Arbuscular Mycorrhizal and Trichoderma longibrachiatum Enhance Soil Quality and Improve Microbial Community Structure in Albic Soil Under Straw Return
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup, Test Materials
2.2. Soil Chemical Properties Determination
2.3. Soil Enzyme Activities Determination
2.4. Soil Quality Index Calculation
2.5. Sequencing of Rhizosphere Microorganisms
2.6. Data Processing
3. Results
3.1. Arbuscular Mycorrhizal and T. longibrachiatum on Chemical Characteristics of Albic Soil
3.2. Arbuscular Mycorrhizal and T. longibrachiatum on Soil Enzyme Activities and SQI in Albic Soil
3.3. Arbuscular Mycorrhizal and T. longibrachiatum on the Bacteria and Fungi Community Diversity in Albic Soil
3.4. Arbuscular Mycorrhizal and T. longibrachiatum on Bacteria and Fungi Community Composition
3.5. Arbuscular Mycorrhizal and T. longibrachiatum on Bacteria and Fungi LEfSe Differences
3.6. Arbuscular Mycorrhizal and T. longibrachiatum on Microbial Function Prediction
3.7. Conjoint Analysis of Soil Chemical Parameters and Microbial Communities
4. Discussion
4.1. Effects of Arbuscular Mycorrhizal and T. longibrachiatum on Chemical Properties of Albic Soils
4.2. Effects of Arbuscular Mycorrhizal and T. longibrachiatum on Microbial Communities in Albic Soil
4.3. Effects of Arbuscular Mycorrhizal and T. longibrachiatum on Soil Quality of Albic Soils
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IUSS working Group WRB WRB Soil Classification. Available online: https://www.isric.org/explore/wrb (accessed on 17 April 2025).
- Liqun, X.; Weiming, Z.; Di, W.; Yanyan, S.; Honggui, Z.; Wenqi, G.; Jun, M.; Chen, W. Heat Storage Capacity and Temporal-Spatial Response in the Soil Temperature of Albic Soil Amended with Maize-Derived Biochar for 2 Years. Soil Tillage Res. 2021, 205, 104762. [Google Scholar] [CrossRef]
- Yin, D.; Li, H.; Wang, H.; Guo, X.; Wang, Z.; Lv, Y.; Ding, G.; Jin, L.; Lan, Y. Impact of Different Biochars on Microbial Community Structure in the Rhizospheric Soil of Rice Grown in Albic Soil. Molecules 2021, 26, 4783. [Google Scholar] [CrossRef]
- Wang, J.; Sun, C.; Zhang, Y.; Xiao, J.; Ma, Y.; Jiang, J.; Jiang, Z.; Zhang, L. Straw Return Rearranges Soil Pore Structure Improving Soil Moisture Memory in a Maize Field Experiment under Rainfed Conditions. Agric. Water Manag. 2024, 306, 109164. [Google Scholar] [CrossRef]
- Li, D.; Qi, Z.; Guo, J.; Wang, T.; Li, X.; Hou, N. Study on the Screening of High-Efficiency Salt and Alkali-Tolerant Microbial Agents and Their Roles and Mechanisms in Enhancing Saline-Alkaline Soil Remediation. J. Clean. Prod. 2025, 519, 145992. [Google Scholar] [CrossRef]
- Lin, Y.; Yu, C.; Zhang, Y.; Lu, L.; Xu, D.; Peng, X. Biochar Modification Methods and Mechanisms for Salt-Affected Soil and Saline-Alkali Soil Improvement: A Review. Soil Use Manag. 2023, 40, e12992. [Google Scholar] [CrossRef]
- Gao, X.; Liu, W.; Li, X.; Zhang, W.; Bu, S.; Wang, A. A Novel Fungal Agent for Straw Returning to Enhance Straw Decomposition and Nutrients Release. Environ. Technol. Innov. 2023, 30, 103064. [Google Scholar] [CrossRef]
- Shen, K.; He, Y.; Xia, T.; Guo, Y.; Wu, B.; Han, X.; Chen, H.; Zhao, Y.; Li, J.; Gao, L.; et al. Arbuscular Mycorrhizal Fungi Promote Superior Root Trait Combinations Conducive to Soil Nutrient Acquisition by Natives Relative to Invaders. Rhizosphere 2023, 28, 100804. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, P.; Cao, F.; Liu, X.; Ji, M.; Xie, M. Effects of AMF on Maize Yield and Soil Microbial Community in Sandy and Saline Soils. Plants 2024, 13, 2056. [Google Scholar] [CrossRef]
- Wang, M.; Qi, X.; Shi, Y.; Zhao, J.; Ahmad, S.; Akhtar, K.; Chen, B.; Lian, T.; He, B.; Wen, R. Sugarcane Straw Returning Is an Approaching Technique for the Improvement of Rhizosphere Soil Functionality, Microbial Community, and Yield of Different Sugarcane Cultivars. Front. Microbiol. 2023, 14, 1133973. [Google Scholar] [CrossRef]
- Ali, S.; Khan, M.J.; Anjum, M.M.; Khan, G.R.; Ali, N. Trichoderma Harzianum Modulates Phosphate and Micronutrient Solubilization in the Rhizosphere. Gesunde Pflanz. 2022, 74, 853–862. [Google Scholar] [CrossRef]
- Strakowska, J.; Błaszczyk, L.; Chełkowski, J. The Significance of Cellulolytic Enzymes Produced by Trichodermain Opportunistic Lifestyle of This Fungus. J. Basic Microbiol. 2014, 54, S2–S13. [Google Scholar] [CrossRef]
- Cheng, H.; Gao, M.; Yang, W.; Sun, H.; Kong, T.; Xu, H. Combined Application of Organic Wastes and Trichoderma Longibraciatum to Promote Vegetation Restoration and Soil Quality on Mining Waste Dump Sites. Plant Soil 2024, 508, 567–588. [Google Scholar] [CrossRef]
- Abdelhameed, E.R.; Metwally, A.R. Assessment of Beneficial Fungal Microorganism’s Bio-Efficacy in Stimulating Morphological and Physiological Parameters of Allium Cepa Plants Grown in Soil Amended with Fish Wastes. BMC Plant Biol. 2022, 22, 617. [Google Scholar] [CrossRef] [PubMed]
- Covacevich, F.; Fernandez-Gnecco, G.; Consolo, V.F.; Burges, P.L.; Calo, G.F.; Mondino, E.A. Combined Soil Inoculation with Mycorrhizae and Trichoderma Alleviates Nematode-Induced Decline in Mycorrhizal Diversity. Diversity 2025, 17, 334. [Google Scholar] [CrossRef]
- Baldi, E.; Amadei, P.; Pelliconi, F.; Tosell, M. Use of Trichoderma spp. and Arbuscular Mycorrhizal Fungi to Increase Soil Beneficial Population of Bacteria in a Nectarine Commercial Orchard: Effect on Root Growth, Nutrient Acquisition and Replanting Disease. J. Plant Nutr. 2015, 39, 1147–1155. [Google Scholar] [CrossRef]
- Almuslimawi, A.A.A.; Kuchár, B.; Navas, S.E.A.; Turóczi, G.; Posta, K. The Effect of Combined Application of Biocontrol Microorganisms and Arbuscular Mycorrhizal Fungi on Plant Growth and Yield of Tomato (Solanum lycopersicum L.). Agriculture 2024, 14, 768. [Google Scholar] [CrossRef]
- Ding, T.; Feng, W.; Bai, M.; Gu, L.; Duan, T. Arbuscular Mycorrhizal Fungi and Trichoderma Longibrachiatum Alter the Transcriptome of Vicia Villosa in Response to Infection by the Fungal Pathogen Stemphylium Vesicarium. BMC Microbiol. 2025, 25, 86. [Google Scholar] [CrossRef]
- Sain, S.K.; Dewasi, H.; Singh, A. Combined Application of Effective Trichoderma, Pseudomonas and Arbuscular Mycorrhiza spp. Reduced Soil-Borne Diseases and Boosted Growth in Cotton. Egypt. J. Biol. Pest Control 2023, 33, 94. [Google Scholar] [CrossRef]
- Masquelier, S.; Sozzi, T.; Bouvet, J.C.; Bésiers, J.; Deogratias, J.-M. Conception and Development of Recycled Raw Materials (Coconut Fiber and Bagasse)-Based Substrates Enriched with Soil Microorganisms (Arbuscular Mycorrhizal Fungi, Trichoderma spp. and Pseudomonas spp.) for the Soilless Cultivation of Tomato (S. lycopersicum). Agronomy 2022, 12, 767. [Google Scholar] [CrossRef]
- Alves, G.S.; Bertini, S.C.B.; Barbosa, B.B.; Pimentel, J.P.; Ribeiro Junior, V.A.; de Oliveira Mendes, G.; Azevedo, L.C.B. Fungal Endophytes Inoculation Improves Soil Nutrient Availability, Arbuscular Mycorrhizal Colonization and Common Bean Growth. Rhizosphere 2021, 18, 100330. [Google Scholar] [CrossRef]
- Yang, R.; Qin, Z.; Wang, J.; Zhang, X.; Xu, S.; Zhao, W.; Huang, Z. The Interactions between Arbuscular Mycorrhizal Fungi and Trichoderma Longibrachiatum Enhance Maize Growth and Modulate Root Metabolome under Increasing Soil Salinity. Microorganisms 2022, 10, 1042. [Google Scholar] [CrossRef]
- Liu, M.; Ke, X.; Joseph, S.; Siddique, K.H.M.; Pan, G.; Solaiman, Z.M. Interaction of Rhizobia with Native AM Fungi Shaped Biochar Effect on Soybean Growth. Ind. Crops Prod. 2022, 187, 115508. [Google Scholar] [CrossRef]
- Hanson, J.D.; Johnson, H.A. Germination of Switchgrass under Various Temperature and pH Regimes. Seed Technol. 2005, 27, 203–210. [Google Scholar]
- Wang, Z.; Hasi, E.; Han, X.; Qingda, M. Fractal Characterization of Soil Particle Size Distribution under Different Land Use Patterns on the North Slope of Wula Mountain in China. J. Soils Sediments 2024, 24, 1148–1164. [Google Scholar] [CrossRef]
- Soltanpour, P.N.; Schwab, A.P. A New Soil Test for Simultaneous Extraction of Macro- and Micro-nutrients in Alkaline Soils1. Commun. Soil Sci. Plant Anal. 1977, 8, 195–207. [Google Scholar] [CrossRef]
- Li, A.; Wu, Y.; Tai, X.; Cao, S.; Gao, T. Effects of Alfalfa Crop Rotation on Soil Nutrients and Loss of Soil and Nutrients in Semi-Arid Regions. Sustainability 2023, 15, 15164. [Google Scholar] [CrossRef]
- Bremner, J.M.; Tabatabai, M.A. Use of an Ammonia Electrode for Determination of Ammonium in Kjeldahl Analysis of Soils1. Commun. Soil Sci. Plant Anal. 1972, 3, 159–165. [Google Scholar] [CrossRef]
- Ye, C.; Zheng, G.; Tao, Y.; Xu, Y.; Chu, G.; Xu, C.; Chen, S.; Liu, Y.; Zhang, X.; Wang, D. Effect of Soil Texture on Soil Nutrient Status and Rice Nutrient Absorption in Paddy Soils. Agronomy 2024, 14, 1339. [Google Scholar] [CrossRef]
- Wen, Y.; Wu, R.; Qi, D.; Xu, T.; Chang, W.; Li, K.; Fang, X.; Song, F. The Effect of AMF Combined with Biochar on Plant Growth and Soil Quality under Saline-Alkali Stress: Insights from Microbial Community Analysis. Ecotoxicol. Environ. Saf. 2024, 281, 116592. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Ebinger, M. Determining Soil Quality Indicators by Factor Analysis. Soil Tillage Res. 2006, 87, 194–204. [Google Scholar] [CrossRef]
- Masto, R.E.; Chhonkar, P.K.; Singh, D.; Patra, A.K. Alternative Soil Quality Indices for Evaluating the Effect of Intensive Cropping, Fertilisation and Manuring for 31 Years in the Semi-Arid Soils of India. Environ. Monit. Assess. 2007, 136, 419–435. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zhong, S.; Luo, K.; Yang, S.; Xia, J.; Chen, Q. Effect of Metal Pollution on the Distribution and Co-Occurrence Pattern of Bacterial, Archaeal and Fungal Communities throughout the Soil Profiles. Chemosphere 2023, 315, 137692. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Wang, Q.; Zhang, H.; Liang, Y.; Qi, Z.; Zhou, W.; Li, J.; Tu, H. Changes in Tillage Characteristics of Albic Soil with Various Soil Amendment Materials. Soil Use Manag. 2024, 40, e13152. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, N.; Zeng, X.; Lan, Q.; Ma, N.; Wu, C. Effects of Biochar and Trichoderma on Bacterial Community Diversity in Continuous Cropping Soil. Hortic. Environ. Biotechnol. 2022, 63, 1–12. [Google Scholar] [CrossRef]
- Wen, Z.; Chen, Y.; Liu, Z.; Meng, J. Biochar and Arbuscular Mycorrhizal Fungi Stimulate Rice Root Growth Strategy and Soil Nutrient Availability. Eur. J. Soil Biol. 2022, 113, 103448. [Google Scholar] [CrossRef]
- Juhász, T.; Egyházi, A.; Réczey, K. Beta-Glucosidase Production by Trichoderma reesei. Appl. Biochem. Biotechnol. 2005, 121, 243–254. [Google Scholar] [CrossRef]
- Wang, L.; Sun, K.; Pan, S.; Wang, S.; Yan, Z.; Zhu, L.; Yang, X. Exogenous Microbial Antagonism Affects the Bioaugmentation of Humus Formation under Different Inoculation Using Trichoderma reesei and Phanerochaete chrysosporium. Bioresour. Technol. 2023, 373, 128717. [Google Scholar] [CrossRef]
- Li, T.; Pei, R.; Wang, J.; Zhou, Y.; Liu, D. Functional Study of Different Lignocellulases from Trichoderma Guizhouence NJAU4742 in the Synergistic Degradation of Natural Straw. Fermentation 2024, 10, 230. [Google Scholar] [CrossRef]
- Xu, H.; Shao, H.; Lu, Y. Arbuscular Mycorrhiza Fungi and Related Soil Microbial Activity Drive Carbon Mineralization in the Maize Rhizosphere. Ecotoxicol. Environ. Saf. 2019, 182, 109476. [Google Scholar] [CrossRef]
- Liu, Y.-W.; Guan, D.-X.; Qiu, L.-X.; Luo, Y.; Liu, F.; Teng, H.H.; Kuzyakov, Y.; Ma, L.Q. Spatial Dynamics of Phosphorus Mobilization by Mycorrhiza. Soil Biol. Biochem. 2025, 206, 109797. [Google Scholar] [CrossRef]
- Jiao, S.; Chen, W.; Wang, J.; Du, N.; Li, Q.; Wei, G. Soil Microbiomes with Distinct Assemblies through Vertical Soil Profiles Drive the Cycling of Multiple Nutrients in Reforested Ecosystems. Microbiome 2018, 6, 146. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Zhang, S.; Wang, Y.; Hong, L.; Qiu, M.; Wang, Y.; Luo, Y.; Zhang, Q.; Wang, T.; Jia, X.; et al. Dahongpao Mother Tree Affects Soil Microbial Community and Nutrient Cycling by Increasing Rhizosphere Soil Characteristic Metabolite Content. Front. Plant Sci. 2025, 16, 1508622. [Google Scholar] [CrossRef] [PubMed]
- Dietterich, L.H.; Bouskill, N.J.; Brown, M.; Castro, B.; Chacon, S.S.; Colburn, L.; Cordeiro, A.L.; García, E.H.; Gordon, A.A.; Gordon, E.; et al. Effects of Experimental and Seasonal Drying on Soil Microbial Biomass and Nutrient Cycling in Four Lowland Tropical Forests. Biogeochemistry 2022, 161, 227–250. [Google Scholar] [CrossRef]
- Wu, N.; Li, Z.; Tang, M. Impact of Salt and Exogenous AM Inoculation on Indigenous Microbial Community Structure in the Rhizosphere of Dioecious Plant, Populus cathayana. Sci. Rep. 2021, 11, 18403. [Google Scholar] [CrossRef]
- Yu, C.; Jiang, X.; Xu, H.; Ding, G. Trichoderma Longibrachiatum Inoculation Improves Drought Resistance and Growth of Pinus Massoniana Seedlings through Regulating Physiological Responses and Soil Microbial Community. J. Fungi 2023, 9, 694. [Google Scholar] [CrossRef]
- Mar Vázquez, M.; César, S.; Azcón, R.; Barea, J.M. Interactions between Arbuscular Mycorrhizal Fungi and Other Microbial Inoculants (Azospirillum, Pseudomonas, Trichoderma) and Their Effects on Microbial Population and Enzyme Activities in the Rhizosphere of Maize Plants. Appl. Soil Ecol. 2000, 15, 261–272. [Google Scholar] [CrossRef]
- Alarcón, A.; Davies, F.T.; Autenrieth, R.L.; Zuberer, D.A. Arbuscular Mycorrhiza and Petroleum-Degrading Microorganisms Enhance Phytoremediation of Petroleum-Contaminated Soil. Int. J. Phytoremediation 2008, 10, 251–263. [Google Scholar] [CrossRef]
- Gatheru Waigi, M.; Sun, K.; Gao, Y. Sphingomonads in Microbe-Assisted Phytoremediation: Tackling Soil Pollution. Spec. Issue Environ. Biotechnol. 2017, 35, 883–899. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Zhu, W.; Hu, S.; Yan, X.; Hong, Q. Remediation of Isoproturon-Contaminated Soil by Sphingobium sp. Strain YBL2: Bioaugmentation, Detoxification and Community Structure. J. Hazard. Mater. 2024, 476, 134968. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Y.; Yu, D.; Hou, R.; Ma, X.; Liu, J.; Cao, Z.; Cheng, K.; Yan, G.; Zhang, C.; et al. Combined Addition of Biochar and Garbage Enzyme Improving the Humification and Succession of Fungal Community during Sewage Sludge Composting. Bioresour. Technol. 2022, 346, 126344. [Google Scholar] [CrossRef]
- Senkovs, M.; Nikolajeva, V.; Makarenkova, G.; Petrina, Z. Influence of Trichoderma asperellum and Bacillus subtilis as Biocontrol and Plant Growth Promoting Agents on Soil Microbiota. Ann. Microbiol. 2021, 71, 34. [Google Scholar] [CrossRef]
- Wang, G.; Jin, Z.; George, T.S.; Feng, G.; Zhang, L. Arbuscular Mycorrhizal Fungi Enhance Plant Phosphorus Uptake through Stimulating Hyphosphere Soil Microbiome Functional Profiles for Phosphorus Turnover. New Phytol. 2023, 238, 2578–2593. [Google Scholar] [CrossRef]
- Parada, J.; Valenzuela, T.; Gómez, F.; Tereucán, G.; García, S.; Cornejo, P.; Winterhalter, P.; Ruiz, A. Effect of Fertilization and Arbuscular Mycorrhizal Fungal Inoculation on Antioxidant Profiles and Activities in Fragaria Ananassa Fruit. J. Sci. Food Agric. 2018, 99, 1397–1404. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, Q.; Guan, Y.; Liu, Z.; Pan, X.; Zhang, Y.; Zhang, Y.; Wang, Q. Trichoderma spp. Promotes Ginseng Biomass by Influencing the Soil Microbial Community. Front. Microbiol. 2024, 15, 1283492. [Google Scholar] [CrossRef]
- Gujre, N.; Soni, A.; Rangan, L.; Tsang, D.C.W.; Mitra, S. Sustainable Improvement of Soil Health Utilizing Biochar and Arbuscular Mycorrhizal Fungi: A Review. Environ. Pollut. 2021, 268, 115549. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Peng, J.; Gu, Y.; Guo, H.; Jiang, T.; Yang, H. The Early Effect of Plant Density on Soil Physicochemical Attributes and Bacterial and Understory Plant Diversity in Phoebe Zhennan Plantations. Forests 2023, 14, 1612. [Google Scholar] [CrossRef]
- Lombardino, J.; Bijlani, S.; Singh, N.K.; Wood, J.M.; Barker, R.; Gilroy, S.; Wang, C.C.C.; Venkateswaran, K. Genomic Characterization of Potential Plant Growth-Promoting Features of Sphingomonas Strains Isolated from the International Space Station. Microbiol. Spectr. 2022, 10, e0199421. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Park, J.Y.; Kim, J.N.; Yu, J.; Kim, B. Complete Genome Sequence of Sphingomonas sp. Strain NIBR02145. Microbiol. Resour. Announc. 2023, 12, e0006723. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Riaz, A.; Jiang, J.; Li, X.; Uzair, M.; Mishra, P.; Zeb, A.; Zhang, J.; Singh, R.P.; Luo, L.; et al. Advancing Climate-Resilient Sorghum: The Synergistic Role of Plant Biotechnology and Microbial Interactions. Rice 2025, 18, 41. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, B.; Wang, Q.; Liu, J.; Xun, W.; Lv, Y.; Song, F.; Yu, H. Arbuscular Mycorrhizal and Trichoderma longibrachiatum Enhance Soil Quality and Improve Microbial Community Structure in Albic Soil Under Straw Return. J. Fungi 2025, 11, 747. https://doi.org/10.3390/jof11100747
Zhang Y, Zhang B, Wang Q, Liu J, Xun W, Lv Y, Song F, Yu H. Arbuscular Mycorrhizal and Trichoderma longibrachiatum Enhance Soil Quality and Improve Microbial Community Structure in Albic Soil Under Straw Return. Journal of Fungi. 2025; 11(10):747. https://doi.org/10.3390/jof11100747
Chicago/Turabian StyleZhang, Yu, Bo Zhang, Qiuju Wang, Jie Liu, Wenwen Xun, Yanling Lv, Fuqiang Song, and Hongjiu Yu. 2025. "Arbuscular Mycorrhizal and Trichoderma longibrachiatum Enhance Soil Quality and Improve Microbial Community Structure in Albic Soil Under Straw Return" Journal of Fungi 11, no. 10: 747. https://doi.org/10.3390/jof11100747
APA StyleZhang, Y., Zhang, B., Wang, Q., Liu, J., Xun, W., Lv, Y., Song, F., & Yu, H. (2025). Arbuscular Mycorrhizal and Trichoderma longibrachiatum Enhance Soil Quality and Improve Microbial Community Structure in Albic Soil Under Straw Return. Journal of Fungi, 11(10), 747. https://doi.org/10.3390/jof11100747