Upcycling Chitin Waste and Aged Rice into Fungi Protein Through Fermentation with Cordyceps militaris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Preparation and Cultivation
2.2. Agricultural Trait Detection
2.3. Study on Surface Characteristics of Substrate
2.4. Safety and Compound Evaluation of Fruiting Bodies
2.5. Statistical Analysis
3. Results and Discussion
3.1. Study on Surface Properties of Substrates
3.1.1. FTIR Analysis
3.1.2. XPS Analysis
3.2. C. militaris Fruiting Body Germination
3.3. Agronomic Characteristics of C. militaris Fruiting Body
3.4. Statistical Analysis of LC-MS
3.5. Enrichment Analysis of Fruiting Bodies in AR and CW Substrate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Humpenöder, F.; Bodirsky, B.L.; Weindl, I.; Lotze-Campen, H.; Linder, T.; Popp, A. Projected environmental benefits of replacing beef with microbial protein. Nature 2022, 605, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Ritala, A.; Häkkinen, S.T.; Toivari, M.; Wiebe, M.G. Single cell protein—State-of-the-art, industrial landscape and patents 2001–2016. Front. Microbiol. 2017, 8, 2009. [Google Scholar] [CrossRef]
- Xu, S.; Li, F.; Gao, J.; Zhou, X.; Li, M.; Li, L.; Hui, C.; Zhang, S.; Liu, K.; Kong, W.; et al. Low GHG emissions and less nitrogen use in mushroom-based protein production from chitin-containing waste and cottonseed hull with two phase SSF. Ind. Crop. Prod. 2023, 201, 116970. [Google Scholar] [CrossRef]
- Xu, S.; Wang, F.; Fu, Y.; Li, D.; Sun, X.; Li, C.; Song, B.; Li, Y. Effects of mixed agro-residues (corn crop waste) on lignin-degrading enzyme activities, growth, and quality of Lentinula edodes. RSC Adv. 2020, 10, 9798–9807. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, K.; Sheng, B.; Tong, Y.W.; Xu, S.; Li, C. Sustainable biorefinery: Life cycle assessment for combined production of herbal mushroom and bioethanol from regional biomass. Ind. Crop. Prod. 2024, 222, 119577. [Google Scholar] [CrossRef]
- Li, C.; Xu, S. Edible mushroom industry in China: Current state and perspectives. Appl. Microbiol. Biotechnol. 2022, 106, 3949–3955. [Google Scholar] [CrossRef]
- Krishna, K.V.; Balasubramanian, B.; Park, S.; Bhattacharya, S.; Sebastian, J.K.; Liu, W.-C.; Pappuswamy, M.; Meyyazhagan, A.; Kamyab, H.; Chelliapan, S.; et al. Conservation of Endangered Cordyceps sinensis Through Artificial Cultivation Strategies of C. militaris, an Alternate. Mol. Biotechnol. 2024, 67, 1382–1397. [Google Scholar] [CrossRef]
- Katrolia, P.; Liu, X.; Zhao, Y.; Kopparapu, N.K.; Zheng, X. Gene cloning, expression and homology modeling of first fibrinolytic enzyme from mushroom (Cordyceps militaris). Int. J. Biol. Macromol. 2020, 146, 897–906. [Google Scholar] [CrossRef]
- Abdullah, S.; Kumar, A. A brief review on the medicinal uses of Cordyceps militaris. Pharmacol. Res. Mod. Chin. Med. 2023, 7, 100228. [Google Scholar]
- Kour, H.; Kour, S.; Sharma, Y.; Singh, S.; Sharma, I.; Kour, D.; Yadav, A.N. Bioprospecting of Industrially Important Mushrooms. In Industrially Important Fungi for Sustainable Development: Volume 2: Bioprospecting for Biomolecules; Abdel-Azeem, A.M., Yadav, A.N., Sharma, M., Yadav, N., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 679–716. [Google Scholar]
- Shrestha, B.; Zhang, W.; Zhang, Y.; Liu, X. The medicinal fungus Cordyceps militaris: Research and development. Mycol. Prog. 2012, 11, 599–614. [Google Scholar] [CrossRef]
- Ha, S.Y.; Kim, H.C.; Lim, W.S.; Yang, J.K. Effect of growth condition on mycelial growth and fruiting body cultivation of Cordyceps militaris wild strain. J. Mushroom 2024, 22, 81–86. [Google Scholar]
- Kennedy, M.; Krouse, D. Strategies for improving fermentation medium performance: A review. J. Ind. Microbiol. Biotechnol. 1999, 23, 456–475. [Google Scholar] [CrossRef]
- Da Silva, J.M.X. Using Different Cereals to Cultivate Cordyceps militaris. 2019. Available online: https://repository.au.edu/server/api/core/bitstreams/672ed621-c1f8-456e-a37e-df3c2c672fe5/content (accessed on 10 April 2025).
- Ha, S.; Jung, J.; Yang, J. Optimization of a solid culture medium based on Monochamus alternatus for Cordyceps militaris fruiting body formation. Lett. Appl. Microbiol. 2022, 74, 185–193. [Google Scholar] [CrossRef]
- Wellham, P.A. Cordycepin and the Entomopathogenic Fungus Cordyceps militaris. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2022. [Google Scholar]
- Chakravarty, J.; Edwards, T.A. Innovation from waste with biomass-derived chitin and chitosan as green and sustainable polymer: A review. Energy Nexus 2022, 8, 100149. [Google Scholar] [CrossRef]
- Liu, Q.; Dong, C. Dual transcriptomics reveals interspecific interactions between the mycoparasite Calcarisporium cordycipiticola and its host Cordyceps militaris. Microbiol. Spectr. 2023, 11, e0480022. [Google Scholar] [CrossRef]
- Roberts, E.H. Storage Environment and the Control of Viability; Springer: Berlin/Heidelberg, Germany, 1972; pp. 14–58. [Google Scholar]
- Ahmad, A.; Ayub, H. Fourier Transform Infrared Spectroscopy (FTIR) Technique for Food Analysis and Authentication; Springer: Berlin/Heidelberg, Germany, 2022; pp. 103–142. [Google Scholar]
- Najihah, A.; Hassan, M.Z.; Ismail, Z. Current trend on preparation, characterization and biomedical applications of natural polysaccharide-based nanomaterial reinforcement hydrogels: A review. Int. J. Biol. Macromol. 2024, 271, 132411. [Google Scholar] [CrossRef]
- Sharma, S.K.; Barthwal, R.; Saini, D.; Rawat, N. Chemistry of Food Fats, Oils, and Other Lipids; Springer: Berlin/Heidelberg, Germany, 2022; pp. 209–254. [Google Scholar]
- Soponronnarit, S.; Chiawwet, M.; Prachayawarakorn, S.; Tungtrakul, P.; Taechapairoj, C. Comparative study of physicochemical properties of accelerated and naturally aged rice. J. Food Eng. 2008, 85, 268–276. [Google Scholar] [CrossRef]
- Rahman, A.; Haque, A.; Ghosh, S.; Shinu, P.; Attimarad, M.; Kobayashi, G. Modified shrimp-based chitosan as an emerging adsorbent removing heavy metals (chromium, nickel, arsenic, and cobalt) from polluted water. Sustainability 2023, 15, 2431. [Google Scholar] [CrossRef]
- Ofem, M.; Anyandi, A.; Ene, E. Properties of chitin reinforces composites: A review. Niger. J. Technol. 2017, 36, 57–71. [Google Scholar] [CrossRef]
- Amagliani, L.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. The composition, extraction, functionality and applications of rice proteins: A review. Trends Food Sci. Technol. 2017, 64, 1–12. [Google Scholar] [CrossRef]
- Hudson, S.M.; Smith, C. Polysaccharides: Chitin and Chitosan: Chemistry and Technology of Their Use as Structural Materials; Springer: Berlin/Heidelberg, Germany, 1998; pp. 96–118. [Google Scholar]
- Sebastian, J.; Rouissi, T.; Brar, S.K. Fungal chitosan: Prospects and challenges. In Handbook of Chitin and Chitosan; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 419–452. [Google Scholar]
- Ashraf, S.A.; Elkhalifa, A.E.O.; Siddiqui, A.J.; Patel, M.; Awadelkareem, A.M.; Snoussi, M.; Ashraf, M.S.; Adnan, M.; Hadi, S. Cordycepin for health and wellbeing: A potent bioactive metabolite of an entomopathogenic medicinal fungus Cordyceps with its nutraceutical and therapeutic potential. Molecules 2020, 25, 2735. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.L.; Khoo, S.C.; Peng, W.; Ng, C.M.; Teh, C.H.; Park, Y.-K.; Lam, S.S. Green application and toxic risk of used diaper and food waste as growth substitute for sustainable cultivation of oyster mushroom (Pleurotus ostreatus). J. Clean. Prod. 2020, 268, 122272. [Google Scholar] [CrossRef]
- Varela, C.; Silva, F.; Costa, G.; Cabral, C. Alkaloids: Their Relevance in Cancer Treatment; Elsevier: Amsterdam, The Netherlands, 2023; pp. 361–401. [Google Scholar]
- Liu, Y.; Fang, Y.; Huang, M.; Jin, Y.; Sun, J.; Tao, X.; Zhang, G.; He, K.; Zhao, Y.; Zhao, H. Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) II: Transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk. Biotechnol. Biofuels 2015, 8, 1–12. [Google Scholar] [CrossRef]
- Häusler, R.E.; Ludewig, F.; Krueger, S. Amino acids—A life between metabolism and signaling. Plant Sci. 2014, 229, 225–237. [Google Scholar] [CrossRef]
- Fan, D.-D.; Wang, W.; Zhong, J.-J. Enhancement of cordycepin production in submerged cultures of Cordyceps militaris by addition of ferrous sulfate. Biochem. Eng. J. 2012, 60, 30–35. [Google Scholar] [CrossRef]
- Zhang, H.; Yue, P.; Tong, X.; Gao, T.; Peng, T.; Guo, J. Comparative analysis of fatty acid metabolism based on transcriptome sequencing of wild and cultivated Ophiocordyceps sinensis. PeerJ 2021, 9, e11681. [Google Scholar] [CrossRef]
- Iamtham, S.; Kaewkam, A.; Chanprame, S.; Pan-Utai, W. Effect of Spirulina biomass residue on yield and cordycepin and adenosine production of Cordyceps militaris culture. Bioresour. Technol. Rep. 2022, 17, 100893. [Google Scholar] [CrossRef]
- Mao, X.-B.; Eksriwong, T.; Chauvatcharin, S.; Zhong, J.-J. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process. Biochem. 2005, 40, 1667–1672. [Google Scholar] [CrossRef]
Treatment | New Rice | Aged Rice (AR) | Chitin Waste (CW) |
---|---|---|---|
Ck | 100% | 0% | 0% |
T1 | 0% | 100% | 0% |
T2 | 0% | 95% | 5% |
T3 | 0% | 90% | 10% |
T4 | 0% | 80% | 20% |
Culture Medium | Mycelium Cover Days | Mycelium Full Growth Days/h | Color Change Effect | Primordial Germination Rate% |
---|---|---|---|---|
Ck | 5 | 15 | Orange | 100 |
T1 | 5 | 15 | Orange | 100 |
T2 | 6 | 17 | Orange | 100 |
T3 | 8 | 18 | Light yellow | 75 |
T4 | 13 | 0 | white | 25 |
Culture Medium | Yield/g | Diameter/mm | Length/mm |
---|---|---|---|
Ck | 9.8 ± 1.2 ab | 2.6 ± 0.3 ab | 51.2 ± 4.5 a |
T1 | 9.8 ± 1.1 ab | 2.8 ± 0.2 a | 49.7 ± 5.7 b |
T2 | 11.5 ± 0.2 a | 2.7 ± 0.1 ab | 46.3 ± 2.3 c |
T3 | 9.1 ± 0.2 b | 2.3 ± 0.1 b | 46.1 ± 1.6 d |
T4 | Did not fruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, A.; Hui, C.; Ma, Y.; Zhang, X.; Zhang, L.; Xu, S.; Li, C. Upcycling Chitin Waste and Aged Rice into Fungi Protein Through Fermentation with Cordyceps militaris. J. Fungi 2025, 11, 315. https://doi.org/10.3390/jof11040315
Guo A, Hui C, Ma Y, Zhang X, Zhang L, Xu S, Li C. Upcycling Chitin Waste and Aged Rice into Fungi Protein Through Fermentation with Cordyceps militaris. Journal of Fungi. 2025; 11(4):315. https://doi.org/10.3390/jof11040315
Chicago/Turabian StyleGuo, Ao, Chunlin Hui, Yongsheng Ma, Xueru Zhang, Lingling Zhang, Shuai Xu, and Changtian Li. 2025. "Upcycling Chitin Waste and Aged Rice into Fungi Protein Through Fermentation with Cordyceps militaris" Journal of Fungi 11, no. 4: 315. https://doi.org/10.3390/jof11040315
APA StyleGuo, A., Hui, C., Ma, Y., Zhang, X., Zhang, L., Xu, S., & Li, C. (2025). Upcycling Chitin Waste and Aged Rice into Fungi Protein Through Fermentation with Cordyceps militaris. Journal of Fungi, 11(4), 315. https://doi.org/10.3390/jof11040315