Proteomic Approach to Study the Effect of Pneumocystis jirovecii Colonization in Idiopathic Pulmonary Fibrosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sample Collection
2.3. Detection of Pneumocystis jirovecii
2.4. iTRAQ Analysis
2.5. Pathway and Process Enrichment Analysis
2.6. Protein–Protein Interaction Networks
- (1)
- Weighting: It is proportional to the interconnectivity between nodes; those more interconnected nodes will have a higher score;
- (2)
- Complex prediction: It orders the nodes based on the weighting, starting with the node with the highest weight and iteratively moving out. Then, it adds nodes to the complexes considering a given threshold;
- (3)
- Filtering: Hair and fluff filters are applied to improve the quality of the clusters.
3. Results
3.1. iTRAQ-Based Proteomics Analysis to Identify DEPs
3.2. Pathway and Process Enrichment Analysis
3.3. Protein–Protein Interaction (PPI) Networks: Cluster and Enrichment Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lederer, D.J.; Martinez, F.J. Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2018, 378, 1811–1823. [Google Scholar] [CrossRef] [PubMed]
- Althobiani, M.A.; Russell, A.M.; Jacob, J.; Ranjan, Y.; Folarin, A.A.; Hurst, J.R.; Porter, J.C. Interstitial Lung Disease: A Review of Classification, Etiology, Epidemiology, Clinical Diagnosis, Pharmacological and Non-Pharmacological Treatment. Front. Med. 2024, 11, 1296890. [Google Scholar] [CrossRef] [PubMed]
- Ley, B.; Collard, H.R.; King, T.E. Clinical Course and Prediction of Survival in Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2011, 183, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Muri, J.; Durcová, B.; Slivka, R.; Vrbenská, A.; Makovická, M.; Makovický, P.; Škarda, J.; Delongová, P.; Kamarád, V.; Vecanová, J. Idiopathic Pulmonary Fibrosis: Review of Current Knowledge. Physiol. Res. 2024, 73, 487–497. [Google Scholar] [CrossRef]
- Moore, B.B.; Moore, T.A. Viruses in Idiopathic Pulmonary Fibrosis Etiology and Exacerbation. Ann. Am. Thorac. Soc. 2015, 12, S186–S192. [Google Scholar] [CrossRef]
- Chioma, O.S.; Drake, W.P. Role of Microbial Agents in Pulmonary Fibrosis. Yale J. Biol. Med. 2017, 90, 219–227. [Google Scholar]
- Vidal, S.; de la Horra, C.; Martín, J.; Montes-Cano, M.A.; Rodríguez, E.; Respaldiza, N.; Rodríguez, F.; Varela, J.M.; Medrano, F.J.; Calderón, E.J. Pneumocystis Jirovecii Colonisation in Patients with Interstitial Lung Disease. Clin. Microbiol. Infect. 2006, 12, 231–235. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Respaldiza, N.; Campano, E.; Martínez-Risquez, M.T.; Calderón, E.J.; De La Horra, C. Pneumocystis Jirovecii Colonization in Chronic Pulmonary Disease. Parasite 2011, 18, 121–126. [Google Scholar] [CrossRef]
- Calderón, E.J.; Rivero, L.; Respaldiza, N.; Morilla, R.; Montes-Cano, M.A.; Friaza, V.; Muñoz-Lobato, F.; Varela, J.M.; Medrano, F.J.; Horra, C. de la Systemic Inflammation in Patients with Chronic Obstructive Pulmonary Disease Who Are Colonized with Pneumocystis Jiroveci. Clin. Infect. Dis. 2007, 45, 17–19. [Google Scholar] [CrossRef]
- Fitzpatrick, M.E.; Tedrow, J.R.; Hillenbrand, M.E.; Lucht, L.; Richards, T.; Norris, K.A.; Zhang, Y.; Sciurba, F.C.; Kaminski, N.; Morris, A. Pneumocystis Jirovecii Colonization Is Associated with Enhanced Th1 Inflammatory Gene Expression in Lungs of Humans with Chronic Obstructive Pulmonary Disease. Microbiol. Immunol. 2014, 58, 202–211. [Google Scholar] [CrossRef]
- Rojas, D.A.; Ponce, C.A.; Bustos, A.; Cortés, V.; Olivares, D.; Vargas, S.L. Pneumocystis Exacerbates Inflammation and Mucus Hypersecretion in a Murine, Elastase-Induced-COPD Model. J. Fungi 2023, 9, 452. [Google Scholar] [CrossRef] [PubMed]
- Montes-Cano, M.A.; De La Horra, C.; Martín-Juan, J.; Varela, J.M.; Torronteras, R.; Respaldiza, N.; Medrano, F.J.; Calderón, E.J. Pneumocystis Jiroveci Genotypes in the Spanish Population. Clin. Infect. Dis. 2004, 39, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Kolberg, L.; Raudvere, U.; Kuzmin, I.; Vilo, J.; Peterson, H. Gprofiler2—An R Package for Gene List Functional Enrichment Analysis and Namespace Conversion Toolset g:Profiler. F1000Research 2020, 9, 709. [Google Scholar] [CrossRef]
- Kolberg, L.; Raudvere, U.; Kuzmin, I.; Adler, P.; Vilo, J.; Peterson, H. G: Profiler-Interoperable Web Service for Functional Enrichment Analysis and Gene Identifier Mapping (2023 Update). Nucleic Acids Res. 2023, 51, W207–W212. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res. 2019, 18, 623–632. [Google Scholar] [CrossRef]
- Morris, J.H.; Apeltsin, L.; Newman, A.M.; Baumbach, J.; Wittkop, T.; Su, G.; Bader, G.D.; Ferrin, T.E. ClusterMaker: A Multi-Algorithm Clustering Plugin for Cytoscape. BMC Bioinform. 2011, 12, 436. [Google Scholar] [CrossRef]
- Bader, G.D.; Hogue, C.W.V. An Automated Method for Finding Molecular Complexes in Large Protein Interaction Networks. BMC Bioinform. 2003, 4, 2. [Google Scholar] [CrossRef]
- Brohée, S.; van Helden, J. Evaluation of Clustering Algorithms for Protein-Protein Interaction Networks. BMC Bioinform. 2006, 7, 488. [Google Scholar] [CrossRef]
- Arrindell, J.; Desnues, B. Vimentin: From a Cytoskeletal Protein to a Critical Modulator of Immune Response and a Target for Infection. Front. Immunol. 2023, 14, 1224352. [Google Scholar] [CrossRef]
- Drakopanagiotakis, F.; Wujak, L.; Wygrecka, M.; Markart, P. Biomarkers in Idiopathic Pulmonary Fibrosis. Matrix Biol. 2018, 68–69, 404–421. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.T.C.; Chien, S.C.; Chen, I.Y.; Lai, C.T.; Tsay, Y.G.; Chang, S.C.; Chang, M.F. Surface Vimentin Is Critical for the Cell Entry of SARS-CoV. J. Biomed. Sci. 2016, 23, 14. [Google Scholar] [CrossRef] [PubMed]
- Amraei, R.; Xia, C.; Olejnik, J.; White, M.R.; Napoleon, M.A.; Lotfollahzadeh, S.; Hauser, B.M.; Schmidt, A.G.; Chitalia, V.; Mühlberger, E.; et al. Extracellular Vimentin Is an Attachment Factor That Facilitates SARS-CoV-2 Entry into Human Endothelial Cells. Proc. Natl. Acad. Sci. USA 2022, 119, e2113874119. [Google Scholar] [CrossRef]
- Arrindell, J.; Abou Atmeh, P.; Jayet, L.; Sereme, Y.; Mege, J.L.; Desnues, B. Vimentin Is an Important ACE2 Co-Receptor for SARS-CoV-2 in Epithelial Cells. iScience 2022, 25, 105463. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, X.; Tao, Z.; Ma, M.; Adah, D.; Li, X.; Dai, L.; Ding, W.; Fanuel, S.; Zhao, S.; et al. Plasmodium Infection Prevents Recurrence and Metastasis of Hepatocellular Carcinoma Possibly via Inhibition of the Epithelial-Mesenchymal Transition. Mol. Med. Rep. 2021, 23, 418. [Google Scholar] [CrossRef]
- Li, Z.; Paulin, D.; Lacolley, P.; Coletti, D.; Agbulut, O. Vimentin as a Target for the Treatment of COVID-19. BMJ. Open. Respir. Res. 2020, 7, e000623. [Google Scholar] [CrossRef]
- Zhao, L.; Fu, K.; Li, X.; Zhang, R.; Wang, W.; Xu, F.; Ji, X.; Chen, Y.; Li, C. Aldehyde Dehydrogenase 2 Protects Cardiomyocytes against Lipotoxicity via the AKT/Glycogen Synthase Kinase 3 Beta Pathways. Biochem. Biophys. Res. Commun. 2020, 525, 360–365. [Google Scholar] [CrossRef]
- Wei, Y.; Gao, S.; Li, C.; Huang, X.; Xie, B.; Geng, J.; Dai, H.; Wang, C. Aldehyde Dehydrogenase 2 Deficiency Aggravates Lung Fibrosis through Mitochondrial Dysfunction and Aging in Fibroblasts. Am. J. Pathol. 2024, 194, 1458–1477. [Google Scholar] [CrossRef]
- Patel, M.; Lu, L.; Zander, D.S.; Sreerama, L.; Coco, D.; Moreb, J.S. ALDH1A1 and ALDH3A1 Expression in Lung Cancers: Correlation with Histologic Type and Potential Precursors. Lung Cancer 2008, 59, 340–349. [Google Scholar] [CrossRef]
- Terzuoli, E.; Bellan, C.; Aversa, S.; Ciccone, V.; Morbidelli, L.; Giachetti, A.; Donnini, S.; Ziche, M. ALDH3A1 Overexpression in Melanoma and Lung Tumors Drives Cancer Stem Cell Expansion, Impairing Immune Surveillance through Enhanced PD-L1 Output. Cancers 2019, 11, 1963. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; He, T.; Lv, W.; Hu, J. Down-Regulation of FBP1 in Lung Adenocarcinoma Cells Promotes Proliferation and Invasion through SLUG Mediated Epithelial Mesenchymal Transformation. Transl. Cancer Res. 2023, 12, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Yuan, T.; Wu, Y.; Wang, Y.; Fan, T.W.M.; Miriyala, S.; Lin, Y.; Yao, J.; Shi, J.; Kang, T.; et al. Loss of FBP1 by Snail-Mediated Repression Provides Metabolic Advantages in Basal-like Breast Cancer. Cancer Cell 2013, 23, 316–331. [Google Scholar] [CrossRef] [PubMed]
- Qubo, A.A.; Numan, J.; Snijder, J.; Padilla, M.; Austin, J.H.M.; Capaccione, K.M.; Pernia, M.; Bustamante, J.; O’connor, T.; Salvatore, M.M. Idiopathic Pulmonary Fibrosis and Lung Cancer: Future Directions and Challenges. Breathe 2022, 18, 220147. [Google Scholar] [CrossRef]
- Dong, Y.; Sheng, H.; Wan, D.; Zhu, C.; Jiang, R.; Sun, X.; Feng, J. Significance of Methylation of FBP1 Gene in Non-Small Cell Lung Cancer. Biomed. Res. Int. 2018, 2018, 13–19. [Google Scholar] [CrossRef]
- Li, C.; Zhu, L.; Yang, Y.; Zhang, T.; Chen, C.; Zhang, Y.; Ji, W.; Duan, X.; Xue, W.; Li, L.; et al. Overexpression of FBP1 Enhances Dendritic Cell Activation and Maturation by Inhibiting Glycolysis and Promoting the Secretion of IL33 in Lung Adenocarcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1871, 167559. [Google Scholar] [CrossRef]
- Li, L.; Yang, L.; Fan, Z.; Xue, W.; Shen, Z.; Yuan, Y.; Sun, X.; Wang, D.; Lian, J.; Wang, L.; et al. Hypoxia-Induced GBE1 Expression Promotes Tumor Progression through Metabolic Reprogramming in Lung Adenocarcinoma. Signal Transduct. Target. Ther. 2020, 5, 54. [Google Scholar] [CrossRef]
- Jin, X.; Wang, D.; Lei, M.; Guo, Y.; Cui, Y.; Chen, F.; Sun, W.; Chen, X. TPI1 Activates the PI3K/AKT/MTOR Signaling Pathway to Induce Breast Cancer Progression by Stabilizing CDCA5. J. Transl. Med. 2022, 20, 191. [Google Scholar] [CrossRef]
- Liu, P.; Sun, S.J.; Ai, Y.J.; Feng, X.; Zheng, Y.M.; Gao, Y.; Zhang, J.Y.; Zhang, L.; Sun, Y.P.; Xiong, Y.; et al. Elevated Nuclear Localization of Glycolytic Enzyme TPI1 Promotes Lung Adenocarcinoma and Enhances Chemoresistance. Cell Death Dis. 2022, 13, 205. [Google Scholar] [CrossRef]
- Duan, Y.; Li, J.; Wang, F.; Wei, J.; Yang, Z.; Sun, M.; Liu, J.; Wen, M.; Huang, W.; Chen, Z.; et al. Protein Modifications throughout the Lung Cancer Proteome Unravel the Cancer-Specific Regulation of Glycolysis. Cell Rep. 2021, 37, 110137. [Google Scholar] [CrossRef]
- Chen, T.; Huang, Z.; Tian, Y.; Haiwei, W.; Ouyang, P.; Chen, H.; Wu, L.; Lin, B.; He, R. Role of Triosephosphate Isomerase and Downstream Functional Genes on Gastric Cancer. Oncol. Rep. 2017, 38, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Myers, T.D.; Palladino, M.J. Newly Discovered Roles of Triosephosphate Isomerase Including Functions within the Nucleus. Mol. Med. 2023, 29, 18. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.S.; Cha, Y.H.; Kim, H.S.; Kim, N.H.; Yook, J.I. The Pentose Phosphate Pathway as a Potential Target for Cancer. Therapy. Biomol. Ther. 2018, 26, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.H.; Parker, J.S.; Karaca, G.; Wu, J.; Funkhouser, W.K.; Moore, D.; Butterfoss, D.; Xiang, D.; Zanation, A.; Yin, X.; et al. Molecular Classification of Head and Neck Squamous Cell Carcinomas Using Patterns of Gene Expression. Cancer Cell 2004, 5, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Kočevar, N.; Odreman, F.; Vindigni, A.; Grazio, S.F.; Komel, R. Proteomic Analysis of Gastric Cancer and Immunoblot Validation of Potential Biomarkers. World J. Gastroenterol. 2012, 18, 1216–1228. [Google Scholar] [CrossRef]
- Ma, Y.; Peng, J.; Huang, L.; Liu, W.; Zhang, P.; Qin, H. Searching for Serum Tumor Markers for Colorectal Cancer Using a 2-D DIGE Approach. Electrophoresis 2009, 30, 2591–2599. [Google Scholar] [CrossRef]
- Yi, H.; Zheng, X.; Song, J.; Shen, R.; Su, Y.; Lin, D. Exosomes Mediated Pentose Phosphate Pathway in Ovarian Cancer Metastasis: A Proteomics Analysis. Int. J. Clin. Exp. Pathol. 2015, 8, 15719–15728. [Google Scholar]
- Wang, C.; Guo, K.; Gao, D.; Kang, X.; Jiang, K.; Li, Y.; Sun, L.; Zhang, S.; Sun, C.; Liu, X.; et al. Identification of Transaldolase as a Novel Serum Biomarker for Hepatocellular Carcinoma Metastasis Using Xenografted Mouse Model and Clinic Samples. Cancer Lett. 2011, 313, 154–166. [Google Scholar] [CrossRef]
- Wu, Y.R.; Lee, Y.C.; Li, W.M.; Hsu, W.C.; Lin, H.H.; Chang, L.L.; Huang, A.M.; Jhan, J.H.; Wu, W.J.; Li, C.C.; et al. High Transaldolase 1 Expression Predicts Poor Survival of Patients with Upper Tract Urothelial Carcinoma. Pathol. Int. 2021, 71, 463–470. [Google Scholar] [CrossRef]
- Kim, Y.J.; Sertamo, K.; Pierrard, M.A.; Mesmin, C.; Kim, S.Y.; Schlesser, M.; Berchem, G.; Domon, B. Verification of the Biomarker Candidates for Non-Small-Cell Lung Cancer Using a Targeted Proteomics Approach. J. Proteome Res. 2015, 14, 1412–1419. [Google Scholar] [CrossRef]
- Hackett, N.R.; Heguy, A.; Harvey, B.G.; O’Connor, T.P.; Luettich, K.; Flieder, D.B.; Kaplan, R.; Crystal, R.G. Variability of Antioxidant-Related Gene Expression in the Airway Epithelium of Cigarette Smokers. Am. J. Respir. Cell Mol. Biol. 2003, 29, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Mitsuishi, Y.; Taguchi, K.; Kawatani, Y.; Shibata, T.; Nukiwa, T.; Aburatani, H.; Yamamoto, M.; Motohashi, H. Nrf2 Redirects Glucose and Glutamine into Anabolic Pathways in Metabolic Reprogramming. Cancer Cell 2012, 22, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Mo, X.; Cui, W.; Zhang, Z.; Li, D.; Li, L.; Xu, L.; Yao, H.; Gao, J. Nrf2 Inhibits Epithelial-Mesenchymal Transition by Suppressing Snail Expression during Pulmonary Fibrosis. Sci. Rep. 2016, 6, 38646. [Google Scholar] [CrossRef]
- Nukui, A.; Narimatsu, T.; Kambara, T.; Abe, H.; Sakamoto, S.; Yoshida, K.I.; Kamai, T. Clinically Significant Association of Elevated Expression of Nuclear Factor E2-Related Factor 2 Expression with Higher Glucose Uptake and Progression of Upper Urinary Tract Cancer. BMC Cancer 2018, 18, 493. [Google Scholar] [CrossRef]
- Wu, J.; Chen, Y.; Zou, H.; Xu, K.; Hou, J.; Wang, M.; Tian, S.; Gao, M.; Ren, Q.; Sun, C.; et al. 6-Phosphogluconate Dehydrogenase Promotes Glycolysis and Fatty Acid Synthesis by Inhibiting the AMPK Pathway in Lung Adenocarcinoma Cells. Cancer Lett. 2024, 601, 217177. [Google Scholar] [CrossRef]
- Abell, K.; Watson, C.J. The Jak/Stat Pathway a Novel Way to Regulate PI3K Activity. Cell Cycle 2005, 4, 897–900. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT Signaling Pathway: From Bench to Clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef]
- Beers, M.F.; Atochina, E.N.; Preston, A.M.; Beck, J.M. Inhibition of Lung Surfactant Protein B Expression during Pneumocystis Carinii Pneumonia in Mice. J. Lab. Clin. Med. 1999, 133, 423–433. [Google Scholar] [CrossRef]
- Wei, P.; Xie, Y.; Abel, P.W.; Huang, Y.; Ma, Q.; Li, L.; Hao, J.; Wolff, D.W.; Wei, T.; Tu, Y. Transforming Growth Factor (TGF)-Β1-Induced MiR-133a Inhibits Myofibroblast Differentiation and Pulmonary Fibrosis. Cell Death Dis. 2019, 10, 670. [Google Scholar] [CrossRef]
- Bartoli, G.; Ricci, A.; Mazza, A. Serum Levels of Surfactant Protein-B (SP-B) as Biomarker in IPF and ILD-SSc. ERJ Open Res. 2022, 8, 145. [Google Scholar] [CrossRef]
- Stroo, E.; Koopman, M.; Nollen, E.A.A.; Mata-Cabana, A. Cellular Regulation of Amyloid Formation in Aging and Disease. Front. Neurosci. 2017, 11, 64. [Google Scholar] [CrossRef]
- Heukels, P.; Moor, C.C.; von der Thüsen, J.H.; Wijsenbeek, M.S.; Kool, M. Inflammation and Immunity in IPF Pathogenesis and Treatment. Respir. Med. 2019, 147, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, E.; Ménard, S.; Marques, C.; Berry, A.; Iriart, X. Immune Response in Pneumocystis Infections According to the Host Immune System Status. J. Fungi 2021, 7, 625. [Google Scholar] [CrossRef] [PubMed]
Sample | Group | Label | Sex | Age |
---|---|---|---|---|
1 | Control with PJ | 114 | Female | 48 |
2 | Control without PJ | 115 | Female | 61 |
3 | IPF with PJ | 116 | Male | 60 |
4 | IPF with PJ | 116 | Male | 64 |
5 | IPF with PJ | 116 | Male | 76 |
6 | IPF with PJ | 116 | Male | 66 |
7 | IPF with PJ | 116 | Male | 67 |
8 | IPF without PJ | 117 | Female | 69 |
9 | IPF without PJ | 117 | Male | 45 |
Number of Proteins a | |||
---|---|---|---|
Group | Downregulated (<0.8) | Upregulated (>1.2) | Total |
Control with PJ | 38 | 33 | 71 |
IPF with PJ | 33 | 35 | 68 |
IPF without PJ | 27 | 34 | 61 |
Global | 92 |
Fold Change a | ||||
---|---|---|---|---|
Protein Name | Gene Symbol | Control with PJ | IPF with PJ | IPF Without PJ |
Vimentin | VIM | 0.563 | 3.283 | 2.912 |
Hemoglobin subunit alpha | HBA1 | 6.184 | 0.559 | 0.729 |
Hemoglobin subunit beta | HBB | 4.857 | 0.557 | 0.494 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona-Pírez, J.; Salsoso, R.; Charpentier, E.; Olmedo, C.; Medrano, F.J.; Román, L.; de la Horra, C.; de Armas, Y.; Calderón, E.J.; Friaza, V. Proteomic Approach to Study the Effect of Pneumocystis jirovecii Colonization in Idiopathic Pulmonary Fibrosis. J. Fungi 2025, 11, 102. https://doi.org/10.3390/jof11020102
Carmona-Pírez J, Salsoso R, Charpentier E, Olmedo C, Medrano FJ, Román L, de la Horra C, de Armas Y, Calderón EJ, Friaza V. Proteomic Approach to Study the Effect of Pneumocystis jirovecii Colonization in Idiopathic Pulmonary Fibrosis. Journal of Fungi. 2025; 11(2):102. https://doi.org/10.3390/jof11020102
Chicago/Turabian StyleCarmona-Pírez, Jonás, Rocío Salsoso, Eléna Charpentier, Cinta Olmedo, Francisco J. Medrano, Lucas Román, Carmen de la Horra, Yaxsier de Armas, Enrique J. Calderón, and Vicente Friaza. 2025. "Proteomic Approach to Study the Effect of Pneumocystis jirovecii Colonization in Idiopathic Pulmonary Fibrosis" Journal of Fungi 11, no. 2: 102. https://doi.org/10.3390/jof11020102
APA StyleCarmona-Pírez, J., Salsoso, R., Charpentier, E., Olmedo, C., Medrano, F. J., Román, L., de la Horra, C., de Armas, Y., Calderón, E. J., & Friaza, V. (2025). Proteomic Approach to Study the Effect of Pneumocystis jirovecii Colonization in Idiopathic Pulmonary Fibrosis. Journal of Fungi, 11(2), 102. https://doi.org/10.3390/jof11020102