S.Q.; Guo, L.Q.; Lin, J.F. Comparative transcriptome and proteome provide new insights into the regulatory mechanisms of the postharvest deterioration of Pleurotus tuoliensis fruitbodies during storage. Food Res. Int. 2021, 147, 110540. [Google Scholar] [CrossRef]
- Cha, J.Y.; Yang, H.J.; Moon, H.I.; Cho, Y.S. Branched-chain amino acids complex inhibits melanogenesis in B16F0 melanoma cells. Immunopharmacol. Immunotoxicol. 2012, 34, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Chen, M.; Zhang, Y.; Song, P.; Yang, H.; Zhao, Y.; Yu, C.; Zha, L. Integrated physiologic and proteomic analysis of Stropharia rugosoannulata mycelia in response to Cd stress. J. Hazard. Mater. 2023, 441, 129877. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.E.; Petzer, J.P.; Pretorius, J.; Cloete, S.J.; Crous, C.; Petzer, A. Synthesis and evaluation of 3-hydroxyquinolin-2(1H)-one derivatives as inhibitors of tyrosinase. Bioorganic Med. Chem. Lett. 2024, 109, 129823. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Zeng, Z.; Chen, M.; Zhao, J.; Zhang, X.; Dai, J.; Cai, Z.; Lu, Y.; Qiu, Z.; Zeng, H. Comparative Transcriptomic Analysis Reveals New Insights into Spawn Aging in Agaricus bisporus: Mitochondrial Dysfunction. Int. J. Mol. Sci. 2025, 26, 849. [Google Scholar] [CrossRef]
- Oh, J.; Yoon, D.H.; Han, J.G.; Choi, H.K.; Sung, G.H. (1)H NMR based metabolite profiling for optimizing the ethanol extraction of Wolfiporia cocos. Saudi J. Biol. Sci. 2018, 25, 1128–1134. [Google Scholar] [CrossRef]
- Duru, M.E.; Çayan, G.T. Biologically Active Terpenoids from Mushroom origin: A Review. Rec. Nat. Prod. 2015, 9, 456–483. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Zeng, Z.; Chen, W.; Guo, Z.; Zheng, H.; Lu, Y.; Zeng, H.; Chen, M. Comprehensive Metabolomic and Transcriptomic Analysis Revealed the Molecular Basis of the Effects of Different Refrigeration Durations on the Metabolism of Agaricus bisporus Cultivation Spawn. J. Fungi 2025, 11, 415. https://doi.org/10.3390/jof11060415
Cai Z, Zeng Z, Chen W, Guo Z, Zheng H, Lu Y, Zeng H, Chen M. Comprehensive Metabolomic and Transcriptomic Analysis Revealed the Molecular Basis of the Effects of Different Refrigeration Durations on the Metabolism of Agaricus bisporus Cultivation Spawn. Journal of Fungi. 2025; 11(6):415. https://doi.org/10.3390/jof11060415
Chicago/Turabian StyleCai, Zhixin, Zhiheng Zeng, Wenzhi Chen, Zhongjie Guo, Huiqing Zheng, Yuanping Lu, Hui Zeng, and Meiyuan Chen. 2025. "Comprehensive Metabolomic and Transcriptomic Analysis Revealed the Molecular Basis of the Effects of Different Refrigeration Durations on the Metabolism of Agaricus bisporus Cultivation Spawn" Journal of Fungi 11, no. 6: 415. https://doi.org/10.3390/jof11060415
APA StyleCai, Z., Zeng, Z., Chen, W., Guo, Z., Zheng, H., Lu, Y., Zeng, H., & Chen, M. (2025). Comprehensive Metabolomic and Transcriptomic Analysis Revealed the Molecular Basis of the Effects of Different Refrigeration Durations on the Metabolism of Agaricus bisporus Cultivation Spawn. Journal of Fungi, 11(6), 415. https://doi.org/10.3390/jof11060415