Hypoglycemic Properties of Leccinum scabrum Extracts—An In Vitro Study on α-Glucosidase and α-Amylase Inhibition and Metabolic Profile Determination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Fungal Material and Extract Preparation
2.2.1. Microwave-Assisted Extraction (MAE)
2.2.2. Conventional Extraction
2.3. α-Glucosidase Inhibitory Activity Assay
2.4. α-Amylase Inhibitory Activity Assay
2.5. In Vitro Cytotoxicity Assay
2.6. In Vivo Assessment of Hypoglycemic Activity of L. scabrum Microwave/EtOAc Extract
- Acarbose and DNJ working concentrations: 50 µM, 100 µM, 150 µM, and 200 µM;
- Mushroom microwave/EtOAc extract stock solution (10 mg/mL) was diluted to 0.3%, 0.1%, 0.05%, 0.025%, and 0.0125%.
2.7. Statistical Method
2.8. Qualitative Extract Characterization—Fractionation, GC-MS Analysis, and HRMS-ESI Analysis of L. scabrum Extract Obtained with EtOAc under Microwave Irradiation
2.8.1. Fractionation and GC-MS Analysis
2.8.2. HRMS-ESI Analysis
3. Results
3.1. Biological Assays
3.2. Extraction Efficiency
3.3. GC-MS Profiling of L. scabrum Ethyl Acetate Extract Fractions
3.4. HRMS-ESI Analysis of L. scabrum Ethyl Acetate Extract
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, K. Role of edible mushrooms as functional foods—A review. South Asian J. Food Technol. Environ. 2015, 1, 211–218. [Google Scholar] [CrossRef]
- Adebayo, E.A.; Oloke, J.K. Oyster mushroom (Pleurotus species); A natural functional food. J. Microbiol. Biotechnol. Food Sci. 2017, 7, 254–264. [Google Scholar] [CrossRef]
- Reis, F.S.; Martins, A.; Vasconcelos, M.H.; Morales, P.; Ferreira, I.C.F.R. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci. Technol. 2017, 66, 48–62. [Google Scholar] [CrossRef]
- Ferraro, V.; Venturella, G.; Pecoraro, L.; Gao, W.; Gargano, M.L. Cultivated mushrooms: Importance of a multipurpose crop, with special focus on Italian fungiculture. Plant Biosyst. 2020, 156, 130–142. [Google Scholar] [CrossRef]
- Yadav, D.; Negi, P.S. Bioactive components of mushrooms: Processing effects and health benefits. Food Res. Int. 2021, 148, 110599. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-González, J.A.; Serna-Saldívar, S.O.; Gutiérrez-Uribe, J.A. Nutritional composition and nutraceutical properties of the Pleurotus fruiting bodies: Potential use as food ingredient. J. Food Compost. Anal. 2017, 58, 69–81. [Google Scholar] [CrossRef]
- Pattanayak, S.; Das, S. Value addition and nutritional enrichment of wonder food mushroom. J. Mycopathol. Res. 2022, 60, 507–514. [Google Scholar] [CrossRef]
- Cirlincione, F.; Pirrone, A.; Gugino, I.M.; Todaro, A.; Naselli, V.; Francesca, N.; Alfonzo, A.; Mirabile, G.; Ferraro, V.; Balenzano, G.; et al. Technological and Organoleptic Parameters of Craft Beer Fortified with Powder of the Culinary–Medicinal Mushroom Pleurotus eryngii. J. Fungi 2023, 9, 1000. [Google Scholar] [CrossRef]
- Hamza, A.; Ghanekar, S.; Santhosh Kumar, D. Current trends in health-promoting potential and biomaterial applications of edible mushrooms for human wellness. Food Biosci. 2023, 51, 102290. [Google Scholar] [CrossRef]
- Chang, S.; Wasser, S.P. The role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health. Int. J. Med. Mushrooms 2012, 14, 95–134. [Google Scholar] [CrossRef]
- Grotto, D.; Camargo, I.F.; Kodaira, K.; Mazzei, L.G.; Castro, J.; Vieira, R.A.L.; Bergamaschi, C.D.C.; Lopes, L.C. Effect of mushrooms on obesity in animal models: Study protocol for a systematic review and meta-analysis. Syst. Rev. BMC 2019, 8, 288. [Google Scholar] [CrossRef] [PubMed]
- Cateni, F.; Zacchigna, M.; Procida, G.; Venturella, G.; Ferraro, V.; Gargano, M.L. Polysaccharides from Pleurotus eryngii var. elaeoselini (Agaricomycetes), a New Potential Culinary-Medicinal Oyster Mushroom from Italy. Int. J. Med. Mushrooms 2020, 22, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Cateni, F.; Gargano, M.L.; Procida, G.; Venturella, G.; Cirlincione, F.; Ferraro, V. Mycochemicals in wild and cultivated mushrooms: Nutrition and health. Phytochem. Rev. 2021, 21, 339–383. [Google Scholar] [CrossRef]
- Muszyńska, B.; Grzywacz-Kisielewska, A.; Kała, K.; Gdula-Argasińska, J. Anti-inflammatory properties of edible mushrooms: A review. Food Chem. 2018, 243, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Elkhateeb, W.; Daba, G.; Thomas, P.; Wen, T.C. Medicinal mushrooms as a new source of natural therapeutic bioactive compounds. Egypt. Pharm. J. 2019, 18, 88–101. [Google Scholar] [CrossRef]
- Alkan, S.; Uysal, A.; Kasik, G.; Vlaisavljevic, S.; Berežni, S.; Zengin, G. Chemical characterization, antioxidant, enzyme inhibition and antimutagenic properties of eight mushroom species: A comparative study. J. Fungi 2020, 6, 166. [Google Scholar] [CrossRef]
- Venturella, G.; Ferraro, V.; Cirlincione, F.; Gargano, M.L. Medicinal mushrooms: Bioactive compounds, use, and clinical trials. Int. J. Mol. Sci. 2021, 22, 634. [Google Scholar] [CrossRef]
- Flores, G.A.; Girometta, C.E.; Cusumano, G.; Angelini, P.; Tirillini, B.; Ianni, F.; Blasi, F.; Cossignani, L.; Pellegrino, R.M.; Emiliani, C.; et al. Untargeted Metabolomics Used to Describe the Chemical Composition, Antioxidant and Antimicrobial Effects of Extracts from Pleurotus spp. Mycelium Grown in Different Culture Media. Antibiotics 2022, 11, 1468. [Google Scholar] [CrossRef]
- Su, C.H.; Lai, M.N.; Ng, L.T. Inhibitory effects of medicinal mushrooms on α-amylase and α-glucosidase—Enzymes related to hyperglycemia. Food Funct. 2013, 4, 644–649. [Google Scholar] [CrossRef]
- Stojkovic, D.; Smiljkovic, M.; Ciric, A.; Glamoclija, J.; Van Griensven, L.; Ferreira, I.C.F.R.; Sokovic, M. An insight into antidiabetic properties of six medicinal and edible mushrooms: Inhibition of α-amylase and α-glucosidase linked to type-2 diabetes. S. Afr. J. Bot. 2019, 120, 100–103. [Google Scholar] [CrossRef]
- Wińska, K.; MacZka, W.; Gabryelska, K.; Grabarczyk, M. Mushrooms of the genus Ganoderma used to treat diabetes and insulin resistance. Molecules 2019, 4, 4075. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, P.; Paul, S. The Potential Role of Mushrooms in The Prevention and Treatment of Diabetes: A Review. J. Biol. Act. Prod. Nat. 2020, 10, 429–454. [Google Scholar] [CrossRef]
- Rašeta, M.; Popović, M.; Beara, I.; Šibul, F.; Zengin, G.; Krstić, S.; Karaman, M. Anti-Inflammatory, Antioxidant and Enzyme Inhibition Activities in Correlation with Mycochemical Profile of Selected Indigenous Ganoderma spp. from Balkan Region (Serbia). Chem. Biodivers. 2021, 18, e2000828. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Chen, C.M.; Mu, S.C.; Yang, S.H.; Ju, Y.M.; Li, S.C. Medicinal Components in Edible Mushrooms on Diabetes Mellitus Treatment. Pharmaceutics 2022, 14, 436. [Google Scholar] [CrossRef]
- Liu, X.; Luo, D.; Guan, J.; Chen, J.; Xu, X. Mushroom polysaccharides with potential in anti-diabetes: Biological mechanisms, extraction, and future perspectives: A review. Front. Nutr. 2022, 9, 1087826. [Google Scholar] [CrossRef]
- Madaan, S.; Abdul Jabar, S.I.; Panda, B.P. Fatty acids of Pleurotus florida mushroom: Potential molecules for blood glucose control. Food Biosci. 2022, 46, 101558. [Google Scholar] [CrossRef]
- Kim, J.H.; Jang, M.J.; Park, Y.J. In Vitro α-Amylase, α-Glucosidase, Pancreatic Lipase, Xanthine Oxidase Inhibiting Activity of Agaricus bisporus Extracts. Mycobiology 2023, 51, 60–66. [Google Scholar] [CrossRef]
- De Silva, D.D.; Rapior, S.; Hyde, K.D.; Bahkali, A.H. Medicinal mushrooms in prevention and control of Diabetes Mellitus. Fungal Divers. 2012, 56, 1–29. [Google Scholar] [CrossRef]
- Jovanović, J.A.; Mihailović, M.; Uskoković, A.; Grdović, N.; Dinić, S.; Vidaković, M. The effects of major mushroom bioactive compounds on mechanisms that control blood glucose level. J. Fungi 2021, 7, 58. [Google Scholar] [CrossRef]
- Shamim, M.Z.; Mishra, A.K.; Kausar, T.; Mahanta, S.; Sarma, B.; Kumar, V.; Mishra, P.K.; Panda, J.; Baek, K.H.; Mohanta, Y.K. Exploring Edible Mushrooms for Diabetes: Unveiling Their Role in Prevention and Treatment. Molecules 2023, 28, 2837. [Google Scholar] [CrossRef]
- Liu, B.; Kongstad, K.T.; Wiese, S.; Jäger, A.K.; Staerk, D. Edible seaweed as future functional food: Identification of α-glucosidase inhibitors by combined use of high-resolution α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR. Food Chem. 2016, 203, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yong, T.; Xiao, C.; Su, J.; Zhang, Y.; Jiao, C.; Xie, Y. Pyrrole alkaloids and ergosterols from Grifola frondosa exert anti-α-glucosidase and anti-proliferative activities. J. Funct. Foods 2018, 43, 196–205. [Google Scholar] [CrossRef]
- Fisher, M. Acarbose and Alpha Glucosidase Inhibitors. In Diabetes Drug Notes; Fisher, M., Mckay, G.A., Llano, A., Eds.; Chapter 11; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Gargano, M.L.; Balenzano, G.; Venturella, G.; Cavalluzzi, M.M.; Rotondo, N.P.; Lentini, G.; Cirlincione, F.; Mirabile, G.; Zapora, E.; Wołkowycki, M.; et al. Nutritional contents and antimicrobial activity of the culinary-medicinal mushroom Leccinum scabrum. Mycology 2024, 1–11. [Google Scholar] [CrossRef]
- Gąsecka, M.; Siwulski, M.; Magdziak, Z.; Budzyńska, S.; Stuper-Szablewska, K.; Niedzielski, P.; Mleczek, M. The effect of drying temperature on bioactive compounds and antioxidant activity of Leccinum scabrum (Bull.) Gray and Hericium erinaceus (Bull.). Pers. J. Food Sci. Technol. 2020, 57, 513–525. [Google Scholar] [CrossRef]
- Ferraro, V.; Venturella, G.; Cirlincione, F.; Mirabile, G.; Gargano, M.L.; Colasuonno, P. The Checklist of Sicilian Macrofungi: Second Edition. J. Fungi 2022, 8, 566. [Google Scholar] [CrossRef]
- Gąsecka, M.; Siwulski, M.; Mleczek, M. Evaluation of bioactive compounds content and antioxidant properties of soil-growing and wood-growing edible mushrooms. J. Food Process Preserv. 2018, 42, e13386. [Google Scholar] [CrossRef]
- Witkowska, A.M.; Zujko, M.E.; Mirończuk-Chodakowska, I. Comparative Study of Wild Edible Mushrooms as Sources of Antioxidants. Int. J. Med. Mushrooms 2011, 13, 335–341. [Google Scholar] [CrossRef]
- Kała, K.; Krakowska, A.; Sułkowska-Ziaja, K.; Szewczyk, A.; Reczyński, W.; Opoka, W.; Muszyńska, B. Kinetics of extracted bioactive components from mushrooms in artificial digestive juices. Int. J. Food Prop. 2017, 20, 1796–1817. [Google Scholar] [CrossRef]
- Vukajlović, J.T.; Kosanić, M.; Ranković, B.; Stanojković, T.; Marković, A.; Grujičić, D.; Djelić, N.; Radaković, M.; Milošević-Djordjević, O. Evaluation of biological activities of acetone extract of the mushroom Leccinum scabrum. Farmacia 2021, 69, 974–979. [Google Scholar] [CrossRef]
- Tavani, C.; Bianchi, L.; De Palma, A.; Passeri, G.I.; Punzi, G.; Pierri, C.L.; Lovece, A.; Cavalluzzi, M.M.; Franchini, C.; Lentini, G.; et al. Nitro-substituted tetrahydroindolizines and homologs: Design, kinetics, and mechanism of α-glucosidase inhibition. Bioorg. Med. Chem. Lett. 2017, 27, 3980–3986. [Google Scholar] [CrossRef]
- Tamil, I.G.; Dineshkumar, B.; Nandhakumar, M.; Senthilkumar, M.; Mitra, A. In vitro study on -amylase inhibitory activity of an Indian medicinal plant, Phyllanthus amarus. Indian. J. Pharmacol. 2010, 42, 280–282. [Google Scholar] [CrossRef] [PubMed]
- Cavalluzzi, M.M.; Lamonaca, A.; Rotondo, N.P.; Miniero, D.V.; Muraglia, M.; Gabriele, P.; Corbo, F.; De Palma, A.; Budriesi, R.; De Angelis, E.; et al. Microwave-Assisted Extraction of Bioactive Compounds from Lentil Wastes: Antioxidant Activity Evaluation and Metabolomic Characterization. Molecules 2022, 27, 7471. [Google Scholar] [CrossRef] [PubMed]
- Tennessen, J.M.; Barry, W.E.; Cox, J.; Thummel, C.S. Methods for studying metabolism in Drosophila. Methods 2014, 68, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Fatmawati, S.; Shimizu, K.; Kondo, R. Ganoderol B: A potent α-glucosidase inhibitor isolated from the fruiting body of Ganoderma lucidum. Phytomedicine 2011, 18, 1053–1055. [Google Scholar] [CrossRef]
- Roselli, M.; Lovece, A.; Bruno, C.; Cavalluzzi, M.M.; Laghezza, A.; Mercurio, A.; Lentini, G.; Corbo, F.; La Forgia, F.; Fontana, S.; et al. Antioxidant Activity of Uva di Troia Canosina: Comparison of Two Extraction Methods. Clin. Immunol. Endocr. Metab. Drugs 2015, 2, 8–12. [Google Scholar] [CrossRef]
- Milani, G.; Curci, F.; Cavalluzzi, M.M.; Crupi, P.; Pisano, I.; Lentini, G.; Clodoveo, M.L.; Franchini, C.; Corbo, F. Optimization of microwave-assisted extraction of antioxidants from bamboo shoots of Phyllostachys pubescens. Molecules 2020, 25, 215. [Google Scholar] [CrossRef]
- Ferrero, D.; Moscato, E.; Spina, F.; Cavalluzzi, M.M.; Rotondo, N.; Oddon, S.B.; Gargano, M.L.; Venturella, G.; Lentini, G.; Bertea, C.M.; et al. The fungal alternative: Insights on medicinal mushrooms-based protein-rich biomasses by submerged fermentation of agro-industrial by-products. Innov. Food Sci. Emerg. Technol. 2024, 95, 103721. [Google Scholar] [CrossRef]
- Yara-Varón, E.; Fabiano-Tixier, A.S.; Balcells, M.; Canela-Garayoa, R.; Bily, A.; Chemat, F. Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study. RSC Adv. 2016, 6, 27750–27759. [Google Scholar] [CrossRef]
- Torres-Valenzuela, L.S.; Ballesteros-Gómez, A.; Rubio, S. Green Solvents for the Extraction of High Added-Value Compounds from Agri-food Waste. Food Eng. Rev. 2020, 12, 83–100. [Google Scholar] [CrossRef]
- Chen, H.; Lu, X.; Qu, Z.; Wang, Z.; Zhang, L. Glycosidase inhibitory activity and antioxidant properties of a polysaccharide from the mushroom Inonotus obliquus. J. Food Biochem. 2010, 34 (Suppl. S1), 178–191. [Google Scholar] [CrossRef]
- Wahab, N.A.A.; Abdullah, N.; Aminudin, N. Characterisation of Potential Antidiabetic-Related Proteins from Pleurotus pulmonarius (Fr.) Quél. (Grey Oyster Mushroom) by MALDI-TOF/TOF Mass Spectrometry. BioMed Res. Int. 2014, 2014, 131607. [Google Scholar] [CrossRef] [PubMed]
- Orole, O. GC-MS Evaluation, Phytochemical and Antinutritional Screening of Ganoderma lucidum. J. Adv. Biol. Biotechnol. 2016, 5, 1–10. [Google Scholar] [CrossRef]
- Reis, F.S.; Barros, L.; Martins, A.; Vasconcelos, M.H.; Morales, P.; Ferreira, I.C.F.R. Leccinum molle (Bon) Bon and Leccinum vulpinum watling: The first study of their nutritional and antioxidant potential. Molecules 2016, 21, 246. [Google Scholar] [CrossRef] [PubMed]
- Koutrotsios, G.; Kalogeropoulos, N.; Stathopoulos, P.; Kaliora, A.C.; Zervakis, G.I. Bioactive compounds and antioxidant activity exhibit high intraspecific variability in Pleurotus ostreatus mushrooms and correlate well with cultivation performance parameters. World J. Microbiol. Biotechnol. 2017, 33, 98. [Google Scholar] [CrossRef] [PubMed]
- Dimitrijevic, M.V.; Mitic, V.D.; Jovanovic, O.P.; Stankov Jovanovic, V.P.; Nikolic, J.S.; Petrovic, G.M.; Stojanovic, G.S. Comparative Study of Fatty Acids Profile in Eleven Wild Mushrooms of Boletaceae and Russulaceae Families. Chem. Biodivers. 2018, 15, e1700434. [Google Scholar] [CrossRef]
- Dogan, A.; Dalar, A.; Sadullahoglu, C.; Battal, A.; Uzun, Y.; Celik, I.; Demirel, K. Investigation of the protective effects of horse mushroom (Agaricus arvensis Schaeff.) against carbon tetrachloride-induced oxidative stress in rats. Mol. Biol. Rep. 2018, 45, 787–797. [Google Scholar] [CrossRef]
- Sande, D.; de Oliveira, G.P.; e Moura, M.A.F.; Martins, B.d.A.; Lima, M.T.N.S.; Takahashi, J.A. Edible mushrooms as a ubiquitous source of essential fatty acids. Food Res. Int. 2019, 125, 108524. [Google Scholar] [CrossRef]
- Pietrzak-Fiećko, R.; Gałgowska, M.; Falandysz, J. Impact of Mushrooms’ Vegetative Places and Morphological Parts of a Fruiting Body on the Fatty Acids Profile of Wild Leccinum aurantiacum and Leccinum versipelle. Chem. Biodivers. 2020, 17, e2000032. [Google Scholar] [CrossRef]
- El-Naggar, H.M.; Shehata, A.M.; Morsi, M.A.A. Micropropagation and GC–MS analysis of bioactive compounds in bulbs and callus of white squill. In Vitro Cell. Dev. Biol. Plant 2023, 59, 154–166. [Google Scholar] [CrossRef]
- Yucharoen, R.; Srisuksomwong, P.; Julsrigival, J.; Mungmai, L.; Kaewkod, T.; Tragoolpua, Y. Antioxidant, Anti-Tyrosinase, and Anti-Skin Pathogenic Bacterial Activities and Phytochemical Compositions of Corn Silk Extracts, and Stability of Corn Silk Facial Cream Product. Antibiotics 2023, 12, 1443. [Google Scholar] [CrossRef]
- Chauhan, K.; Bhalla, P.; Chitme, H.R.; Varshney, V.K. Exploring the therapeutic potential of Prinsepia utilis Royle seed oil: A comprehensive study on chemical composition, physicochemical properties, anti-inflammatory, and analgesic activities. J. Ethnopharmacol. 2024, 319, 117312. [Google Scholar] [CrossRef] [PubMed]
- Sinanoglou, V.J.; Zoumpoulakis, P.; Heropoulos, G.; Proestos, C.; Ćirić, A.; Petrovic, J.; Glamoclija, J.; Sokovic, M. Lipid and fatty acid profile of the edible fungus Laetiporus sulphurous. Antifungal and antibacterial properties. J. Food Sci. Technol. 2015, 52, 3264–3272. [Google Scholar] [CrossRef] [PubMed]
- Murshed, M.; Aljawdah, H.M.A.; Mares, M.; Al-Quraishy, S. In Vitro: The Effects of the Anticoccidial Activities of Calotropis procera Leaf Extracts on Eimeria stiedae Oocysts Isolated from Rabbits. Molecules 2023, 28, 3352. [Google Scholar] [CrossRef]
- Ellatif, S.A.; Abdel Razik, E.S.; Abu-Serie, M.M.; Mahfouz, A.; Shater, A.F.; Saleh, F.M.; Hassan, M.M.; Alsanie, W.F.; Altalhi, A.; Daigham, G.E.; et al. Immunomodulatory Efficacy-Mediated Anti-HCV and Anti-HBV Potential of Kefir Grains; Unveiling the In Vitro Antibacterial, Antifungal, and Wound Healing Activities. Molecules 2022, 27, 2016. [Google Scholar] [CrossRef] [PubMed]
- Chirumamilla, P.; Dharavath, S.B.; Taduri, S. GC–MS profiling and antibacterial activity of Solanum khasianum leaf and root extracts. Bull. Natl. Res. Cent. 2022, 46, 127. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed Shawer, E.; Sabae, S.Z.; El-Gamal, A.D.; Elsaied, H. Characterization of Bioactive Compounds with Antioxidant Activity and Antimicrobial Activity from Freshwater Cyanobacteria. Egypt. J. Chem. 2022, 65, 723–735. [Google Scholar] [CrossRef]
- Monrroy, M.; Araúz, O.; García, J.R. Active Compound Identification in Extracts of N. lappaceum Peel and Evaluation of Antioxidant Capacity. J. Chem. 2020, 2020, 4301891. [Google Scholar] [CrossRef]
- Liu, L.; Deseo, M.A.; Morris, C.; Winter, K.M.; Leach, D.N. Investigation of α-glucosidase inhibitory activity of wheat bran and germ. Food Chem. 2011, 126, 553–561. [Google Scholar] [CrossRef]
- Nor-Liyana, J.; Siroshini, K.; Nurul-Syahirah, M.; Chang, W.; Nurul-Husna, S.; Daryl, J.; Khairul-Kamilah, A.; Hasnah, B. Phytochemical analysis of Elactrospermium tapos and its inhibitory effects on alpha-amylase, alpha-glucosidase and pancreatic lipase. J. Trop. For. Sci. 2019, 31, 240–248. [Google Scholar]
- Kumar Bhattacharjya, D.; Katagi, A.; Suzuki, T.; Katayama, T. α-Glucosidase inhibition and antioxidant activities of seven edible mushrooms and α-glucosidase inhibitory active compounds from Boletus edulis. J. For. Biomass Util. Soc. 2020, 15, 1–9. [Google Scholar]
- Lawal, T. Screening of Aqueous Extract of Persea americana Seeds for Alpha-Glucosidase Inhibitors. Biochem. Res. Int. 2022, 2022, 3492203. [Google Scholar] [CrossRef] [PubMed]
- Ohiri, R.C.; Bassey, E.E. Gas Chromatography−Mass Spectrometry Analysis of Constituent Oil from Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), from Nigeria. Int. J. Med. Mushrooms 2016, 18, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Ohiri, R.C.; Essien, E.B. Nutraceutical potentials of Turkey Tail medicinal mushroom, Trametes versicolor (Coriolus versicolor, yun zhi, kawaratake) (Agaricomycetes) from Nigeria. Pak. J. Biochem. Mol. Biol. 2017, 50, 01–06. [Google Scholar]
- Mkhize, S.S.; Simelane, M.B.C.; Mongalo, N.I.; Pooe, O.J. Bioprospecting the Biological Effects of Cultivating Pleurotus ostreatus Mushrooms from Selected Agro-Wastes and Maize Flour Supplements. J. Food Biochem. 2023, 2023, 1–16. [Google Scholar] [CrossRef]
- Campi, M.; Mancuello, C.; Maubet, Y.; Cristaldo, E.; Veloso, B.; Ferreira, F.; Thornton, L.; Robledo, G. Biochemical, nutritional, and toxicological properties of the edible species Phlebopus beniensis with ethnomycological notes from Paraguay. Braz. J. Food Technol. 2023, 26, e2022126. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, P.; Lucardi, R.D.; Su, Z.; Li, S. Natural sources and bioactivities of 2,4-di-tert-butylphenol and its analogs. Toxins 2020, 12, 35. [Google Scholar] [CrossRef]
- Barman, S.; Chakraborty, U.; Chakraborty, B. GC-MS analyses of biochemical constituents in fruit body of Agaricus bisporus. J. Mycopathol. Res. 2021, 59, 47–61. [Google Scholar]
- Nowak, R.; Nowacka-Jechalke, N.; Pietrzak, W.; Gawlik-Dziki, U. A new look at edible and medicinal mushrooms as a source of ergosterol and ergosterol peroxide—UHPLC-MS/MS analysis. Food Chem. 2022, 369, 130927. [Google Scholar] [CrossRef]
- Rangsinth, P.; Sharika, R.; Pattarachotanant, N.; Duangjan, C.; Wongwan, C.; Sillapachaiyaporn, C.; Nilkhet, S.; Wongsirojkul, N.; Prasansuklab, A.; Tencomnao, T.; et al. Potential Beneficial Effects and Pharmacological Properties of Ergosterol, a Common Bioactive Compound in Edible Mushrooms. Foods 2023, 12, 2529. [Google Scholar] [CrossRef]
- Zhabinskii, V.N.; Drasar, P.; Khripach, V.A. Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules 2022, 27, 2103. [Google Scholar] [CrossRef]
- Torres, S.; Cajas, D.; Palfner, G.; Astuya, A.; Aballay, A.; Pérez, C.; Hernández, V.; Becerra, J. Steroidal composition and cytotoxic activity from fruiting body of Cortinarius xiphidipus. Nat. Prod. Res. 2017, 31, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Muniyappan, G.; Gurudevan, T.; Thangaraj, P.; Balamurali, A.S.; Iyadurai, A.P.; Suppaiah, R.; Subbiah, K.A.; Shanmugam, H. Benzothiazole—An Antifungal Compound Derived from Medicinal Mushroom Ganoderma lucidum against Mango Anthracnose Pathogen Colletotrichum gloeosporioides (Penz and (Sacc.)). Molecules 2023, 28, 2476. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; He, X.; Yang, W.; Song, H.; Yang, J.; Zhang, G.; Yang, Z.; Chen, H.; Liang, Z.; Kollie, L.; et al. Unveiling the distribution of chemical constituents at different body parts and maturity stages of Ganoderma lingzhi by combining metabolomics with desorption electrospray ionization mass spectrometry imaging (DESI). Food Chem. 2024, 436, 137737. [Google Scholar] [CrossRef]
- Choi, J.H.; Ozawa, N.; Yamakawa, Y.; Nagai, K.; Hirai, H.; Kawagishi, H. Leccinine A, an endoplasmic reticulum stress-suppressive compound from the edible mushroom Leccinum extremiorientale. Tetrahedron 2011, 67, 6649–6653. [Google Scholar] [CrossRef]
- Yang, N.N.; Huang, S.Z.; Ma, Q.Y.; Dai, H.F.; Guo, Z.K.; Yu, Z.F.; Zhao, Y.X. A New Pyrrole Alkaloid from Leccinum extremiorientale. Chem. Nat. Comp. 2015, 51, 730–732. [Google Scholar] [CrossRef]
- Choi, J.H.; Yoshida, M.; Suzuki, T.; Harada, E.; Kawade, M.; Yazawa, K.; Nishimoto, S.; Hirai, H.; Kawagishi, H. A novel sphingosine with osteoclast-forming suppressing activity, from the edible mushroom Grifola gargal. Tetrahedron 2013, 69, 8609–8611. [Google Scholar] [CrossRef]
- Aung, H.T.; Porta, A.; Clericuzio, M.; Takaya, Y.; Vidari, G. Two New Ergosterol Derivatives from the Basidiomycete Cortinarius glaucopus. Chem. Biodivers. 2017, 14, e1600421. [Google Scholar] [CrossRef]
- Ugbogu, E.A.; Dike, E.D.; Okoro, B.C.; Adurosakin, O.E.; Ibe, C.; Uche, M.E.; Nosiri, C.I.; Agim, C.; Nwaru, E.C.; Rahman, M.A.; et al. Lentinus squarrosulus: Nutritional composition, phytochemistry, health-promoting activities and toxicity profile. Food Humanit. 2024, 2, 100296. [Google Scholar] [CrossRef]
- Faridha Begum, I.; Mohankumar, R.; Jeevan, M.; Ramani, K. GC–MS Analysis of Bio-active Molecules Derived from Paracoccus pantotrophus FMR19 and the Antimicrobial Activity Against Bacterial Pathogens and MDROs. Indian. J. Microbiol. 2016, 56, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Nagaraja, S.K.; Nayaka, S.; Kumar, R.S. Phytochemical Analysis, GC–MS Profiling, and In Vitro Evaluation of Biological Applications of Different Solvent Extracts of Leonotis nepetifolia (L.) R.Br. Flower Buds. Appl. Biochem. Biotechnol. 2023, 195, 1197–1215. [Google Scholar] [CrossRef]
- Gil-Ramírez, A.; Morales, D.; Soler-Rivas, C. Molecular actions of hypocholesterolaemic compounds from edible mushrooms. Food Funct. 2018, 9, 53–69. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Montemayor, M.M.; Ling, T.; Suárez-Arroyo, I.J.; Ortiz-Soto, G.; Santiago-Negrón, C.L.; Lacourt-Ventura, M.Y.; Valentín-Acevedo, A.; Lang, W.H.; Rivas, F. Identification of biologically active Ganoderma lucidum compounds and synthesis of improved derivatives that confer anti-cancer activities in vitro. Front. Pharmacol. 2019, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Aravinth, A.; Dhanasundaram, S.; Perumal, P.; Kamaraj, C.; Khan, S.U.; Ali, A.; Ragavendran, C.; Amutha, V.; Rajaram, R.; Santhanam, P.; et al. Evaluation of Brown and red seaweeds-extracts as a novel larvicidal agent against the deadly human diseases-vectors, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Exp. Parasitol. 2024, 256, 108651. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.B.; Chang, B.Y.; Jo, Y.H.; Lee, S.H.; Han, S.B.; Hwang, B.Y.; Kim, S.Y.; Lee, M.K. Macrophage activating activity of pyrrole alkaloids from Morus alba fruits. J. Ethnopharmacol. 2013, 145, 393–396. [Google Scholar] [CrossRef]
- Lv, J.H.; Yao, L.; Duan, C.; Li, Z.; Zhang, J.; Li, C.T.; Li, Y. New bioactive α-pyrone from wild mushroom Paxillus involutus. Nat. Prod. Res. 2022, 36, 2707–2712. [Google Scholar] [CrossRef]
- Zorrilla, J.G.; Evidente, A. Structures and Biological Activities of Alkaloids Produced by Mushrooms, a Fungal Subgroup. Biomolecules 2022, 12, 1025. [Google Scholar] [CrossRef]
Mushroom | Extraction Method | Solvent | α-Glucosidase | α-Amylase | Cytotoxicity | |
---|---|---|---|---|---|---|
IC50 (μg/mL) 1,2 | IC50 (μg/mL) 1,2 | Inhibition (%) at 100 μg/mL2 | IC50 (μg/mL) 1,2 | |||
L. scabrum | MAE | 70% EtOH | 13.0 ± 0.4 | >1000 | 11 ± 3 | >100 |
MAE | 70% iPrOH | 8.8 ± 2.2 | >1000 | 9 ± 2.74 | >100 | |
MAE | EtOH | 2.67 ± 0.19 | >1000 | 13.44 ± 0.18 | >100 | |
MAE | iPrOH | 2.1 ± 0.5 | >1000 | 16.9 ± 1.3 | >100 | |
MAE | EtOAc | 0.42 ± 0.02 | >1000 | 27.96 ± 0.08 | >100 | |
MAE | 2-MeTHF | 0.99 ± 0.23 | >1000 | 25.5 ± 1.6 | 2.45 ± 0.12 | |
L. scabrum | Maceration | EtOAc | 0.87 ± 0.23 | >1000 | 30.9 ± 2.2 | 16.2 ± 1.8 |
G. lucidum | MAE | CHCl3 | 5.1 ± 0.3 | - | - | - |
MAE | EtOAc | 4.9 ± 1.6 | - | - | - | |
DNJ | Reference inhibitor | 25.4 ± 0.6 a | - | - | - | |
Acarbose | Reference inhibitor | - | 38 ± 6 b | - | - |
Entry | Mushroom | Extraction Method | Solvent | Weight of Extract Dry Residue (mg) a | Yield (%) b |
---|---|---|---|---|---|
1 | L. scabrum | MAE | 70% EtOH | 26.0 | 37.2 |
2 | L. scabrum | MAE | 70% iPrOH | 23.2 | 33.1 |
3 | L. scabrum | MAE | EtOH | 11.9 | 17.0 |
4 | L. scabrum | MAE | iPrOH | 7.1 | 10.1 |
5 | L. scabrum | MAE | EtOAc | 3.5 | 5.0 |
6 | L. scabrum | MAE | 2-MeTHF | 4.9 | 6.9 |
7 | L. scabrum | maceration | EtOAc | 23.7 | 4.8 |
8 | G. lucidum | MAE | CHCl3 | 2.6 | 3.7 |
9 | G. lucidum | MAE | EtOAc | 2.3 | 3.3 |
Fraction | No. | Compound | Molecular Formula | Mol. Mass (Nominal; g/mol) | RT a (min) | Peak Area (%) | Key Ion Species m/z | Chemical Class |
---|---|---|---|---|---|---|---|---|
LS1 | 1 | 2,4-Bis(1,1-dimethylethyl)phenol (2,4-Di-tert-butylphenol) | C14H22O | 206 | 28.815 | 2.31 | 191 (100), 206 (M+, 15) | Phenol analogues |
2 | 7-Hexadecene | C16H32 | 224 | 31.102 | 4.33 | 55 (100), 224 (M+, 2.3) | Acyclic alkene | |
3 | 1-Octadecene | C18H36 | 252 | 36.541 | 3.70 | 83 (100), 252 (M+, 1.7) | Acyclic alkene | |
4 | 7,9-Di-tert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione | C17H24O3 | 276 | 39.704 | 0.45 | 57 (100), 276 (M+, 3.9) | Spiro compounds | |
5 | 9-Hexadecenoic acid (Palmitoleic acid) | C16H30O2 | 254 | 40.469 | 1.06 | 55 (100), 254 (M+, 1.6) | Fatty acid (monounsaturated) | |
6 | n-Hexadecanoic acid (Palmitic acid) | C16H32O2 | 256 | 41.170 | 13.42 | 73 (100), 256 (M+, 20) | Fatty acid (saturated) | |
7 | 9,12-Octadecadienoic acid methyl ester | C19H34O2 | 294 | 43.812 | 0.13 | 67 (100), 294 (M+, 4.6) | Fatty acid esters (linoleic acid ester) | |
8 | 9-Octadecenoic acid methyl ester (Methyl oleate) | C19H36O2 | 296 | 43.957 | 0.13 | 55 (100), 265 (M+ −31, 9.3) | Fatty acid esters (oleic acid ester) | |
9 | 9,12-Octadecadienoic acid (Linoleic acid) | C18H32O2 | 280 | 45.030 | 49.37 | 67 (100), 280 (M+, 15.8) | Fatty acid (polyunsaturated, (essential) | |
10 | 9-Octadecenoic acid (Oleic acid) | C18H34O2 | 282 | 45.770 | 14.91 | 55 (100), 264 (M+ −18, 15.8) | Fatty acid (monounsaturated) | |
11 | Octadecanoic acid (Stearic acid) | C18H36O2 | 284 | 46.004 | 1.40 | 55 (100), 284 (M+, 20.4) | Fatty acid (saturated) | |
12 | (all-E)-2,6,10,15,19,23-Hexamethyl-2,6,10,14,18,22-tetracosahexaene (Squalene) | C30H50 | 410 | 58.164 | 0.08 | 69 (100), 410 (M+, 4.4) | Triterpene | |
13 | Benzenepropanoic acid 3,5-bis(1,1-dimethylethyl)-4-hydroxy-,octadecyl ester | C35H62O3 | 530 | 75.260 | 6.53 | 57 (100), 530 (M+, 80.2) | Fatty acid ester | |
LS2 | 1 | 9-Hexadecenoic acid (Palmitoleic acid) | C16H30O2 | 254 | 40.400 | 0.50 | 55 (100), 236 (M+, −18, 4.6) | Fatty acid (monounsaturated) |
2 | n-Hexadecanoic acid (Palmitic acid) | C16H32O2 | 256 | 40.975 | 10.18 | 73 (100), 256 (M+, 18.4) | Fatty acid (saturated) | |
3 | 9,12-Octadecadienoic acid (Linoleic acid) | C18H32O2 | 280 | 44.980 | 46.16 | 67 (100), 280 (M+, 7.7) | Fatty acid (polyunsaturated, essential) | |
4 | 9-Octadecenoic acid (Oleic acid) | C18H34O2 | 282 | 45.180 | 24.17 | 55 (100), 264 (M+ −18, 3.0) | Fatty acid (monounsaturated, essential) | |
5 | Benzenepropanoic acid 3,5-bis(1,1-dimethylethyl)-4-hydroxy-,octadecyl ester | C35H62O3 | 530 | 75.032 | 7.65 | 57 (100), 530 (M+, 45) | Fatty acid ester | |
LS3 | 1 | 2,5-Cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl)- (2,6-Di-tert-butyl-p-benzoquinone) | C14H20O2 | 220 | 27.373 | 0.38 | 177 (100), 220 (M+, 50.9) | Benzoquinone |
2 | 2,4-Bis(1,1-dimethylethyl)phenol (2,4-Di-tert-butylphenol) | C14H22O | 206 | 28.817 | 4.42 | 191 (100), 206 (M+, 16.3) | Phenol analogues | |
3 | 7-Hexadecene | C16H32 | 224 | 31.104 | 6.82 | 55 (100), 224 (M+, 1.0) | Acyclic alkene | |
4 | 1-Octadecene | C18H36 | 252 | 36.541 | 5.84 | 83 (100), 252 (M+, 8.0) | Acyclic alkene | |
5 | 7,9-Di-tert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione | C17H24O3 | 276 | 39.702 | 0.67 | 57 (100), 276 (M+, 3.0) | Spiro compounds | |
6 | n-Hexadecanoic acid (Palmitic acid) | C16H32O2 | 256 | 40.922 | 2.92 | 73 (100), 256 (M+, 15.7) | Fatty acid (saturated) | |
7 | 9-Eicosene | C20H40 | 280 | 41.476 | 3.52 | 57 (100), 280 (M+, 1.1) | Acyclic alkene | |
8 | n-Nonadecan-1-ol | C19H40O | 284 | 43.560 | 0.72 | 83 (100), 224 (M+ −60, 1.0) | Fatty alcohol | |
9 | 9,12-Octadecadienoic acid (Linoleic acid) | C18H32O2 | 280 | 44.970 | 28.39 | 67 (100), 280 (M+, 8.5) | Fatty acid (polyunsaturated, essential) | |
10 | 9-Octadecenoic acid (Oleic acid) | C18H34O2 | 282 | 45.116 | 4.65 | 55 (100), 264 (M+ −18, 8.5) | Fatty acid (monounsaturated, essential) | |
11 | 5-Eicosene | C20H40 | 280 | 46.001 | 1.70 | 55(100), 280 (M+, 1.1) | Acyclic alkene | |
12 | Ergosta-5,7,22-trien-3-ol (Ergosterol) | C28H44O | 396 | 64.245 | 11.26 | 69 (100), 396 (M+, 59.4) | Sterols | |
13 | Ergosta-7,22-dien-3-ol | C28H46O | 398 | 64.442 | 2.98 | 69 (100), 398 (M+, 19.3) | Sterols | |
14 | Neoergosterol | C27H40O | 380 | 64.701 | 0.62 | 237 (100), 380 (M+, 34.4) | Sterols | |
15 | Ergosta-7-en-3-beta-ol | C28H48O | 400 | 65.508 | 0.66 | 43 (100), 400 (M+, 63.6) | Sterols | |
16 | Benzenepropanoic acid 3,5-bis(1,1-dimethylethyl)-4-hydroxy-,octadecyl ester | C35H62O3 | 530 | 75.177 | 18.99 | 57 (100), 530 (M+, 61.1) | Fatty acid ester |
Class | Proposed Compound | Molecular Formula | Ionization Mode | Calculated Mass | Experimental Mass | Key Fragments m/z (% rel. abund.) |
---|---|---|---|---|---|---|
Pyrrole alkaloids | 4-[2-Formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl]butanoic acid | C10H13NO4 | [M − H]− | 210.0771 | 210.0771 | 94.0295 (100), 124.0390 (20.42) |
5-Hydroxymethyl-1-[2-(4-hydroxyphenyl)-ethyl]-1H-pyrrole-2-carbaldehyde (Pyrrolezanthine) | C14H15NO3 | [M + H]+ | 246.1124 | 246.1047 a | 105.0699 (100), 125.0150 (11.61) | |
Alkaloids | Ethyl [N-(2-phenylethyl)formamido]acetate (Leccinine A) | C13H17NO3 | [M + Na]+ | 258.1100 | 258.1307 a | 171.0623 (100), 105.0693 (70.31) |
Fatty acids | 9-Hexadecenoic acid (Palmitoleic acid) | C16H30O2 | [M − H]− | 253.2173 | 253.2165 | 237.2200 (100), 196.0977 37.1) 58.0039 (43.2) |
n-Hexadecanoic acid (Palmitic acid) | C16H32O2 | [M − H]− | 255.2329 | 255.2323 | 255.2327 (100), 58.0276 (15.81) | |
9,12-Octadecadienoic acid (Linoleic acid) | C18H32O2 | [M − H]− | 279.2330 | 279.2326 | 279.2326 (100) 261.2236 (11.25), 127.0763 (8.29), 96.9702 (37.86) | |
9-Octadecenoic acid (Oleic acid) | C18H34O2 | [M − H]− | 281.2486 | 281.2480 | 265.22536 (100), 281.2480 (59.4) | |
Octadecanoic acid (Stearic acid) | C18H36O2 | [M − H]− | 283.2642 | 283.2612 | 283.2609 (100), 155.3271 (11.82) | |
9-Hydroxy-10,12-octadecadienoic acid | C18H32O3 | [M − H]− | 295.2278 | 295.2279 | 183.0100 (100), 277.2118 (15) | |
Sphingolipids | 1,2-Diacetylsphingosine | C22H43NO4 | [M + Na]+ | 408.3084 | 408.3139 a | 322.3064 (100), 88.1102 (23.51) |
Ergostanoid | Gymnasterone C | C28H40O2 | [M − H]− | 407.2956 | 407.2998 | 255.2323 (100) 151.0602 (20.98) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraro, V.; Spagnoletta, A.; Rotondo, N.P.; Marsano, R.M.; Miniero, D.V.; Balenzano, G.; De Palma, A.; Colletti, A.; Gargano, M.L.; Lentini, G.; et al. Hypoglycemic Properties of Leccinum scabrum Extracts—An In Vitro Study on α-Glucosidase and α-Amylase Inhibition and Metabolic Profile Determination. J. Fungi 2024, 10, 718. https://doi.org/10.3390/jof10100718
Ferraro V, Spagnoletta A, Rotondo NP, Marsano RM, Miniero DV, Balenzano G, De Palma A, Colletti A, Gargano ML, Lentini G, et al. Hypoglycemic Properties of Leccinum scabrum Extracts—An In Vitro Study on α-Glucosidase and α-Amylase Inhibition and Metabolic Profile Determination. Journal of Fungi. 2024; 10(10):718. https://doi.org/10.3390/jof10100718
Chicago/Turabian StyleFerraro, Valeria, Anna Spagnoletta, Natalie Paola Rotondo, René Massimiliano Marsano, Daniela Valeria Miniero, Gaetano Balenzano, Annalisa De Palma, Alessandro Colletti, Maria Letizia Gargano, Giovanni Lentini, and et al. 2024. "Hypoglycemic Properties of Leccinum scabrum Extracts—An In Vitro Study on α-Glucosidase and α-Amylase Inhibition and Metabolic Profile Determination" Journal of Fungi 10, no. 10: 718. https://doi.org/10.3390/jof10100718
APA StyleFerraro, V., Spagnoletta, A., Rotondo, N. P., Marsano, R. M., Miniero, D. V., Balenzano, G., De Palma, A., Colletti, A., Gargano, M. L., Lentini, G., & Cavalluzzi, M. M. (2024). Hypoglycemic Properties of Leccinum scabrum Extracts—An In Vitro Study on α-Glucosidase and α-Amylase Inhibition and Metabolic Profile Determination. Journal of Fungi, 10(10), 718. https://doi.org/10.3390/jof10100718