Patterns and Predictors of Candida auris Candidemia with Multidrug-Resistant Bacterial Co-Infections: Results from the CANDI-MDR Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design, Patient Population, and Data Collection
2.2. Microbiology Identification and Definitions
2.3. Management Protocols
2.4. Statistical Methods
2.5. Ethical Approval
3. Results
3.1. General Characteristics and Medical History of Participants
3.2. Laboratory Findings
3.3. Outcomes
3.4. Candidemia with MDR Co-Infection as an Independent Mortality Risk Factor
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MDR | Multidrug-resistant |
PDR | Pandrug-resistant |
AMR | Antimicrobial resistance |
CVC | Central venous catheter |
RTI | Respiratory tract infections |
UTI | Urinary tract infections |
VRE | Vancomycin-resistant Enterococci |
ESBLs | Extended-spectrum β lactamases |
KPC | K. pneumoniae carbapenemase |
MBL | Metallo-β-lactamases |
NDM | New Delhi metallo-β-lactamase |
VIM | Verona integron-encoded metallo-β-lactamase |
LOS | Length of stay |
CCI | Charlson Comorbidity Index |
IMV | Invasive mechanical ventilation |
ECDC | European Centre for Disease Prevention and Control |
CLABSIs | Central line-associated bloodstream infections |
ICU | Intensive care unit |
ARDS | Acute respiratory distress syndrome |
References
- Du, H.; Bing, J.; Hu, T.; Ennis, C.L.; Nobile, C.J.; Huang, G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 2020, 16, e1008921. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tian, S.; Han, X.; Chu, Y.; Wang, Q.; Zhou, B.; Shang, H. Is the superbug fungus really so scary? A systematic review and meta-analysis of global epidemiology and mortality of Candida auris. BMC Infect Dis. 2020, 20, 827. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, A.; Klamer, K.; Sharma, M.; Ortiz, D.; Saravolatz, L. Candida auris: A Continuing Threat. Microorganisms 2025, 13, 652. [Google Scholar] [CrossRef]
- Jeffery-Smith, A.; Taori, S.K.; Schelenz, S.; Jeffery, K.; Johnson, E.M.; Borman, A.; Candida auris Incident Management Team; Manuel, R.; Brown, C.S. Candida auris: A Review of the Literature. Clin. Microbiol. Rev. 2018, 31, e00029-17. [Google Scholar] [CrossRef]
- Sanyaolu, A.; Okorie, C.; Marinkovic, A.; Abbasi, A.F.; Prakash, S.; Mangat, J.; Hosein, Z.; Haider, N.; Chan, J. Candida auris: An Overview of the Emerging Drug-Resistant Fungal Infection. Infect. Chemother. 2022, 54, 236–246. [Google Scholar] [CrossRef]
- Ahmad, S.; Alfouzan, W. Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities. Microorganisms 2021, 9, 807. [Google Scholar] [CrossRef]
- Forsberg, K.; Woodworth, K.; Walters, M.; Berkow, E.L.; Jackson, B.; Chiller, T.; Vallabhaneni, S. Candida auris: The recent emergence of a multidrug-resistant fungal pathogen. Med. Mycol. 2019, 57, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Theuretzbacher, U. Global antibacterial resistance: The never-ending story. J. Glob. Antimicrob. Resist. 2013, 1, 63–69. [Google Scholar] [CrossRef]
- Cerceo, E.; Deitelzweig, S.B.; Sherman, B.M.; Amin, A.N. Multidrug-Resistant Gram-Negative Bacterial Infections in the Hospital Setting: Overview, Implications for Clinical Practice, and Emerging Treatment Options. Microb. Drug Resist. 2016, 22, 412–431. [Google Scholar] [CrossRef]
- Collaborators GBDAR. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Esposito, S.; De Simone, G. Update on the main MDR pathogens: Prevalence and treatment options. Infez. Med. 2017, 25, 301–310. [Google Scholar] [PubMed]
- Patolia, S.; Abate, G.; Patel, N.; Patolia, S.; Frey, S. Risk factors and outcomes for multidrug-resistant Gram-negative bacilli bacteremia. Ther. Adv. Infect. Dis. 2018, 5, 11–18. [Google Scholar] [CrossRef] [PubMed]
- van Duin, D.; Paterson, D.L. Multidrug-Resistant Bacteria in the Community: Trends and Lessons Learned. Infect. Dis. Clin. North. Am. 2016, 30, 377–390. [Google Scholar] [CrossRef]
- Dicks, K.V.; Anderson, D.J.; Baker, A.W.; Sexton, D.J.; Lewis, S.S. Clinical Outcomes and Healthcare Utilization Related to Multidrug-Resistant Gram-Negative Infections in Community Hospitals. Infect. Control Hosp. Epidemiol. 2017, 38, 31–38. [Google Scholar] [CrossRef]
- Stathi, A.; Loukou, I.; Kirikou, H.; Petrocheilou, A.; Moustaki, M.; Velegraki, A.; Zachariadou, L. Isolation of Candida auris from cystic fibrosis patient, Greece, April 2019. Euro Surveill. 2019, 24, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Politi, L.; Vrioni, G.; Hatzianastasiou, S.; Lada, M.; Martsoukou, M.; Sipsas, N.V.; Chini, M.; Baka, V.; Kafkoula, E.; Masgala, A.; et al. Candida auris in Greek healthcare facilities: Active surveillance results on first cases and outbreaks from eleven hospitals within Attica region. J. Mycol. Med. 2024, 34, 101477. [Google Scholar] [CrossRef]
- Meletiadis, J.; Siopi, M.; Spruijtenburg, B.; Georgiou, P.-C.; Kostoula, M.; Vourli, S.; Frantzeskaki, F.; Paramythiotou, E.; Meis, J.F.; Tsangaris, I.; et al. Candida auris fungaemia outbreak in a tertiary care academic hospital and emergence of a pan-echinocandin resistant isolate, Greece, 2021 to 2023. Euro Surveill. 2024, 29, 2400128. [Google Scholar] [CrossRef]
- Poulopoulou, A.; Sidiropoulou, A.; Sarmourli, T.; Zachrou, E.; Michailidou, C.; Zarras, C.; Vagdatli, E.; Massa, E.; Mouloudi, E.; Pyrpasopoulou, A.; et al. Candida auris: Outbreak, surveillance and epidemiological monitoring in Northern Greece. Med. Mycol. 2024, 62, myae062. [Google Scholar] [CrossRef]
- Pérez, A.; Gato, E.; Pérez-Llarena, J.; Fernández-Cuenca, F.; Gude, M.J.; Oviaño, M.; Pachón, M.E.; Garnacho, J.; González, V.; Pascual, Á.; et al. High incidence of MDR and XDR Pseudomonas aeruginosa isolates obtained from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J. Antimicrob. Chemother. 2019, 74, 1244–1252. [Google Scholar] [CrossRef]
- Polemis, M.; Theofili, E.; Tryfinopoulou, K. Rapid increase of multi-drug resistant Pseudomonas aeruginosa in Greece—WHONET-Greece (2020–2023). Eur. J. Public Health 2024, 34, ckae144.2154. [Google Scholar] [CrossRef]
- Miyakis, S.; Pefanis, A.; Tsakris, A. The challenges of antimicrobial drug resistance in Greece. Clin. Infect. Dis. 2011, 53, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Maraki, S.; Mavros, M.N.; Kofteridis, D.P.; Samonis, G.; Falagas, M.E. Epidemiology and antimicrobial sensitivities of 536 multi-drug-resistant gram-negative bacilli isolated from patients treated on surgical wards. Surg. Infect. 2012, 13, 326–331. [Google Scholar] [CrossRef]
- Polemis, M.; Mandilara, G.; Pappa, O.; Argyropoulou, A.; Perivolioti, E.; Koudoumnakis, N.; Pournaras, S.; Vasilakopoulou, A.; Vourli, S.; Katsifa, H.; et al. COVID-19 and Antimicrobial Resistance: Data from the Greek Electronic System for the Surveillance of Antimicrobial Resistance-WHONET-Greece (January 2018–March 2021). Life 2021, 11, 996. [Google Scholar] [CrossRef]
- Micheli, G.; Sangiorgi, F.; Catania, F.; Chiuchiarelli, M.; Frondizi, F.; Taddei, E.; Murri, R. The Hidden Cost of COVID-19: Focus on Antimicrobial Resistance in Bloodstream Infections. Microorganisms 2023, 11, 1299. [Google Scholar] [CrossRef]
- Polly, M.; de Almeida, B.L.; Lennon, R.P.; Cortes, M.F.; Costa, S.F.; Guimaraes, T. Impact of the COVID-19 pandemic on the incidence of multidrug-resistant bacterial infections in an acute care hospital in Brazil. Am. J. Infect. Control. 2022, 50, 238–239. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Qiu, S.; Liu, C.; Chen, S.; Xia, H.; Zeng, Y.; Shi, L.; Chen, J.; Zheng, J.; et al. Global antimicrobial resistance and antibiotic use in COVID-19 patients within health facilities: A systematic review and meta-analysis of aggregated participant data. J. Infect. 2024, 89, 106183. [Google Scholar] [CrossRef]
- Attal, R.; Deotale, V. Bacterial co-infections and secondary infections and their antimicrobial resistance in Covid-19 patients during the second pandemic wave. GMS Hyg. Infect. Control 2024, 19, Doc10. [Google Scholar] [PubMed]
- Barza, R.; Patel, P.; Patel, J.; Droske, L.; Schora, D.; Mangold, K.; Lepinski, J.; Hines, D.; Lee, B.; Singh, K. 1687. High-Rates of Candida auris Carriage and Co-Colonization with Multidrug-Resistant Organisms (MDROs). Open Forum Infect. Dis. 2019, 23, S617. [Google Scholar] [CrossRef]
- Centres for Disease Control and Prevention. Candida auris. 2024. Available online: https://www.cdc.gov/candida-auris/hcp/laboratories/antifungal-susceptibility-testing.html (accessed on 13 March 2025).
- Arendrup, M.C.; Prakash, A.; Meletiadis, J.; Sharma, C.; Chowdhary, A. Comparison of EUCAST and CLSI Reference Microdilution MICs of Eight Antifungal Compounds for Candida auris and Associated Tentative Epidemiological Cutoff Values. Antimicrob. Agents Chemother. 2017, 61, e00485-17. [Google Scholar] [CrossRef]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin. Infect. Dis. 2024, ciae403. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Al Maani, A.; Paul, H.; Al-Rashdi, A.; Wahaibi, A.A.; Al-Jardani, A.; Al Abri, A.M.A.; AlBalushi, M.A.H.; Al-Abri, S.; Al Reesi, M.; Al Maqbali, A.; et al. Ongoing Challenges with Healthcare-Associated Candida auris Outbreaks in Oman. J. Fungi 2019, 5, 101. [Google Scholar] [CrossRef] [PubMed]
- Schelenz, S.; Hagen, F.; Rhodes, J.L.; Abdolrasouli, A.; Chowdhary, A.; Hall, A.; Ryan, L.; Shackleton, J.; Trimlett, R.; Meis, J.F.; et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob. Resist. Infect. Control. 2016, 5, 35. [Google Scholar] [CrossRef]
- Adams, E.; Quinn, M.; Tsay, S.; Poirot, E.; Chaturvedi, S.; Southwick, K.; Greenko, J.; Fernandez, R.; Kallen, A.; Vallabhaneni, S.; et al. Candida auris in Healthcare Facilities, New York, USA, 2013-2017. Emerg. Infect. Dis. 2018, 24, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Victoros, E.; Shanjana, Y.; Thomas, M.R.; Islam, M.R. The Candida auris Infection After the COVID-19 Pandemic Seems to be an Urgent Public Health Emergency: A Call to Attention. Health Sci. Rep. 2024, 7, e70160. [Google Scholar] [CrossRef]
- Vinayagamoorthy, K.; Pentapati, K.C.; Prakash, H. Prevalence, risk factors, treatment and outcome of multidrug resistance Candida auris infections in Coronavirus disease (COVID-19) patients: A systematic review. Mycoses 2022, 65, 613–624. [Google Scholar] [CrossRef]
- Pacilli, M.; Kerins, J.L.; Clegg, W.J.; Walblay, K.A.; Adil, H.; Kemble, S.K.; Xydis, S.; McPherson, T.D.; Lin, M.Y.; Hayden, M.K.; et al. Regional Emergence of Candida auris in Chicago and Lessons Learned From Intensive Follow-up at 1 Ventilator-Capable Skilled Nursing Facility. Clin. Infect. Dis. 2020, 71, e718–e725. [Google Scholar] [CrossRef]
- Rossow, J.; Ostrowsky, B.; Adams, E.; Greenko, J.; McDonald, R.; Vallabhaneni, S.; Forsberg, K.; Perez, S.; Lucas, T.; Alroy, K.A.; et al. Factors Associated with Candida auris Colonization and Transmission in Skilled Nursing Facilities with Ventilator Units, New York, 2016–2018. Clin. Infect. Dis. 2021, 72, e753–e760. [Google Scholar] [CrossRef]
- Ruiz-Gaitan, A.; Martinez, H.; Moret, A.M.; Calabuig, E.; Tasias, M.; Alastruey-Izquierdo, A.; Zaragoza, Ó.; Mollar, J.; Frasquet, J.; Salavert-Lletí, M.; et al. Detection and treatment of Candida auris in an outbreak situation: Risk factors for developing colonization and candidemia by this new species in critically ill patients. Expert. Rev. Anti Infect. Ther. 2019, 17, 295–305. [Google Scholar] [CrossRef]
- Garcia-Bustos, V.; Salavert, M.; Ruiz-Gaitan, A.C.; Cabanero-Navalon, M.D.; Sigona-Giangreco, I.A.; Peman, J. A clinical predictive model of candidaemia by Candida auris in previously colonized critically ill patients. Clin. Microbiol. Infect. 2020, 26, 1507–1513. [Google Scholar] [CrossRef]
- Shastri, P.S.; Shankarnarayan, S.A.; Oberoi, J.; Rudramurthy, S.M.; Wattal, C.; Chakrabarti, A. Candida auris candidaemia in an intensive care unit—Prospective observational study to evaluate epidemiology, risk factors, and outcome. J. Crit. Care 2020, 57, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Romero, L.; Telenti, A.; Thompson, R.L.; Roberts, G.D. Polymicrobial fungemia: Microbiology, clinical features, and significance. Rev. Infect. Dis. 1989, 11, 208–212. [Google Scholar] [CrossRef]
- Harvey, R.L.; Myers, J.P. Nosocomial fungemia in a large community teaching hospital. Arch. Intern. Med. 1987, 147, 2117–2120. [Google Scholar] [CrossRef] [PubMed]
- Verghese, A.; Prabhu, K.; Diamond, R.D.; Sugar, A. Synchronous bacterial and fungal septicemia. A marker for the critically ill surgical patient. Am. Surg. 1988, 54, 276–283. [Google Scholar]
- Tsalidou, M.; Stergiopoulou, T.; Bostanitis, I.; Nikaki, C.; Skoumpa, K.; Koutsoukou, T.; Papaioannidou, P. Surveillance of Antimicrobial Resistance and Multidrug Resistance Prevalence of Clinical Isolates in a Regional Hospital in Northern Greece. Antibiotics 2023, 12, 1595. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2023–2021 Data; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Yoshida, T.; Tsushima, K.; Tsuchiya, A.; Nishikawa, N.; Shirahata, K.; Kaneko, K.; Ito, K.; Kawakami, H.; Nakagawa, S.; Suzuki, T.; et al. Risk factors for hospital-acquired bacteremia. Intern. Med. 2005, 44, 1157–1162. [Google Scholar] [CrossRef]
- Sun, R.X.; Song, P.; Walline, J.; Wang, H.; Xu, Y.C.; Zhu, H.D.; Yu, X.Z.; Xu, J. Morbidity and mortality risk factors in emergency department patients with Acinetobacter baumannii bacteremia. World J. Emerg. Med. 2020, 11, 164–168. [Google Scholar] [CrossRef]
- Crews-Stowe, C.; Sklar, E. The Next Target for Readmission Reporting? Exploring Readmission Rates of Patients with CLABSI. Antimicrob. Steward. Healthc. Epidemiol. 2024, 16, S71. [Google Scholar] [CrossRef]
- Kuo, S.H.; Lin, W.R.; Lin, J.Y.; Huang, C.H.; Jao, Y.T.; Yang, P.W.; Tsai, J.R.; Wang, W.H.; Chen, Y.H.; Hung, C.T.; et al. The epidemiology, antibiograms and predictors of mortality among critically-ill patients with central line-associated bloodstream infections. J. Microbiol. Immunol. Infect. 2018, 51, 401–410. [Google Scholar] [CrossRef]
- Zhou, Q.; Lee, S.K.; Hu, X.J.; Jiang, S.Y.; Chen, C.; Wang, C.Q.; Cao, Y. Successful reduction in central line-associated bloodstream infections in a Chinese neonatal intensive care unit. Am. J. Infect. Control. 2015, 43, 275–279. [Google Scholar] [CrossRef]
- Alwazzeh, M.J.; Alnimr, A.; Al Nassri, S.A.; Alwarthan, S.M.; Alhajri, M.; AlShehail, B.M.; Almubarak, M.; Alghamdi, N.S.; Wali, H.A. Microbiological trends and mortality risk factors of central line-associated bloodstream infections in an academic medical center 2015–2020. Antimicrob. Resist. Infect. Control 2023, 12, 128. [Google Scholar] [CrossRef]
- Rajandra, A.; Yunos, N.M.; Teo, C.H.; Kukreja, A.; Suhaimi, N.A.; Mohd Razali, S.Z.; Basri, S.; Teh, C.S.J.; Leong, C.L.; Ismail, I.; et al. Incidence, Compliance, and Risk Factor Associated with Central Line-Associated Bloodstream Infection (CLABSI) in Intensive Care Unit (ICU) Patients: A Multicenter Study in an Upper Middle-Income Country. Antibiotics 2025, 14, 271. [Google Scholar] [CrossRef]
- Pitiriga, V.; Bakalis, J.; Kampos, E.; Kanellopoulos, P.; Saroglou, G.; Tsakris, A. Duration of central venous catheter placement and central line-associated bloodstream infections after the adoption of prevention bundles: A two-year retrospective study. Antimicrob. Resist. Infect. Control. 2022, 11, 96. [Google Scholar] [CrossRef] [PubMed]
- Burnham, J.P.; Rojek, R.P.; Kollef, M.H. Catheter removal and outcomes of multidrug-resistant central-line-associated bloodstream infection. Medicine 2018, 97, e12782. [Google Scholar] [CrossRef] [PubMed]
- Piatti, G.; Sartini, M.; Cusato, C.; Schito, A.M. Colonization by Candida auris in critically ill patients: Role of cutaneous and rectal localization during an outbreak. J. Hosp. Infect. 2022, 120, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Rozwadowski, F.; McAteer, J.; Chow, N.; Skrobarcek, K.; Forsberg, K.; Barrett, P.; Greeley, R.; Fulton, T.; Wells, J.; Welsh, R.; et al. 161. Prevalence and Risk Factors for Candida auris Colonization Among Patients in a Long-term Acute Care Hospital—New Jersey, 2017. Open Forum Infect. Dis. 2018, 5, S14. [Google Scholar] [CrossRef]
- Eix, E.F.; Nett, J.E. Modeling Candida auris skin colonization: Mice, swine, and humans. PLoS Pathog. 2022, 18, e1010730. [Google Scholar] [CrossRef]
- Eyre, D.W.; Sheppard, A.E.; Madder, H.; Moir, I.; Moroney, R.; Quan, T.P.; Griffiths, D.; George, S.; Butcher, L.; Morgan, M.; et al. A Candida auris Outbreak and Its Control in an Intensive Care Setting. N. Engl. J. Med. 2018, 379, 1322–1331. [Google Scholar] [CrossRef]
- Biswal, M.; Rudramurthy, S.M.; Jain, N.; Shamanth, A.S.; Sharma, D.; Jain, K.; Yaddanapudi, L.N.; Chakrabarti, A. Controlling a possible outbreak of Candida auris infection: Lessons learnt from multiple interventions. J. Hosp. Infect. 2017, 97, 363–370. [Google Scholar] [CrossRef]
- Rosa, R.; Abbo, L.M.; Jimenez, A.; Carter, C.; Ruiz, M.; Gerald, W.; Jimenez Hamann, M. Effectiveness of a sodium hypochlorite isotonic solution in decolonization of patients with Candida auris: Learnings from a county health care system. Am. J. Infect. Control. 2024, 52, 595–598. [Google Scholar] [CrossRef]
- Kilic, A.S.M.; Shi, J.; Green, D.; Wu, F. Molecular and Microbiological Characterization of Candida auris Strains Isolated from Colonized and Infected Patients in a New York City Tertiary Care Center. Am. J. Clin. Pathol. 2024, 162, S177–S178. [Google Scholar] [CrossRef]
- Cristina, M.L.; Spagnolo, A.M.; Sartini, M.; Carbone, A.; Oliva, M.; Schinca, E.; Boni, S.; Pontali, E. An Overview on Candida auris in Healthcare Settings. J. Fungi 2023, 9, 913. [Google Scholar] [CrossRef] [PubMed]
- Pandya, N.; Cag, Y.; Pandak, N.; Pekok, A.U.; Poojary, A.; Ayoade, F.; Fasciana, T.; Giammanco, A.; Caskurlu, H.; Rajani, D.P.; et al. International Multicentre Study of Candida auris Infections. J. Fungi 2021, 7, 878. [Google Scholar] [CrossRef]
- Frias-De-Leon, M.G.; Hernandez-Castro, R.; Vite-Garin, T.; Arenas, R.; Bonifaz, A.; Castanon-Olivares, L.; Acosta-Altamirano, G.; Martínez-Herrera, E. Antifungal Resistance in Candida auris: Molecular Determinants. Antibiotics 2020, 9, 568. [Google Scholar] [CrossRef]
- Rybak, J.M.; Munoz, J.F.; Barker, K.S.; Parker, J.E.; Esquivel, B.D.; Berkow, E.L.; Lockhart, S.R.; Gade, L.; Palmer, G.E.; White, T.C. Mutations in TAC1B: A Novel Genetic Determinant of Clinical Fluconazole Resistance in Candida auris. mBio 2020, 11, e00365-20. [Google Scholar] [CrossRef] [PubMed]
- Rybak, J.M.; Barker, K.S.; Munoz, J.F.; Parker, J.E.; Ahmad, S.; Mokaddas, E.; Abdullah, A.; Elhagracy, R.S.; Kelly, S.L.; Cuomo, C.A.; et al. In vivo emergence of high-level resistance during treatment reveals the first identified mechanism of amphotericin B resistance in Candida auris. Clin. Microbiol. Infect. 2022, 28, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, S.R. Candida auris and multidrug resistance: Defining the new normal. Fungal Genet. Biol. 2019, 131, 103243. [Google Scholar] [CrossRef]
- Hager, C.L.; Larkin, E.L.; Long, L.; Zohra Abidi, F.; Shaw, K.J.; Ghannoum, M.A. In Vitro and In Vivo Evaluation of the Antifungal Activity of APX001A/APX001 against Candida auris. Antimicrob. Agents Chemother. 2018, 62, e02319-17. [Google Scholar] [CrossRef]
- Ghannoum, M.; Arendrup, M.C.; Chaturvedi, V.P.; Lockhart, S.R.; McCormick, T.S.; Chaturvedi, S.; Berkow, E.L.; Juneja, D.; Tarai, B.; Azie, N.; et al. Ibrexafungerp: A Novel Oral Triterpenoid Antifungal in Development for the Treatment of Candida auris Infections. Antibiotics 2020, 9, 539. [Google Scholar] [CrossRef]
- Trevino-Rangel, R.J.; Gonzalez, G.M.; Montoya, A.M.; Rojas, O.C.; Elizondo-Zertuche, M.; Alvarez-Villalobos, N.A. Recent Antifungal Pipeline Developments against Candida auris: A Systematic Review. J. Fungi 2022, 8, 1144. [Google Scholar] [CrossRef]
- Ortiz-Roa, C.; Valderrama-Rios, M.C.; Sierra-Umana, S.F.; Rodriguez, J.Y.; Muneton-Lopez, G.A.; Solorzano-Ramos, C.A.; Escandón, P.; Alvarez-Moreno, C.A.; Cortés, J.A. Mortality Caused by Candida auris Bloodstream Infections in Comparison with Other Candida Species, a Multicentre Retrospective Cohort. J. Fungi 2023, 9, 715. [Google Scholar] [CrossRef] [PubMed]
- Tabah, A.; Koulenti, D.; Laupland, K.; Misset, B.; Valles, J.; Bruzzi de Carvalho, F.; Paiva, J.A.; Cakar, N.; Ma, X.; Eggimann, P.; et al. Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: The EUROBACT International Cohort Study. Intensive Care Med. 2012, 38, 1930–1945. [Google Scholar] [CrossRef] [PubMed]
- Gandra, S.; Tseng, K.K.; Arora, A.; Bhowmik, B.; Robinson, M.L.; Panigrahi, B.; Laxminarayan, R.; Klein, E.Y. The Mortality Burden of Multidrug-resistant Pathogens in India: A Retrospective, Observational Study. Clin. Infect. Dis. 2019, 69, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Schinas, G.; Skintzi, K.; De Lastic, A.-L.; Rodi, M.; Gogos, C.; Mouzaki, A.; Akinosoglou, K. Patterns, Cost, and Immunological Response of MDR vs. Non MDR-Bacteremia: A Prospective Cohort Study. Pathogens 2023, 12, 1044. [Google Scholar] [CrossRef]
- Zasowski, E.J.; Bassetti, M.; Blasi, F.; Goossens, H.; Rello, J.; Sotgiu, G.; Tavoschi, L.; Arber, M.R.; McCool, R.; Patterson, J.V.; et al. A Systematic Review of the Effect of Delayed Appropriate Antibiotic Treatment on the Outcomes of Patients with Severe Bacterial Infections. Chest 2020, 158, 929–938. [Google Scholar] [CrossRef]
- Niederman, M.S. Clinical Impact of Antimicrobial Resistance: Using New Tools to Answer Old Questions. Chest 2019, 155, 1088–1089. [Google Scholar] [CrossRef]
- Bonine, N.G.; Berger, A.; Altincatal, A.; Wang, R.; Bhagnani, T.; Gillard, P.; Lodise, T. Impact of Delayed Appropriate Antibiotic Therapy on Patient Outcomes by Antibiotic Resistance Status from Serious Gram-negative Bacterial Infections. Am. J. Med. Sci. 2019, 357, 103–110. [Google Scholar] [CrossRef]
- Rowan, C.M.; Gertz, S.J.; McArthur, J.; Fitzgerald, J.C.; Nitu, M.E.; Loomis, A.; Hsing, D.D.; Duncan, C.N.; Mahadeo, K.M.; Smith, L.S.; et al. Invasive Mechanical Ventilation and Mortality in Pediatric Hematopoietic Stem Cell Transplantation: A Multicenter Study. Pediatr. Crit. Care Med. 2016, 17, 294–302. [Google Scholar] [CrossRef]
- Gutierrez, L.; Araya, K.; Becerra, M.; Perez, C.; Valenzuela, J.; Lera, L.; Lizana, P.A.; Del Sol, M.; Muñoz-Cofré, R. Predictive value of invasive mechanical ventilation parameters for mortality in COVID-19 related ARDS: A retrospective cohort study. Sci. Rep. 2024, 14, 13725. [Google Scholar] [CrossRef]
- Simonis, F.A.M.; Pelosi, P.; Schultz, M.; Neto, A. Which respiratory and non–respiratory factors contribute to outcome in critically ill patients with invasive ventilation? Eur. Respir. J. 2018, 52, PA324. [Google Scholar]
- Yeung, J.; Couper, K.; Ryan, E.G.; Gates, S.; Hart, N.; Perkins, G.D. Non-invasive ventilation as a strategy for weaning from invasive mechanical ventilation: A systematic review and Bayesian meta-analysis. Intensive Care Med. 2018, 44, 2192–2204. [Google Scholar] [CrossRef]
- Kordalewska, M.; Perlin, D.S. Identification of Drug Resistant Candida auris. Front. Microbiol. 2019, 10, 1918. [Google Scholar] [CrossRef]
Candidemia | |||
---|---|---|---|
Without Co-Infection (n = 49) | With MDR Co-Infection (n = 47) | p | |
GENERAL CHARACTERISTICS | |||
Age (Years) | 69 (57–76) | 70 (64–77) | 0.392 |
Gender (Male) | 26 (53.06 %) | 30 (63.83 %) | 0.388 |
CCI | 4 (3–5) | 4 (3–6) | 0.372 |
Sepsis | 12 (24.49%) | 12 (25.53 %) | 1 |
DIAGNOSIS | |||
COVID-19 | 8 (16.33%) | 10 (21.28%) | 0.719 |
RTI | 18(36.73%) | 17(36.17%) | 1 |
UTI | 4(8.16%) | 3(6.38%) | 1 |
Cerebrovascular Events | 9(18.37%) | 8(17.02%) | 1 |
Cardiovascular Events | 1(2.04%) | 1(2.13%) | 1 |
Trauma | 8(16.33%) | 6(12.77%) | 0.837 |
Other | 1(2.04%) | 2(4.26%) | 0.481 |
RISK FACTORS for MDR/C. auris Infection | |||
CVC | 32 (66.67%) | 41 (87.23%) | 0.030 |
Foley Catheter | 43 (87.76%) | 44 (93.62%) | 0.487 |
PICC | 22 (44.9 %) | 17 (36.17%) | 0.507 |
IMV | 24 (48.98%) | 29 (61.7%) | 0.294 |
Non-IMV | 1 (2.04%) | 2 (4.26%) | 0.613 |
History of Prior Antifungal Treatment | 28 (57.14%) | 21 (44.68%) | 0.292 |
History of Prior Antibiotic Treatment | 47 (95.92%) | 45 (95.74%) | 1 |
Recent Hospitalization, within 6 Months (Yes) | 34 (69.39%) | 30 (63.83 %) | 0.718 |
Pre-Existing Candida Colonization | 21 (42.86%) | 19 (40.43%) | 0.972 |
Candidemia | ||||
---|---|---|---|---|
Without Co-Infection (n = 49) | With MDR Co-Infection (n = 47) | p | ||
Intensive Care Unit Admission (Yes) | 23 (46.94%) | 25 (53.19%) | 0.683 | |
Mortality | 30 (61.22%) | 41 (87.23%) | 0.007 | |
28-Day Mortality | 19 (63.33%) | 28 (68.29%) | 0.066 | |
90-Day Mortality | 11 (36.67%) | 13 (31.71%) | 0.723 | |
Death Associated with C. auris | 27 (90%) | 34 (82.93%) | 0.501 | |
Candidemia Resolution | 38 (77.55%) | 30 (63.83%) | 0.209 | |
Time to Bloodstream Candida Clearance (Days) | 5 (2–9.75) | 6 (3.25–10) | 0.464 | |
C. auris Relapse | 16 (32.65%) | 11 (23.4%) | 0.435 | |
Post-Infection Candida Colonization | 11 (22.45%) | 3 (6.38%) | 0.050 | |
LOS (Days) | 68 (30–130) | 46 (32.5–105.5) | 0.465 |
Unadjusted Analysis | Adjusted Analysis | |||||
---|---|---|---|---|---|---|
Odds Ratio | 95% CI | p-Value | Odds Ratio | 95% CI | p-Value | |
Candidemia Status (with MDRs) | 4.33 | 1.54–12.14 | 0.005 | 3.19 | 1.03–9.9 | 0.045 |
Age | 1.03 | 1–1.06 | 0.062 | 1.005 | 0.95–1.07 | 0.864 |
LOS | 1.00 | 1–1.01 | 0.529 | 1 | 0.99–1.01 | 0.809 |
CCI | 1.29 | 1.01–1.65 | 0.038 | 1.43 | 0.89–2.29 | 0.137 |
IMV (Yes) | 4.73 | 1.74–12.86 | 0.002 | 7.07 | 2.03–24.67 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinosoglou, K.; Skintzi, K.; Chandroulis, I.; Polyzou, E.; Siapika, A.; Fligkou, F.; Paliogianni, F.; Gogos, C.; Dimopoulos, G. Patterns and Predictors of Candida auris Candidemia with Multidrug-Resistant Bacterial Co-Infections: Results from the CANDI-MDR Study. J. Fungi 2025, 11, 407. https://doi.org/10.3390/jof11060407
Akinosoglou K, Skintzi K, Chandroulis I, Polyzou E, Siapika A, Fligkou F, Paliogianni F, Gogos C, Dimopoulos G. Patterns and Predictors of Candida auris Candidemia with Multidrug-Resistant Bacterial Co-Infections: Results from the CANDI-MDR Study. Journal of Fungi. 2025; 11(6):407. https://doi.org/10.3390/jof11060407
Chicago/Turabian StyleAkinosoglou, Karolina, Katerina Skintzi, Ioannis Chandroulis, Eleni Polyzou, Argiro Siapika, Foteini Fligkou, Fotini Paliogianni, Charalambos Gogos, and George Dimopoulos. 2025. "Patterns and Predictors of Candida auris Candidemia with Multidrug-Resistant Bacterial Co-Infections: Results from the CANDI-MDR Study" Journal of Fungi 11, no. 6: 407. https://doi.org/10.3390/jof11060407
APA StyleAkinosoglou, K., Skintzi, K., Chandroulis, I., Polyzou, E., Siapika, A., Fligkou, F., Paliogianni, F., Gogos, C., & Dimopoulos, G. (2025). Patterns and Predictors of Candida auris Candidemia with Multidrug-Resistant Bacterial Co-Infections: Results from the CANDI-MDR Study. Journal of Fungi, 11(6), 407. https://doi.org/10.3390/jof11060407