When Functional Assessment Meets Intravascular Imaging in Patients with Coronary Artery Disease †
Abstract
1. Introduction
2. Modalities for Functional Assessment
2.1. Fractional Flow Reserve (FFR)
2.2. Non-Hyperemic Pressure Indices (NHPIs)
3. Non-Invasive Physiology Assessment
4. Intravascular Modalities
4.1. Intravascular Ultrasound (IVUS)
4.2. Optical Coherence Tomography (OCT)
5. Functional Assessment Versus Angiography
Trial Name of First Author Name (Date)/N | Study Design | Primary Endpoints | Principial Findings |
---|---|---|---|
FAMOUS NSTEMI (2015)/350 [35] | Randomized, FFR vs. angiography-guided management in NSTEMI patients | - Difference in the percentage of patients allocated to medical management. - MACE at 1-year follow-up. | - More patients initially received medical therapy with FFR guidance (22.7% vs. 13.2%, 95% CI: 1.4–17.7%, p = 0.022). - Revascularization was lower in the FFR group at 12 months (79.0% vs. 86.8%, absolute difference: 7.8%, 95% CI: −0.2% to 15.8%, p = 0.054). |
FAME 5-YEAR FOLLOW-UP (2015)/1220 [26] | Randomized, FFR- vs. angiography-guided PCI in patients with multivessel coronary artery disease. | - MACE at 1-year follow-up and extended to 5-year follow-up. | - Fewer stents implanted per patient in the FFR-guided group (1.9 vs. 2.7, p < 0.0001). |
FARGO (2018)/100 [36] | Randomized, FFR- vs. angiography-guided CABG in patients with coronary artery disease | Graft patency and clinical outcomes at 6-month follow-up. | - Similar rates of death, myocardial infarction, and stroke between groups (p = 0.64). - Mean FFR significantly decreased in deferred lesions from index to 6 months (0.89 ± 0.05 to 0.81 ± 0.11, p = 0.002). - The number of anastomoses per patient was lower in the FFR-guided group (2.6 ± 0.9 vs. 3.0 ± 0.9, p = 0.005). - Graft failure rates were similar for arterial vs. venous grafts (14.5% vs. 14.3%, p = 0.97). |
GRAFFITI/172(2019) [37] | Randomized, FFR- vs. angiography-guided CABG in patients with coronary artery disease. | Graft Patency at 1 year follow-up. | - The FFR-guided group had fewer anastomoses compared to the angiography-guided group (2 [2; 3] vs. 3 [3; 3], p = 0.004). - The FFR-guided group had a significantly higher rate of functionally appropriate targeted grafting (79% vs. 68%, p = 0.008). - The FFR-guided group had a higher proportion of off-pump surgery (31% vs. 14%, p = 0.010) and minimally invasive surgery (10% vs. 2%, p = 0.036). |
FLOWER-MI (2021)/1171 [29] | Randomized, FFR- vs. angiography-guided PCI in patients with STEMI and multivessel disease. | Composite of death from any cause, nonfatal myocardial infarction, or unplanned hospitalization leading to urgent revascularization at 1 year. | - Death occurred in 1.5% of the FFR group vs. 1.7% of the angiography group (HR: 0.89, 95% CI: 0.36–2.20). - Nonfatal myocardial infarction occurred in 3.1% vs. 1.7% (HR: 1.77, 95% CI: 0.82–3.84). - Unplanned hospitalization leading to urgent revascularization was similar (2.6% vs. 1.9%, HR: 1.34, 95% CI: 0.62–2.92). - Mean number of stents placed was lower in the FFR-guided group (1.01 ± 0.99 vs. 1.50 ± 0.86, p < 0.001). |
FAME 3 (2021)/1500 [33] | Multicenter, randomized noninferiority trial comparing FFR-guided PCI using current-generation zotarolimus-eluting stents vs. CABG in patients with three-vessel coronary artery disease. | Composite of death from any cause, MI, stroke, or repeat revascularization at 1 year (noninferiority endpoint) | - FFR-guided PCI did not meet criteria for noninferiority compared to CABG (10.6% vs. 6.9%; HR: 1.5, 95% CI: 1.1–2.2, p = 0.35 for noninferiority). - Rates of death, MI, or stroke were not significantly different (7.3% vs. 5.2%; HR: 1.4. 95% CI: 0.9–2.1). |
FUTURE (2021)/927 [30] | Randomized, FFR vs. angiography-guided management in patients with multivessel disease. | Composite of death, nonfatal MI, stroke, or unplanned revascularization at 1 year follow-up. | - All-cause mortality was higher in the FFR group (3.7% vs. 1.5%; HR: 2.34, 95% CI: 0.97–5.18, p = 0.06), leading to early termination of the study. - Stroke was less frequent in the FFR group (0.2% vs. 1.5%; HR: 0.13, 95% CI: 0.02–1.07, p = 0.06). - More patients were treated with medical therapy alone in the FFR group (17% vs. 9%, p = 0.002), reducing revascularization rates. - Study was prematurely stopped due to safety concerns (higher mortality in FFR-guided group). |
RIPCORD-II (2022)/1100 [31] | Randomized FFR vs. angiography in patient with NSTEMI or stable angina, undergoing angiography. | National Health Service (NHS) hospital costs and quality of life at 1 year follow-up. | -No significant difference in median hospital costs between groups (£4510 vs. £4136, p = 0.137). - No difference in median quality of life scores (EuroQol EQ-5D-5L) (75 vs. 75, p = 0.88). - No difference in MACCE at 1 year (8.7% vs. 9.5%, p = 0.64). - No difference in individual clinical events: death (0.9% vs. 1.5%), stroke (1.5% vs. 2.2%), myocardial infarction (5.4% vs. 5.7%), and unplanned revascularization (8.7% vs. 9.5%). - FFR guidance did not result in cost savings or clinical benefit compared to angiography alone - Early termination of the study due to increased mortality rates in 1 arm. |
AQVA-II (2024)/305 [32] | Randomized FFR vs. angiography-guided PCI in complex high-risk indicated procedures. | Post-PCI FFR value > 0.86. | - Higher rate of optimal post-PCI FFR in physiology-guided PCI (77% vs. 54%, absolute difference: 23%, p < 0.0001). - No difference between angiography-derived vs. microcatheter-derived FFR for PCI guidance (p < 0.01, confirming noninferiority). - Contrast dye volume was significantly higher in the angiography-guided group (170 mL vs. 140 mL, p < 0.0001). |
6. Intravascular Imaging Versus Angiography
Trial Name or First Author Name (Date)/N | Study Design | Primary Endpoints | Principal Findings |
---|---|---|---|
HOME-DES IVUS (2010)/210 [56] | Randomized, IVUS- vs. angiography-guided DES implantation in patients with complex coronary artery disease. | - MACE at 18-month follow-up (composite of death, myocardial infarction, and reintervention). | - Stent thrombosis occurred in 3.8% (IVUS) vs. 5.7% (Angiography). - Higher rate of post-dilatation in IVUS-guided group (33% vs. 0%, p < 0.001). - Higher balloon inflation pressure in IVUS group (16.4 ± 1.7 vs. 15.2 ± 1.5 atm, p < 0.001). - Longer fluoroscopy time in IVUS group (12.6 ± 5.9 vs. 7.8 ± 3.6 min, p = 0.02). - Higher contrast volume in IVUS group (132.5 ± 43.5 vs. 112.5 ± 30.6 mL, p = 0.03). |
Habara et al. (2012)/70 [40] | Randomized, FD-OCT vs. IVUS-guided PCI in patients with de novo coronary lesions. | Post PCI stent expansion assessed by IVUS. | - Minimum stent area was significantly smaller in the FD-OCT group compared to IVUS (6.1 ± 2.2 mm2 vs. 7.1 ± 2.1 mm2, p = 0.04). - Mean stent area was lower in FD-OCT (7.5 ± 2.5 mm2 vs. 8.7 ± 2.4 mm2, p = 0.04). - Focal stent expansion was significantly lower in FD-OCT (64.7% ± 13.7% vs. 80.3% ± 13.4%, p = 0.002). - Diffuse stent expansion was lower in FD-OCT (84.2% ± 15.8% vs. 98.8% ± 16.5%, p = 0.003). - Significant residual reference segment stenosis was more frequent in FD-OCT group (22.9% vs. 2.9%, p = 0.03). |
CLI-OPCI (2012)/670 [57] | Retrospective observational study, comparing OCT vs. angiography-guided PCI. | Composite of cardiac death or MI at 1 year. | - Lower risk of cardiac death (1.2% vs. 4.5%, p = 0.010) and cardiac death or MI (6.6% vs. 13.0%, p = 0.006) in the OCT group. - The composite endpoint was significantly lower in the OCT group (9.6% vs. 14.8%, p = 0.044). - After multivariable analysis, OCT guidance was associated with a lower risk of cardiac death or MI (OR 0.49, 95% CI: 0.25–0.96, p = 0.037). - Propensity-score adjusted analysis confirmed the benefit of OCT-guided PCI (OR 0.37, 95% CI: 0.10–0.90, p = 0.050). |
AVIO (2013)/284 [58] | Randomized, IVUS- vs. angiography-guided DES implantation in complex coronary lesions. | Post-procedure in-lesion MLD. | - IVUS-guided PCI resulted in significantly larger post-procedure MLD (2.70 ± 0.46 mm vs. 2.51 ± 0.46 mm, p = 0.0002). - Higher post-dilatation rates in IVUS-guided PCI (88.3% vs. 68.4%, p < 0.0001). |
Kim et al. (2013)/543 [59] | Randomized, IVUS- vs. angiography-guided DES implantation in patients with long coronary artery stenoses. | MACE at 1 year (composite of cardiovascular death, MI, stent thrombosis, and target vessel revascularization). | - No significant difference in MACE between IVUS- and angiography-guided groups in the intention-to-treat analysis (4.5% vs. 7.3%, RR 0.59, 95% CI: 0.28–1.24, p = 0.16). - In the per-protocol analysis (excluding crossover patients), IVUS guidance was associated with a significantly lower MACE rate (4.0% vs. 8.1%, RR 0.48, 95% CI: 0.23–0.99, p = 0.048). - Post-procedural minimal lumen diameter was significantly larger in the IVUS-guided group in the per-protocol analysis (2.58 mm vs. 2.51 mm, p = 0.04) but not in the intention-to-treat analysis. - Adjunct post-dilation was more frequent in the IVUS group (54.6% vs. 44.5%, p = 0.03). |
RESET IVUS (2013)/1574 [60] | Retrospective, observational study comparing IVUS- vs. angiography-guided DES implantation in short-length lesions. | MACE at 1 year (composite of cardiovascular death, MI, and TVR). | - Stent thrombosis was similar in both groups (0.2% vs. 0.2%, HR: 0.68, 95% CI: 0.06–7.52, p = 0.754). |
AIR-CTO (2015)/230 [42] | Randomized, IVUS- vs. angiography-guided PCI in patients with chronic total occlusion. | In-stent LLL at 1-year follow-up. | - Lower LLL in the IVUS-guided group (0.28 ± 0.48 mm vs. 0.46 ± 0.68 mm, p = 0.025). - Lower in-true-lumen restenosis rate in IVUS-guided PCI (3.9% vs. 13.7%, p = 0.021). - Lower stent thrombosis rate in IVUS-guided PCI at 2 years (0.9% vs. 6.1%, p = 0.043). - Higher procedural success based on IVUS criteria in IVUS-guided PCI (91% vs. 68%, p = 0.024). |
Tan et al. (2015)/123 [61] | Randomized, IVUS- vs. angiography-guided PCI in elderly patients with unprotected left main coronary artery stenosis. | MACE at 2 years (composite of death, nonfatal myocardial infarction, and TLR). | - Lower MACE rate in IVUS-guided PCI (13.1% vs. 29.3%, p = 0.031). - Lower TLR rate in IVUS-guided PCI (9.1% vs. 24.0%, p = 0.045). - Multivariable Cox proportional hazard model identified distal lesion as an independent predictor of MACE (HR: 1.99, 95% CI: 1.129–2.367, p = 0.043). - IVUS guidance was an independent factor for survival free of MACE (HR: 0.414, 95% CI: 0.129–0.867, p = 0.033). |
CTO-IVUS (2015)/402 [62] | Randomized, IVUS- vs. angiography-guided PCI in patients with chronic total occlusion. | MACE at 12 months (composite of cardiac death, MI, or TVR). | - Lower MACE rate in IVUS-guided PCI (2.6% vs. 7.1%, HR: 0.35, 95% CI: 0.13–0.97 p = 0.035). - Lower composite of cardiac death or MI in IVUS-guided PCI (0% vs. 2.0%, p = 0.045). - Higher postprocedural minimum lumen diameter in IVUS-guided PCI (2.64 ± 0.35 mm vs. 2.56 ± 0.41 mm, p = 0.025). - Greater use of high-pressure post-stent dilation in IVUS-guided PCI (51.2% vs. 41.3%, p = 0.045). |
ILUMIEN II (2015)/940 [41] | Observational, propensity-matched study comparing OCT- vs. IVUS-guided PCI. | Stent expansion (MSA divided by the mean of the proximal and distal reference lumen areas). | - OCT detected more post-PCI stent malapposition (26.6% vs. 13.6%, p = 0.0002), tissue protrusion (63.6% vs. 27.3%, p < 0.0001), and edge dissections (23.1% vs. 5.2%, p < 0.0001). - In-segment diameter stenosis was slightly higher in the OCT group (13.3% vs. 11.2%, p = 0.009). |
CREDO/KYOTO AMI (2015)/3028 [63] | Observational registry study comparing IVUS- vs. angiography-guided PCI in STEMI patients undergoing primary PCI. | TVR at 5 years. | - Lower unadjusted TVR rate in IVUS-guided PCI (22% vs. 27%, p < 0.001), but no significant difference after adjustment (HR: 1.14, 95% CI: 0.86–1.51, p = 0.38). - Lower unadjusted definite stent thrombosis (1.2% vs. 3.1%, p = 0.003), but no significant difference after adjustment (HR: 0.58, 95% CI: 0.19–1.72, p = 0.33). - Higher final balloon inflation pressure in IVUS-guided PCI (15.6 ± 4.0 atm vs. 14.5 ± 3.6 atm, p < 0.001). - Longer door-to-balloon time in IVUS-guided PCI (p < 0.001). |
DOCTORS (2016)/240 [64] | Randomized, OCT- vs. angiography-guided PCI in patients with non-ST-segment elevation acute coronary syndromes. | Functional results of PCI assessed by post-PCI FFR. | - Higher post-PCI FFR in OCT-guided PCI (0.94 ± 0.04 vs. 0.92 ± 0.05, p = 0.005). - More frequent poststent overdilation in OCT-guided PCI (43% vs. 12.5%, p < 0.0001). - Lower residual stenosis in OCT-guided PCI (7.0 ± 4.3% vs. 8.7 ± 6.3%, p = 0.01). |
Zhang et al. (2016)/84 [65] | Randomized, IVUS- vs. angiography-guided DES implantation in small coronary artery lesions. | Post-procedure in-lesion MLD. | - Larger post-procedure MLD in IVUS-guided PCI (2.77 ± 0.19 mm vs. 2.53 ± 0.21 mm, p = 0.000). - Greater acute gain in IVUS-guided PCI (1.87 ± 0.28 mm vs. 1.63 ± 0.27 mm, p = 0.000). - Smaller final stenosis in IVUS-guided PCI (6.72 ± 2.56% vs. 7.94 ± 2.47%, p = 0.029). |
Sheth/Kajander et al. (2016)/642 [66] | Propensity-matched cohort study, OCT- vs. angiography-guided PCI in STEMI patients (substudy of the TOTAL trial). | Composite of cardiovascular death, MI, stent thrombosis, and TVR at 1 year. | - Larger final MLD in OCT-guided PCI (2.99 ± 0.48 mm vs. 2.79 ± 0.47 mm, p < 0.0001). - Longer procedure time in OCT-guided PCI (median 58 min vs. 38 min, p < 0.0001). - Higher total contrast dose in OCT-guided PCI (239.7 ± 81.1 mL vs. 193.3 ± 78.6 mL, p < 0.0001). |
ILUMIEN III (2016)/450 [67] | Randomized, OCT- vs. IVUS- vs. angiography-guided PCI. | Post-PCI MSA measured by OCT. | - Final median MSA (primary endpoint): OCT = 5.79 mm2 (IQR: 4.54–7.34), IVUS = 5.89 mm2 (4.67–7.80), Angiography = 5.49 mm2 (4.39–6.59). - OCT guidance was non-inferior to IVUS (one-sided 97.5% lower CI −0.70 mm2, p = 0.001), but not superior (p = 0.42). - Procedural MACE: OCT = 3%, IVUS = 1%, Angiography = 1% (p = 0.37 for OCT vs. IVUS, p = 0.37 for OCT vs. Angiography). - Greater stent expansion in OCT vs. Angiography (87.6% ± 16.6 vs. 82.9% ± 12.9, p = 0.02). - Lower rate of major untreated dissections in OCT vs. IVUS (14% vs. 26%, p = 0.009). - Lower rate of major untreated stent malapposition in OCT vs. IVUS (11% vs. 21%, p = 0.02). |
OPINION (2018)/829 [68] | Randomized, non-inferiority study comparing OFDI vs. IVUS-guided PCI. | TVF at 12 months (composite of cardiac death, target-vessel myocardial infarction, and ischemia-driven target vessel revascularization). | - TVF occurred in 5.2% of OFDI-guided PCI vs. 4.9% of IVUS-guided PCI (HR: 1.07, upper one-sided 95% CI 1.80, p_non-inferiority = 0.042). - Binary restenosis at 8 months was similar between groups (in-stent: 1.6% vs. 1.6%, p = 1.00; in-segment: 6.2% vs. 6.0%, p = 1.00). - Higher contrast use in OFDI-guided PCI (164 ± 66 mL vs. 138 ± 56 mL, p < 0.001). |
Jones et al. (2018)/87,166 [69] | Observational cohort study from the Pan-London PCI registry, comparing OCT- vs. IVUS- vs. angiography-guided PCI. | All-cause mortality at a median follow-up of 4.8 years. | - Lower mortality in OCT-guided PCI (7.7%) vs. IVUS-guided PCI (12.2%) vs. angiography-guided PCI (15.7%), p < 0.0001. - Multivariate Cox analysis: OCT vs. angiography-alone (HR: 0.48, 95% CI: 0.26–0.81, p = 0.001); OCT vs. IVUS (HR: 0.88, 95% CI: 0.61–1.38, p = 0.43). - Lower in-hospital MACE in OCT-guided PCI (1.3%) vs. IVUS (1.4%) vs. angiography (1.8%), p = 0.016. - Lower in-hospital mortality in OCT-guided PCI (0.3%) vs. IVUS (0.4%) vs. angiography (0.7%), p = 0.010. - Lower Q-wave MI in OCT-guided PCI (0.2%) vs. IVUS (0.5%) vs. angiography (0.7%), p = 0.046. |
ULTIMATE (2018)/1448 [70] | Randomized, IVUS- vs. angiography-guided DES implantation in all-comer patients. | TVF at 12 months (composite of cardiac death, target vessel MI, and clinically driven TVR). | - Lower TVF rate in IVUS-guided PCI (2.9%) vs. angiography-guided PCI (5.4%), HR: 0.530, 95% CI: 0.312–0.901, p = 0.019. - Lower clinically driven TVR in IVUS-guided PCI (1.5% vs. 2.9%, HR: 0.514, 95% CI: 0.248–1.066, p = 0.07). - Lower definite/probable stent thrombosis in IVUS-guided PCI (0.1% vs. 0.7%, HR: 0.199, 95% CI: 0.023–1.704, p = 0.10). |
IVUS-XPL 5-year follow-up (2020)/1400 [71] | Randomized, IVUS- vs. angiography-guided DES implantation in long coronary lesions | MACE at 5 years (composite of cardiac death, target lesion-related MI, or ischemia-driven TLR). | - Lower MACE rate in IVUS-guided PCI (5.6% vs. 10.7%, HR: 0.50, 95% CI: 0.34–0.75, p = 0.001). - Lower ischemia-driven TLR in IVUS-guided PCI (4.8% vs. 8.4%, HR: 0.54, 95% CI: 0.33–0.89, p = 0.007). - Lower cardiac death rate in IVUS-guided PCI (0.9% vs. 2.2%, HR: 0.43, 95% CI: 0.17–1.12, p = 0.074). - Lower MACE rate between 1 and 5 years in IVUS-guided PCI (2.8% vs. 5.2%, HR: 0.53, 95% CI: 0.29–0.95, p = 0.031). |
iSIGHT (2021)/151 [45] | Randomized, OCT- vs. IVUS- vs. angiography-guided PCI. | Post-procedure stent expansion (minimum stent area ≥90% of the average reference lumen area). | - OCT guidance achieved stent expansion of 98.01 ± 16.14%, which was noninferior to IVUS (91.69 ± 15.75%, p_non-inferiority < 0.001) and superior to angiography (90.53 ± 14.84%, p = 0.041). - Lower rate of incomplete stent apposition in OCT-guided PCI (70.6%) compared to IVUS (92.2%) and angiography (81.1%), p = 0.016. - Higher proportion of optimal stent expansion (≥90%) in OCT (74.5%) vs. IVUS (49.0%) vs. angiography (50.9%), p = 0.014. |
THE ROCK II (2021)/730 [44] | Multicenter, retrospective European study comparing OCT- vs. IVUS- vs. angiography-guided PCI for distal LM stenting | TLF at 1 year (composite of cardiac death, target vessel MI, and TLR). | - Lower TLF in intravascular imaging-guided PCI vs. angiography (12.7% vs. 21.2%, p = 0.039). - Propensity-matched analysis: TLF at 1 year: 16% (angiography), 7% (OCT), 6% (IVUS), p = 0.03 for IVUS/OCT vs. angiography. - TLF IVUS vs. angiography (HR: 0.37, 95% CI: 0.15–0.91, p = 0.03), OCT vs. angiography (HR: 0.43, 95% CI: 0.18–1.01, p = 0.05). - Lower TLR in OCT-guided PCI (4.3%) vs. IVUS (10.2%) vs. angiography (11.0%), HR for OCT vs. angiography 0.39, 95% CI: 0.18–0.85. |
EROSION III (2022)/246 [72] | Randomized, OCT-guided vs. angiography-guided reperfusion in STEMI with early infarct artery patency. | Rate of stent implantation at 1 year follow up. | - Lower rate of stent implantation in OCT-guided PCI (43.8%) vs. angiography-guided PCI (58.8%), p = 0.024. - Lower residual angiographic diameter stenosis in OCT-guided PCI (8.7% ± 3.7%) vs. angiography-guided PCI (11.8% ± 4.6%), p < 0.001. - Higher rate of nonstenting treatment in OCT-guided PCI (56.2%) compared to angiography (41.2%). |
HONEST (2022)/75 [73] | Randomized, OCT- vs. angiography-guided magnesium bioresorbable scaffold (MBRS) implantation in NSTEMI patients. | 6-month healing stage As a result, to OCT. | - MBRS resorption at 6 months: OCT-guided 77.0% [IQR: 68.5–85.5] vs. angiography-guided 76.5% [IQR: 67.9–85.5], p = 0.97. - Reduction in MLA was greater in OCT-guided PCI (-2.3 ± 1.6 mm2 vs. -1.4 ± 1.4 mm2, p = 0.02). - Greater reduction in total lumen volume in OCT-guided PCI (−27.1 ± 32.5 mm3 vs. −5.0 ± 32.9 mm3, p < 0.01). |
RENOVATE-COMPLEX (2023)/1620 [47] | Randomized, IVUS- or OCT-guided vs. angiography-guided PCI in complex coronary artery disease. | Composite of cardiac death, target-vessel myocardial infarction, or clinically driven target-vessel revascularization at a median follow-up of 2.1 years. | - Lower primary endpoint event rate in IVUS/OCT-guided PCI (7.7%) vs. angiography-guided PCI (12.3%), HR: 0.64, 95% CI: 0.45–0.89, p = 0.008. - Lower risk of cardiac death in IVUS/OCT-guided PCI (1.7% vs. 3.8%, HR: 0.47, 95% CI: 0.24–0.93). - Lower target-vessel-related MI in IVUS/OCT-guided PCI (3.7%) vs. angiography-guided PCI (5.6%), HR: 0.74, 95% CI: 0.45–1.22. - Lower target-vessel revascularization in IVUS/OCT-guided PCI (3.4%) vs. angiography-guided PCI (5.5%), HR: 0.69, 95% CI: 0.40–1.18. |
ILUMIEN IV (2023)/2487 [53] | Randomized, OCT- vs. angiography-guided PCI in patients with diabetes or complex coronary lesions. | Minimum stent area post-PCI (assessed by OCT) - TVF at 2 years (composite of cardiac death, target-vessel MI, ischemia-driven TVR). | - Larger minimum stent area in OCT-guided PCI (5.72 ± 2.04 mm2) vs. angiography (5.36 ± 1.87 mm2), mean difference 0.36 mm2 (95% CI: 0.21–0.51, p < 0.001). - Lower stent thrombosis rate in OCT-guided PCI (0.5%) vs. angiography (1.4%), HR: 0.36 (95% CI: 0.14–0.91, p = 0.02). - Longer procedural time and higher contrast volume in OCT-guided PCI. |
OCTOBER (2023)/1201 [52] | Multicenter, randomized, OCT- vs. angiography-guided PCI in complex bifurcation lesions. | MACE at 2 years (composite of cardiac death, target-lesion myocardial infarction (MI), and ischemia-driven TLR). | - Lower incidence of MACE in OCT-guided PCI (10.1%) vs. angiography-guided PCI (14.1%), HR: 0.70, 95% CI: 0.50–0.98, p = 0.035. - Lower stent thrombosis in OCT-guided PCI (0.5%) vs. angiography-guided PCI (1.4%), HR: 0.36, 95% CI: 0.14–0.91, p = 0.02. |
OCTIVUS (2023)/2008 [55] | Prospective multicenter, randomized controlled trial, OCT-guided vs. IVUS—guided PCI in patients with significant coronary artery lesions. | TVF, a composite of Cardiac death, target vessel myocardial infarction, or ischemia-driven TVR. | - OCT was noninferior to IVUS (2.5% vs. 3.1%; absolute difference −0.6%, upper boundary 97.5% CI: 0.97%; p < 0.001 for non-inferiority). - Major procedural complications were lower in OCT vs. IVUS group (2.2% vs. 3.7%; p = 0.047). |
ULTIMATE III (2024)/260 [48] | Randomized, IVUS-guided vs. angiography-guided DCB angioplasty in de novo coronary lesions. | In-segment LLL at 7 months. | - Lower LLL in IVUS-guided PCI (-0.10 ± 0.34 mm) vs. angiography-guided PCI (0.03 ± 0.52 mm), mean difference 0.14 mm, 95% CI: 0.02–0.26, p = 0.025. - Larger minimum lumen diameter at 7 months in IVUS-guided PCI (2.06 ± 0.62 mm) vs. angiography (1.75 ± 0.63 mm), p < 0.001. - Lower residual diameter stenosis in IVUS-guided PCI (28.15% ± 13.88%) vs. angiography (35.83% ± 17.69%), p = 0.001. |
IVUS-ACS (2024)/3504 [50] | Multicenter, randomized, IVUS-guided vs. angiography-guided PCI in patients with acute coronary syndrome. | TVF at 1 year (composite of cardiac death, target vessel MI, or clinically driven TVR). | - Lower TVF in IVUS-guided PCI (4.0%) vs. angiography-guided PCI (7.3%), HR: 0.55, 95% CI: 0.41–0.74, p = 0.0001. - Reduction in target vessel MI: 2.5% (IVUS) vs. 3.8% (angiography), HR: 0.63, 95% CI: 0.43–0.92, p = 0.018. - Lower clinically driven TVR in IVUS-guided PCI (1.4%) vs. angiography (3.2%), HR: 0.44, 95% CI: 0.27–0.72, p = 0.0010. - Lower non-procedural MI in IVUS-guided PCI (0.6%) vs. angiography (1.5%), HR: 0.41, 95% CI: 0.20–0.84, p = 0.014. |
7. Intravascular Imaging Versus Physiology
7.1. IVUS Versus FFR
7.2. OCT Versus FFR
7.3. Intracoronary Imaging Versus iFR
7.4. QFR and Imaging
8. Physiology and Imaging in Complex Settings
9. Imaging-Derived Physiology Indices
9.1. IVUS-Based FFR
9.2. OCT-Based FFR
9.3. OCT-μFR
9.4. OCT Derived Virtual Flow Reserve (VFR)
10. Discussion
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shantouf, R.S.; Mehra, A. Coronary fractional flow reserve. AJR Am. J. Roentgenol. 2015, 204, W261–W265. [Google Scholar] [CrossRef] [PubMed]
- Shlofmitz, E.; Kerndt, C.C.; Parekh, A.; Khalid, N. Intravascular Ultrasound. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Terashima, M.; Kaneda, H.; Suzuki, T. The role of optical coherence tomography in coronary intervention. Korean J. Intern. Med. 2012, 27, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Michail, M.; Thakur, U.; Mehta, O.; Ramzy, J.M.; Comella, A.; Ihdayhid, A.R.; Cameron, J.D.; Nicholls, S.J.; Hoole, S.P.; Brown, A.J. Non-hyperaemic pressure ratios to guide percutaneous coronary intervention. Open Heart 2020, 7, 3295975. [Google Scholar] [CrossRef] [PubMed]
- Soos, M.P.; Gonzalez-Morales, D.; McComb, D. Instantaneous Wave-Free Ratio. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Ahn, J.M.; Park, D.W.; Shin, E.S.; Koo, B.K.; Nam, C.W.; Doh, J.H.; Kim, J.H.; Chae, I.H.; Yoon, J.H.; Her, S.H.; et al. Fractional Flow Reserve and Cardiac Events in Coronary Artery Disease: Data From a Prospective IRIS-FFR Registry (Interventional Cardiology Research Incooperation Society Fractional Flow Reserve). Circulation 2017, 135, 2241–2251. [Google Scholar] [CrossRef]
- Davies, J.E.; Sen, S.; Dehbi, H.M.; Al-Lamee, R.; Petraco, R.; Nijjer, S.S.; Bhindi, R.; Lehman, S.J.; Walters, D.; Sapontis, J.; et al. Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI. N. Engl. J. Med. 2017, 376, 1824–1834. [Google Scholar] [CrossRef]
- Götberg, M.; Christiansen, E.H.; Gudmundsdottir, I.J.; Sandhall, L.; Danielewicz, M.; Jakobsen, L.; Olsson, S.E.; Öhagen, P.; Olsson, H.; Omerovic, E.; et al. Instantaneous Wave-free Ratio versus Fractional Flow Reserve to Guide PCI. N. Engl. J. Med. 2017, 376, 1813–1823. [Google Scholar] [CrossRef]
- Svanerud, J.; Ahn, J.M.; Jeremias, A.; van ‘t Veer, M.; Gore, A.; Maehara, A.; Crowley, A.; Pijls, N.H.J.; De Bruyne, B.; Johnson, N.P.; et al. Validation of a novel non-hyperaemic index of coronary artery stenosis severity: The Resting Full-cycle Ratio (VALIDATE RFR) study. EuroIntervention 2018, 14, 806–814. [Google Scholar] [CrossRef]
- Casanova-Sandoval, J.; Fernández-Rodríguez, D.; Otaegui, I.; Gil Jiménez, T.; Rodríguez-Esteban, M.; Rivera, K.; Torres-Saura, F.; Jiménez Díaz, V.; Ocaranza-Sánchez, R.; Peral Disdier, V.; et al. Usefulness of the Hybrid RFR-FFR Approach: Results of a Prospective and Multicenter Analysis of Diagnostic Agreement between RFR and FFR-The RECOPA (REsting Full-Cycle Ratio Comparation versus Fractional Flow Reserve (A Prospective Validation)) Study. J. Interv. Cardiol. 2021, 2021, 5522707. [Google Scholar] [CrossRef]
- Jeremias, A.; Maehara, A.; Généreux, P.; Asrress, K.N.; Berry, C.; De Bruyne, B.; Davies, J.E.; Escaned, J.; Fearon, W.F.; Gould, K.L.; et al. Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: The RESOLVE study. J. Am. Coll. Cardiol. 2014, 63, 1253–1261. [Google Scholar] [CrossRef]
- Shiode, N.; Okimoto, T.; Tamekiyo, H.; Kawase, T.; Yamane, K.; Kagawa, Y.; Fujii, Y.; Ueda, Y.; Hironobe, N.; Kato, Y.; et al. A Comparison between the Instantaneous Wave-free Ratio and Resting Distal Coronary Artery Pressure/Aortic Pressure and the Fractional Flow Reserve: The Diagnostic Accuracy Can Be Improved by the Use of both Indices. Intern. Med. 2017, 56, 749–753. [Google Scholar] [CrossRef]
- Johnson, N.P.; Li, W.; Chen, X.; Hennigan, B.; Watkins, S.; Berry, C.; Fearon, W.F.; Oldroyd, K.G. Diastolic pressure ratio: New approach and validation vs. the instantaneous wave-free ratio. Eur. Heart J. 2019, 40, 2585–2594. [Google Scholar] [CrossRef]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef] [PubMed]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e4–e17. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, J.; Xu, L.; Yang, W.; Li, G.; Ding, D.; Chang, Y.; Yu, M.; Kitslaar, P.; Zhang, S.; et al. Diagnostic Accuracy of a Fast Computational Approach to Derive Fractional Flow Reserve From Coronary CT Angiography. JACC Cardiovasc. Imaging 2020, 13, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Westra, J.; Andersen, B.K.; Campo, G.; Matsuo, H.; Koltowski, L.; Eftekhari, A.; Liu, T.; Di Serafino, L.; Di Girolamo, D.; Escaned, J.; et al. Diagnostic Performance of In-Procedure Angiography-Derived Quantitative Flow Reserve Compared to Pressure-Derived Fractional Flow Reserve: The FAVOR II Europe-Japan Study. J. Am. Heart Assoc. 2018, 7, e009603. [Google Scholar] [CrossRef]
- Tsigkas, G.G.; Bourantas, G.C.; Moulias, A.; Karamasis, G.V.; Bekiris, F.V.; Davlouros, P.; Katsanos, K. Rapid and Precise Computation of Fractional Flow Reserve from Routine Two-Dimensional Coronary Angiograms Based on Fluid Mechanics: The Pilot FFR2D Study. J. Clin. Med. 2024, 13, 3831. [Google Scholar] [CrossRef]
- Kornowski, R.; Lavi, I.; Pellicano, M.; Xaplanteris, P.; Vaknin-Assa, H.; Assali, A.; Valtzer, O.; Lotringer, Y.; De Bruyne, B. Fractional Flow Reserve Derived From Routine Coronary Angiograms. J. Am. Coll. Cardiol. 2016, 68, 2235–2237. [Google Scholar] [CrossRef]
- Tsigkas, G.; Apostolos, A.; Synetos, A.; Latsios, G.; Toutouzas, K.; Xenogiannis, I.; Hamilos, M.; Sianos, G.; Ziakas, A.; Tsiafoutis, I.; et al. Computed tomoGRaphy guidEd invasivE Coronary angiography in patiEnts with a previous coronary artery bypass graft surgery trial (GREECE trial): Rationale and design of a multicenter, randomized control trial. Hell. J. Cardiol. 2021, 62, 470–472. [Google Scholar] [CrossRef]
- Parviz, Y.; Shlofmitz, E.; Fall, K.N.; Konigstein, M.; Maehara, A.; Jeremias, A.; Shlofmitz, R.A.; Mintz, G.S.; Ali, Z.A. Utility of intracoronary imaging in the cardiac catheterization laboratory: Comprehensive evaluation with intravascular ultrasound and optical coherence tomography. Br. Med. Bull. 2018, 125, 79–90. [Google Scholar] [CrossRef]
- Mintz, G.S.; Bourantas, C.V.; Chamié, D. Intravascular Imaging for Percutaneous Coronary Intervention Guidance and Optimization: The Evidence for Improved Patient Outcomes. J. Soc. Cardiovasc. Angiogr. Interv. 2022, 1, 100413. [Google Scholar] [CrossRef]
- Prati, F.; Cera, M.; Ramazzotti, V.; Imola, F.; Giudice, R.; Giudice, M.; Propris, S.D.; Albertucci, M. From bench to bedside: A novel technique of acquiring OCT images. Circ. J. 2008, 72, 839–843. [Google Scholar] [CrossRef]
- Windecker, S.; Kolh, P.; Alfonso, F.; Collet, J.P.; Cremer, J.; Falk, V.; Filippatos, G.; Hamm, C.; Head, S.J.; Jüni, P.; et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 2014, 35, 2541–2619. [Google Scholar] [CrossRef]
- Tonino, P.A.; De Bruyne, B.; Pijls, N.H.; Siebert, U.; Ikeno, F.; van’ t Veer, M.; Klauss, V.; Manoharan, G.; Engstrøm, T.; Oldroyd, K.G.; et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 2009, 360, 213–224. [Google Scholar] [CrossRef] [PubMed]
- van Nunen, L.X.; Zimmermann, F.M.; Tonino, P.A.; Barbato, E.; Baumbach, A.; Engstrøm, T.; Klauss, V.; MacCarthy, P.A.; Manoharan, G.; Oldroyd, K.G.; et al. Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial. Lancet 2015, 386, 1853–1860. [Google Scholar] [CrossRef] [PubMed]
- De Bruyne, B.; Pijls, N.H.; Kalesan, B.; Barbato, E.; Tonino, P.A.; Piroth, Z.; Jagic, N.; Möbius-Winkler, S.; Rioufol, G.; Witt, N.; et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N. Engl. J. Med. 2012, 367, 991–1001. [Google Scholar] [CrossRef] [PubMed]
- Xaplanteris, P.; Fournier, S.; Pijls, N.H.J.; Fearon, W.F.; Barbato, E.; Tonino, P.A.L.; Engstrøm, T.; Kääb, S.; Dambrink, J.H.; Rioufol, G.; et al. Five-Year Outcomes with PCI Guided by Fractional Flow Reserve. N. Engl. J. Med. 2018, 379, 250–259. [Google Scholar] [CrossRef]
- Puymirat, E.; Cayla, G.; Simon, T.; Steg, P.G.; Montalescot, G.; Durand-Zaleski, I.; le Bras, A.; Gallet, R.; Khalife, K.; Morelle, J.F.; et al. Multivessel PCI Guided by FFR or Angiography for Myocardial Infarction. N. Engl. J. Med. 2021, 385, 297–308. [Google Scholar] [CrossRef]
- Rioufol, G.; Dérimay, F.; Roubille, F.; Perret, T.; Motreff, P.; Angoulvant, D.; Cottin, Y.; Meunier, L.; Cetran, L.; Cayla, G.; et al. Fractional Flow Reserve to Guide Treatment of Patients With Multivessel Coronary Artery Disease. J. Am. Coll. Cardiol. 2021, 78, 1875–1885. [Google Scholar] [CrossRef]
- Stables, R.H.; Mullen, L.J.; Elguindy, M.; Nicholas, Z.; Aboul-Enien, Y.H.; Kemp, I.; O’Kane, P.; Hobson, A.; Johnson, T.W.; Khan, S.Q.; et al. Routine Pressure Wire Assessment Versus Conventional Angiography in the Management of Patients With Coronary Artery Disease: The RIPCORD 2 Trial. Circulation 2022, 146, 687–698. [Google Scholar] [CrossRef]
- Biscaglia, S.; Verardi, F.M.; Erriquez, A.; Colaiori, I.; Cocco, M.; Cantone, A.; Pompei, G.; Marrone, A.; Caglioni, S.; Tumscitz, C.; et al. Coronary Physiology Guidance vs. Conventional Angiography for Optimization of Percutaneous Coronary Intervention: The AQVA-II Trial. JACC Cardiovasc. Interv. 2024, 17, 277–287. [Google Scholar] [CrossRef]
- Fearon, W.F.; Zimmermann, F.M.; De Bruyne, B.; Piroth, Z.; van Straten, A.H.M.; Szekely, L.; Davidavičius, G.; Kalinauskas, G.; Mansour, S.; Kharbanda, R.; et al. Fractional Flow Reserve-Guided PCI as Compared with Coronary Bypass Surgery. N. Engl. J. Med. 2022, 386, 128–137. [Google Scholar] [CrossRef]
- Fearon, W.F.; Zimmermann, F.M.; Ding, V.Y.; Takahashi, K.; Piroth, Z.; van Straten, A.H.M.; Szekely, L.; Davidavičius, G.; Kalinauskas, G.; Mansour, S.; et al. Outcomes after fractional flow reserve-guided percutaneous coronary intervention versus coronary artery bypass grafting (FAME 3): 5-year follow-up of a multicentre, open-label, randomised trial. Lancet 2025, 405, 1481–1490. [Google Scholar] [CrossRef]
- Layland, J.; Oldroyd, K.G.; Curzen, N.; Sood, A.; Balachandran, K.; Das, R.; Junejo, S.; Ahmed, N.; Lee, M.M.; Shaukat, A.; et al. Fractional flow reserve vs. angiography in guiding management to optimize outcomes in non-ST-segment elevation myocardial infarction: The British Heart Foundation FAMOUS-NSTEMI randomized trial. Eur. Heart J. 2015, 36, 100–111. [Google Scholar] [CrossRef]
- Thuesen, A.L.; Riber, L.P.; Veien, K.T.; Christiansen, E.H.; Jensen, S.E.; Modrau, I.; Andreasen, J.J.; Junker, A.; Mortensen, P.E.; Jensen, L.O. Fractional Flow Reserve Versus Angiographically-Guided Coronary Artery Bypass Grafting. J. Am. Coll. Cardiol. 2018, 72, 2732–2743. [Google Scholar] [CrossRef] [PubMed]
- Toth, G.G.; De Bruyne, B.; Kala, P.; Ribichini, F.L.; Casselman, F.; Ramos, R.; Piroth, Z.; Fournier, S.; Piccoli, A.; Van Mieghem, C.; et al. Graft patency after FFR-guided versus angiography-guided coronary artery bypass grafting: The GRAFFITI trial. EuroIntervention 2019, 15, e999–e1005. [Google Scholar] [CrossRef] [PubMed]
- Tsigkas, G.; Spyropoulou, P.; Bousoula, E.; Apostolos, A.; Vasilagkos, G.; Karamasis, G.; Dimitriadis, K.; Moulias, A.; Davlouros, P. Intracoronary Imaging: Current Practice and Future Perspectives. Rev. Cardiovasc. Med. 2023, 24, 39. [Google Scholar] [CrossRef]
- Okamura, T.; Onuma, Y.; Garcia-Garcia, H.M.; van Geuns, R.J.; Wykrzykowska, J.J.; Schultz, C.; van der Giessen, W.J.; Ligthart, J.; Regar, E.; Serruys, P.W. First-in-man evaluation of intravascular optical frequency domain imaging (OFDI) of Terumo: A comparison with intravascular ultrasound and quantitative coronary angiography. EuroIntervention 2011, 6, 1037–1045. [Google Scholar] [CrossRef]
- Habara, M.; Nasu, K.; Terashima, M.; Kaneda, H.; Yokota, D.; Ko, E.; Ito, T.; Kurita, T.; Tanaka, N.; Kimura, M.; et al. Impact of frequency-domain optical coherence tomography guidance for optimal coronary stent implantation in comparison with intravascular ultrasound guidance. Circ. Cardiovasc. Interv. 2012, 5, 193–201. [Google Scholar] [CrossRef]
- Maehara, A.; Ben-Yehuda, O.; Ali, Z.; Wijns, W.; Bezerra, H.G.; Shite, J.; Généreux, P.; Nichols, M.; Jenkins, P.; Witzenbichler, B.; et al. Comparison of Stent Expansion Guided by Optical Coherence Tomography Versus Intravascular Ultrasound: The ILUMIEN II Study (Observational Study of Optical Coherence Tomography [OCT] in Patients Undergoing Fractional Flow Reserve [FFR] and Percutaneous Coronary Intervention). JACC Cardiovasc. Interv. 2015, 8, 1704–1714. [Google Scholar] [CrossRef]
- Tian, N.L.; Gami, S.K.; Ye, F.; Zhang, J.J.; Liu, Z.Z.; Lin, S.; Ge, Z.; Shan, S.J.; You, W.; Chen, L.; et al. Angiographic and clinical comparisons of intravascular ultrasound- versus angiography-guided drug-eluting stent implantation for patients with chronic total occlusion lesions: Two-year results from a randomised AIR-CTO study. EuroIntervention 2015, 10, 1409–1417. [Google Scholar] [CrossRef]
- Ramasamy, A.; Chen, Y.; Zanchin, T.; Jones, D.A.; Rathod, K.; Jin, C.; Onuma, Y.; Zhang, Y.J.; Amersey, R.; Westwood, M.; et al. Optical coherence tomography enables more accurate detection of functionally significant intermediate non-left main coronary artery stenoses than intravascular ultrasound: A meta-analysis of 6919 patients and 7537 lesions. Int. J. Cardiol. 2020, 301, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Cortese, B.; de la Torre Hernandez, J.M.; Lanocha, M.; Ielasi, A.; Giannini, F.; Campo, G.; D’Ascenzo, F.; Latini, R.A.; Krestianinov, O.; Alfonso, F.; et al. Optical coherence tomography, intravascular ultrasound or angiography guidance for distal left main coronary stenting. The ROCK cohort II study. Catheter. Cardiovasc. Interv. 2022, 99, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Chamié, D.; Costa, J.R., Jr.; Damiani, L.P.; Siqueira, D.; Braga, S.; Costa, R.; Seligman, H.; Brito, F.; Barreto, G.; Staico, R.; et al. Optical Coherence Tomography Versus Intravascular Ultrasound and Angiography to Guide Percutaneous Coronary Interventions: The iSIGHT Randomized Trial. Circ. Cardiovasc. Interv. 2021, 14, e009452. [Google Scholar] [CrossRef]
- Moulias, A.; Koros, R.; Papageorgiou, A.; Patrinos, P.; Spyropoulou, P.; Vakka, A.; Bozika, M.; Vasilagkos, G.; Apostolos, A.; Nastouli, K.M.; et al. OCT Guidance in Bifurcation Percutaneous Coronary Intervention. Rev. Cardiovasc. Med. 2023, 24, 88. [Google Scholar] [CrossRef]
- Lee, J.M.; Choi, K.H.; Song, Y.B.; Lee, J.Y.; Lee, S.J.; Lee, S.Y.; Kim, S.M.; Yun, K.H.; Cho, J.Y.; Kim, C.J.; et al. Intravascular Imaging-Guided or Angiography-Guided Complex PCI. N. Engl. J. Med. 2023, 388, 1668–1679. [Google Scholar] [CrossRef]
- Gao, X.F.; Ge, Z.; Kong, X.Q.; Chen, X.; Han, L.; Qian, X.S.; Zuo, G.F.; Wang, Z.M.; Wang, J.; Song, J.X.; et al. Intravascular Ultrasound vs. Angiography-Guided Drug-Coated Balloon Angioplasty: The ULTIMATE III Trial. JACC Cardiovasc. Interv. 2024, 17, 1519–1528. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Pyrpyris, N.; Iliakis, P.; Kanatas, P.; Theofilis, P.; Sakalidis, A.; Apostolos, A.; Tsioufis, P.; Papanikolaou, A.; Aznaouridis, K.; et al. Optimal management of high bleeding risk patients undergoing percutaneous coronary interventions: Where do we stand? J. Cardiol. 2025, 85, 79–87. [Google Scholar] [CrossRef]
- Li, X.; Ge, Z.; Kan, J.; Anjum, M.; Xie, P.; Chen, X.; Khan, H.S.; Guo, X.; Saghir, T.; Chen, J.; et al. Intravascular ultrasound-guided versus angiography-guided percutaneous coronary intervention in acute coronary syndromes (IVUS-ACS): A two-stage, multicentre, randomised trial. Lancet 2024, 403, 1855–1865. [Google Scholar] [CrossRef]
- Apostolos, A.; Karanasos, A.; Ktenopoulos, N.; Tsalamandris, S.; Vlachakis, P.K.; Kachrimanidis, I.; Skalidis, I.; Sagris, M.; Koliastasis, L.; Drakopoulou, M.; et al. Unlocking the Secrets of Acute Coronary Syndromes Using Intravascular Imaging: From Pathophysiology to Improving Outcomes. J. Clin. Med. 2024, 13, 7087. [Google Scholar] [CrossRef]
- Holm, N.R.; Andreasen, L.N.; Neghabat, O.; Laanmets, P.; Kumsars, I.; Bennett, J.; Olsen, N.T.; Odenstedt, J.; Hoffmann, P.; Dens, J.; et al. OCT or Angiography Guidance for PCI in Complex Bifurcation Lesions. N. Engl. J. Med. 2023, 389, 1477–1487. [Google Scholar] [CrossRef]
- Ali, Z.A.; Landmesser, U.; Maehara, A.; Matsumura, M.; Shlofmitz, R.A.; Guagliumi, G.; Price, M.J.; Hill, J.M.; Akasaka, T.; Prati, F.; et al. Optical Coherence Tomography-Guided versus Angiography-Guided PCI. N. Engl. J. Med. 2023, 389, 1466–1476. [Google Scholar] [CrossRef]
- Kim, H.; Kang, D.Y.; Ahn, J.M.; Kim, H.J.; Hur, S.H.; Cho, Y.K.; Lee, C.H.; Hong, S.J.; Kim, S.W.; Won, H.; et al. Proportion and Clinical Impact of Stent Optimization During Imaging-Guided Percutaneous Coronary Intervention: The OCTIVUS Trial. JACC. Cardiovasc. Interv. 2025, 18, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.Y.; Ahn, J.M.; Yun, S.C.; Hur, S.H.; Cho, Y.K.; Lee, C.H.; Hong, S.J.; Lim, S.; Kim, S.W.; Won, H.; et al. Optical Coherence Tomography-Guided or Intravascular Ultrasound-Guided Percutaneous Coronary Intervention: The OCTIVUS Randomized Clinical Trial. Circulation 2023, 148, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Jakabcin, J.; Spacek, R.; Bystron, M.; Kvasnák, M.; Jager, J.; Veselka, J.; Kala, P.; Cervinka, P. Long-term health outcome and mortality evaluation after invasive coronary treatment using drug eluting stents with or without the IVUS guidance. Randomized control trial. HOME DES IVUS. Catheter. Cardiovasc. Interv. 2010, 75, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Prati, F.; Di Vito, L.; Biondi-Zoccai, G.; Occhipinti, M.; La Manna, A.; Tamburino, C.; Burzotta, F.; Trani, C.; Porto, I.; Ramazzotti, V.; et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: The Centro per la Lotta contro l’Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention 2012, 8, 823–829. [Google Scholar] [CrossRef]
- Chieffo, A.; Latib, A.; Caussin, C.; Presbitero, P.; Galli, S.; Menozzi, A.; Varbella, F.; Mauri, F.; Valgimigli, M.; Arampatzis, C.; et al. A prospective, randomized trial of intravascular-ultrasound guided compared to angiography guided stent implantation in complex coronary lesions: The AVIO trial. Am. Heart J. 2013, 165, 65–72. [Google Scholar] [CrossRef]
- Kim, J.S.; Kang, T.S.; Mintz, G.S.; Park, B.E.; Shin, D.H.; Kim, B.K.; Ko, Y.G.; Choi, D.; Jang, Y.; Hong, M.K. Randomized comparison of clinical outcomes between intravascular ultrasound and angiography-guided drug-eluting stent implantation for long coronary artery stenoses. JACC Cardiovasc. Interv. 2013, 6, 369–376. [Google Scholar] [CrossRef]
- Yoon, Y.W.; Shin, S.; Kim, B.K.; Kim, J.S.; Shin, D.H.; Ko, Y.G.; Choi, D.; Jeon, D.W.; Kwon, H.; Jang, Y.; et al. Usefulness of intravascular ultrasound to predict outcomes in short-length lesions treated with drug-eluting stents. Am. J. Cardiol. 2013, 112, 642–646. [Google Scholar] [CrossRef]
- Tan, Q.; Wang, Q.; Liu, D.; Zhang, S.; Zhang, Y.; Li, Y. Intravascular ultrasound-guided unprotected left main coronary artery stenting in the elderly. Saudi Med. J. 2015, 36, 549–553. [Google Scholar] [CrossRef]
- Kim, B.K.; Shin, D.H.; Hong, M.K.; Park, H.S.; Rha, S.W.; Mintz, G.S.; Kim, J.S.; Kim, J.S.; Lee, S.J.; Kim, H.Y.; et al. Clinical Impact of Intravascular Ultrasound-Guided Chronic Total Occlusion Intervention With Zotarolimus-Eluting Versus Biolimus-Eluting Stent Implantation: Randomized Study. Circ. Cardiovasc. Interv. 2015, 8, e002592. [Google Scholar] [CrossRef]
- Nakatsuma, K.; Shiomi, H.; Morimoto, T.; Ando, K.; Kadota, K.; Watanabe, H.; Taniguchi, T.; Yamamoto, T.; Furukawa, Y.; Nakagawa, Y.; et al. Intravascular Ultrasound Guidance vs. Angiographic Guidance in Primary Percutaneous Coronary Intervention for ST-Segment Elevation Myocardial Infarction—Long-Term Clinical Outcomes From the CREDO-Kyoto AMI Registry. Circ. J. 2016, 80, 477–484. [Google Scholar] [CrossRef]
- Meneveau, N.; Souteyrand, G.; Motreff, P.; Caussin, C.; Amabile, N.; Ohlmann, P.; Morel, O.; Lefrançois, Y.; Descotes-Genon, V.; Silvain, J.; et al. Optical Coherence Tomography to Optimize Results of Percutaneous Coronary Intervention in Patients with Non-ST-Elevation Acute Coronary Syndrome: Results of the Multicenter, Randomized DOCTORS Study (Does Optical Coherence Tomography Optimize Results of Stenting). Circulation 2016, 134, 906–917. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-Q.; Shi, R.; Pang, W.; Guo, Q.; Xu, Y.; Zhang, J. Application of intravascular ultrasound in stent implantation for small coronary arteries. J. Clin. Invasive. Cardiol. 2016, 3, 2–8. [Google Scholar]
- Sheth, T.N.; Kajander, O.A.; Lavi, S.; Bhindi, R.; Cantor, W.J.; Cheema, A.N.; Stankovic, G.; Niemelä, K.; Natarajan, M.K.; Shestakovska, O.; et al. Optical Coherence Tomography-Guided Percutaneous Coronary Intervention in ST-Segment-Elevation Myocardial Infarction: A Prospective Propensity-Matched Cohort of the Thrombectomy Versus Percutaneous Coronary Intervention Alone Trial. Circ. Cardiovasc. Interv. 2016, 9, e003414. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.A.; Maehara, A.; Généreux, P.; Shlofmitz, R.A.; Fabbiocchi, F.; Nazif, T.M.; Guagliumi, G.; Meraj, P.M.; Alfonso, F.; Samady, H.; et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): A randomised controlled trial. Lancet 2016, 388, 2618–2628. [Google Scholar] [CrossRef]
- Otake, H.; Kubo, T.; Takahashi, H.; Shinke, T.; Okamura, T.; Hibi, K.; Nakazawa, G.; Morino, Y.; Shite, J.; Fusazaki, T.; et al. Optical Frequency Domain Imaging Versus Intravascular Ultrasound in Percutaneous Coronary Intervention (OPINION Trial): Results From the OPINION Imaging Study. JACC Cardiovasc. Imaging 2018, 11, 111–123. [Google Scholar] [CrossRef]
- Jones, D.A.; Rathod, K.S.; Koganti, S.; Hamshere, S.; Astroulakis, Z.; Lim, P.; Sirker, A.; O’Mahony, C.; Jain, A.K.; Knight, C.J.; et al. Angiography Alone Versus Angiography Plus Optical Coherence Tomography to Guide Percutaneous Coronary Intervention: Outcomes From the Pan-London PCI Cohort. JACC Cardiovasc. Interv. 2018, 11, 1313–1321. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, X.; Kan, J.; Ge, Z.; Han, L.; Lu, S.; Tian, N.; Lin, S.; Lu, Q.; Wu, X.; et al. Intravascular Ultrasound Versus Angiography-Guided Drug-Eluting Stent Implantation: The ULTIMATE Trial. J. Am. Coll. Cardiol. 2018, 72, 3126–3137. [Google Scholar] [CrossRef]
- Hong, S.J.; Mintz, G.S.; Ahn, C.M.; Kim, J.S.; Kim, B.K.; Ko, Y.G.; Kang, T.S.; Kang, W.C.; Kim, Y.H.; Hur, S.H.; et al. Effect of Intravascular Ultrasound-Guided Drug-Eluting Stent Implantation: 5-Year Follow-Up of the IVUS-XPL Randomized Trial. JACC Cardiovasc. Interv. 2020, 13, 62–71. [Google Scholar] [CrossRef]
- Jia, H.; Dai, J.; He, L.; Xu, Y.; Shi, Y.; Zhao, L.; Sun, Z.; Liu, Y.; Weng, Z.; Feng, X.; et al. EROSION III: A Multicenter RCT of OCT-Guided Reperfusion in STEMI With Early Infarct Artery Patency. JACC Cardiovasc. Interv. 2022, 15, 846–856. [Google Scholar] [CrossRef]
- Fallesen, C.O.; Antonsen, L.; Maehara, A.; Noori, M.; Hougaard, M.; Hansen, K.N.; Ellert, J.; Ahlehoff, O.; Veien, K.T.; Lassen, J.F.; et al. Optical Coherence Tomography- Versus Angiography-Guided Magnesium Bioresorbable Scaffold Implantation in NSTEMI Patients. Cardiovasc. Revasc Med. 2022, 40, 101–110. [Google Scholar] [CrossRef]
- Cho, Y.K.; Nam, C.W.; Han, J.K.; Koo, B.K.; Doh, J.H.; Ben-Dor, I.; Waksman, R.; Pichard, A.; Murata, N.; Tanaka, N.; et al. Usefulness of combined intravascular ultrasound parameters to predict functional significance of coronary artery stenosis and determinants of mismatch. EuroIntervention 2015, 11, 163–170. [Google Scholar] [CrossRef]
- Abizaid, A.S.; Mintz, G.S.; Mehran, R.; Abizaid, A.; Lansky, A.J.; Pichard, A.D.; Satler, L.F.; Wu, H.; Pappas, C.; Kent, K.M.; et al. Long-term follow-up after percutaneous transluminal coronary angioplasty was not performed based on intravascular ultrasound findings: Importance of lumen dimensions. Circulation 1999, 100, 256–261. [Google Scholar] [CrossRef]
- Briguori, C.; Anzuini, A.; Airoldi, F.; Gimelli, G.; Nishida, T.; Adamian, M.; Corvaja, N.; Di Mario, C.; Colombo, A. Intravascular ultrasound criteria for the assessment of the functional significance of intermediate coronary artery stenoses and comparison with fractional flow reserve. Am. J. Cardiol. 2001, 87, 136–141. [Google Scholar] [CrossRef]
- de la Torre Hernandez, J.M.; Hernández Hernandez, F.; Alfonso, F.; Rumoroso, J.R.; Lopez-Palop, R.; Sadaba, M.; Carrillo, P.; Rondan, J.; Lozano, I.; Ruiz Nodar, J.M.; et al. Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions results from the multicenter LITRO study. J. Am. Coll. Cardiol. 2011, 58, 351–358. [Google Scholar] [CrossRef]
- Takagi, A.; Tsurumi, Y.; Ishii, Y.; Suzuki, K.; Kawana, M.; Kasanuki, H. Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: Relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation 1999, 100, 250–255. [Google Scholar] [CrossRef]
- Nascimento, B.R.; de Sousa, M.R.; Koo, B.K.; Samady, H.; Bezerra, H.G.; Ribeiro, A.L.; Costa, M.A. Diagnostic accuracy of intravascular ultrasound-derived minimal lumen area compared with fractional flow reserve--meta-analysis: Pooled accuracy of IVUS luminal area versus FFR. Catheter. Cardiovasc. Interv. 2014, 84, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.S.; Shin, H.C.; Bae, J.S.; Jin, H.Y.; Seo, J.S.; Yang, T.H.; Kim, D.K.; Cho, K.I.; Kim, B.H.; Park, Y.H.; et al. Diagnostic Performance of Intravascular Ultrasound-Derived Minimal Lumen Area to Predict Functionally Significant Non-Left Main Coronary Artery Disease: A Meta-Analysis. Korean Circ. J. 2016, 46, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Biały, D.; Wawrzyńska, M.; Arkowski, J.; Rogała, M.; Proniewska, K.; Wańha, W.; Wojakowski, W.; Roleder, T. Multimodality imaging of intermediate lesions: Data from fractional flow reserve, optical coherence tomography, near-infrared spectroscopy-intravascular ultrasound. Cardiol. J. 2018, 25, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Katsaros, O.; Sagris, M.; Karakasis, P.; Ktenopoulos, N.; Soulaidopoulos, S.; Theofilis, P.; Apostolos, A.; Tzoumas, A.; Patsourakos, N.; Toutouzas, K.; et al. The Role of Calcified Nodules in Acute Coronary Syndrome: Diagnosis and Management. Int. J. Mol. Sci. 2025, 26, 2581. [Google Scholar] [CrossRef]
- Nam, C.W.; Yoon, H.J.; Cho, Y.K.; Park, H.S.; Kim, H.; Hur, S.H.; Kim, Y.N.; Chung, I.S.; Koo, B.K.; Tahk, S.J.; et al. Outcomes of percutaneous coronary intervention in intermediate coronary artery disease: Fractional flow reserve-guided versus intravascular ultrasound-guided. JACC Cardiovasc. Interv. 2010, 3, 812–817. [Google Scholar] [CrossRef]
- Koo, B.K.; Hu, X.; Kang, J.; Zhang, J.; Jiang, J.; Hahn, J.Y.; Nam, C.W.; Doh, J.H.; Lee, B.K.; Kim, W.; et al. Fractional Flow Reserve or Intravascular Ultrasonography to Guide PCI. N. Engl. J. Med. 2022, 387, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.M.; Kang, D.Y.; Kim, J.H.; Choi, Y.; Kim, H.; Lee, J.; Park, D.W.; Park, S.J. Prognostic Value of Poststenting Fractional Flow Reserve After Imaging-Guided Optimal Stenting. JACC Cardiovasc. Interv. 2024, 17, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Shiono, Y.; Kitabata, H.; Kubo, T.; Masuno, T.; Ohta, S.; Ozaki, Y.; Sougawa, H.; Orii, M.; Shimamura, K.; Ishibashi, K.; et al. Optical coherence tomography-derived anatomical criteria for functionally significant coronary stenosis assessed by fractional flow reserve. Circ. J. 2012, 76, 2218–2225. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, T.; Prati, F.; Kulawik, T.; Ficarra, E.; Bil, J.; Gil, R. Optical coherence tomography criteria for defining functional severity of intermediate lesions: A comparative study with FFR. Int. J. Cardiovasc. Imaging 2013, 29, 1685–1691. [Google Scholar] [CrossRef]
- Tomaniak, M.; Ochijewicz, D.; Kołtowski, Ł.; Rdzanek, A.; Pietrasik, A.; Jąkała, J.; Slezak, M.; Malinowski, K.P.; Zaleska, M.; Maksym, J.; et al. OCT-Derived Plaque Morphology and FFR-Determined Hemodynamic Relevance in Intermediate Coronary Stenoses. J. Clin. Med. 2021, 10, 2379. [Google Scholar] [CrossRef]
- D’Ascenzo, F.; Iannaccone, M.; De Filippo, O.; Leone, A.M.; Niccoli, G.; Zilio, F.; Ugo, F.; Cerrato, E.; Fineschi, M.; Mancone, M.; et al. Optical coherence tomography compared with fractional flow reserve guided approach in acute coronary syndromes: A propensity matched analysis. Int. J. Cardiol. 2017, 244, 54–58. [Google Scholar] [CrossRef]
- Burzotta, F.; Leone, A.M.; Aurigemma, C.; Zambrano, A.; Zimbardo, G.; Arioti, M.; Vergallo, R.; De Maria, G.L.; Cerracchio, E.; Romagnoli, E.; et al. Fractional Flow Reserve or Optical Coherence Tomography to Guide Management of Angiographically Intermediate Coronary Stenosis: A Single-Center Trial. JACC Cardiovasc. Interv. 2020, 13, 49–58. [Google Scholar] [CrossRef]
- Burzotta, F.; Zito, A.; Aurigemma, C.; Romagnoli, E.; Bianchini, F.; Bianchini, E.; Paraggio, L.; Ierardi, C.; Crea, F.; Leone, A.M.; et al. Fractional flow reserve or optical coherence tomography for angiographically intermediate coronary stenoses: 5-year outcomes in the FORZA trial. Eur. Heart J. 2024, 45, 2785–2788. [Google Scholar] [CrossRef]
- Matsushita, K.; Hibi, K.; Okada, K.; Sakamaki, K.; Akiyama, E.; Kimura, Y.; Matsuzawa, Y.; Maejima, N.; Iwahashi, N.; Tsukahara, K.; et al. Comparison between instantaneous wave-free ratio versus morphometric assessments by intracoronary imaging. Heart Vessel. 2019, 34, 926–935. [Google Scholar] [CrossRef]
- Yamazaki, T.; Nishi, T.; Saito, Y.; Tateishi, K.; Kato, K.; Kitahara, H.; Kobayashi, Y. Discrepancy between plaque vulnerability and functional severity of angiographically intermediate coronary artery lesions. Cardiovasc. Interv. Ther. 2022, 37, 691–698. [Google Scholar] [CrossRef]
- Zuo, W.; Sun, R.; Zhang, X.; Qu, Y.; Ji, Z.; Su, Y.; Zhang, R.; Ma, G. The Association Between Quantitative Flow Ratio and Intravascular Imaging-defined Vulnerable Plaque Characteristics in Patients With Stable Angina and Non-ST-segment Elevation Acute Coronary Syndrome. Front. Cardiovasc. Med. 2021, 8, 690262. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, G.; Yang, L.; Liu, K.; Xie, Y.; Yang, W.Y.; Dai, Q. Predictive value of intravascular ultrasound for the function of intermediate coronary lesions. BMC Cardiovasc. Disord. 2023, 23, 457. [Google Scholar] [CrossRef] [PubMed]
- Andersen, B.K.; Sejr-Hansen, M.; Maillard, L.; Campo, G.; Råmunddal, T.; Stähli, B.E.; Guiducci, V.; Serafino, L.D.; Escaned, J.; Santos, I.A.; et al. Quantitative flow ratio versus fractional flow reserve for coronary revascularisation guidance (FAVOR III Europe): A multicentre, randomised, non-inferiority trial. Lancet 2024, 404, 1835–1846. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hu, X.; Jiang, J.; Lu, D.; Guo, L.; Peng, X.; Pan, Y.; He, W.; Li, J.; Zhou, H.; et al. Rationale and design of a comparison of angiography-derived fractional flow reserve-guided and intravascular ultrasound-guided intervention strategy for clinical outcomes in patients with coronary artery disease: A randomised controlled trial (FLAVOUR II). BMJ Open 2023, 13, e074349. [Google Scholar] [CrossRef] [PubMed]
- Escaned, J.; Collet, C.; Ryan, N.; De Maria, G.L.; Walsh, S.; Sabate, M.; Davies, J.; Lesiak, M.; Moreno, R.; Cruz-Gonzalez, I.; et al. Clinical outcomes of state-of-the-art percutaneous coronary revascularization in patients with de novo three vessel disease: 1-year results of the SYNTAX II study. Eur. Heart J. 2017, 38, 3124–3134. [Google Scholar] [CrossRef]
- Hamilos, M.; Muller, O.; Cuisset, T.; Ntalianis, A.; Chlouverakis, G.; Sarno, G.; Nelis, O.; Bartunek, J.; Vanderheyden, M.; Wyffels, E.; et al. Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis. Circulation 2009, 120, 1505–1512. [Google Scholar] [CrossRef]
- Apostolos, A.; Gerakaris, A.; Tsoni, E.; Pappelis, K.; Vasilagkos, G.; Bousoula, E.; Moulias, A.; Konstantinou, K.; Dimitriadis, K.; Karamasis, G.V.; et al. Imaging of Left Main Coronary Artery; Untangling the Gordian Knot. Rev. Cardiovasc. Med. 2023, 24, 26. [Google Scholar] [CrossRef]
- Rodriguez-Leor, O.; de la Torre Hernández, J.M.; García-Camarero, T.; García Del Blanco, B.; López-Palop, R.; Fernández-Nofrerías, E.; Cuellas Ramón, C.; Jiménez-Kockar, M.; Jiménez-Mazuecos, J.; Fernández Salinas, F.; et al. Instantaneous Wave-Free Ratio for the Assessment of Intermediate Left Main Coronary Artery Stenosis: Correlations With Fractional Flow Reserve/Intravascular Ultrasound and Prognostic Implications: The iLITRO-EPIC07 Study. Circ. Cardiovasc. Interv. 2022, 15, 861–871. [Google Scholar] [CrossRef]
- Iannaccone, M.; Abdirashid, M.; Annone, U.; Saint-Hilary, G.; Meier, P.; Chieffo, A.; Chen, S.; di Mario, C.; Conrotto, F.; Omedè, P.; et al. Comparison between functional and intravascular imaging approaches guiding percutaneous coronary intervention: A network meta-analysis of randomized and propensity matching studies. Catheter. Cardiovasc. Interv. 2020, 95, 1259–1266. [Google Scholar] [CrossRef]
- Gershlick, A.H.; Khan, J.N.; Kelly, D.J.; Greenwood, J.P.; Sasikaran, T.; Curzen, N.; Blackman, D.J.; Dalby, M.; Fairbrother, K.L.; Banya, W.; et al. Randomized trial of complete versus lesion-only revascularization in patients undergoing primary percutaneous coronary intervention for STEMI and multivessel disease: The CvLPRIT trial. J. Am. Coll. Cardiol. 2015, 65, 963–972. [Google Scholar] [CrossRef]
- Ghani, A.; Dambrink, J.H.; van ‘t Hof, A.W.; Ottervanger, J.P.; Gosselink, A.T.; Hoorntje, J.C. Treatment of non-culprit lesions detected during primary PCI: Long-term follow-up of a randomised clinical trial. Neth. Heart J. 2012, 20, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Lønborg, J.; Engstrøm, T.; Kelbæk, H.; Helqvist, S.; Kløvgaard, L.; Holmvang, L.; Pedersen, F.; Jørgensen, E.; Saunamäki, K.; Clemmensen, P.; et al. Fractional Flow Reserve-Guided Complete Revascularization Improves the Prognosis in Patients With ST-Segment-Elevation Myocardial Infarction and Severe Nonculprit Disease: A DANAMI 3-PRIMULTI Substudy (Primary PCI in Patients With ST-Elevation Myocardial Infarction and Multivessel Disease: Treatment of Culprit Lesion Only or Complete Revascularization). Circ. Cardiovasc. Interv. 2017, 10, e004460. [Google Scholar] [CrossRef] [PubMed]
- Panuccio, G.; Salerno, N.; De Rosa, S.; Torella, D. Timing of Complete Revascularization in Patients with STEMI and Multivessel Disease: A Systematic Review and Meta-Analysis. Rev. Cardiovasc. Med. 2023, 24, 58. [Google Scholar] [CrossRef] [PubMed]
- Böhm, F.; Mogensen, B.; Engstrøm, T.; Stankovic, G.; Srdanovic, I.; Lønborg, J.; Zwackman, S.; Hamid, M.; Kellerth, T.; Lauermann, J.; et al. FFR-Guided Complete or Culprit-Only PCI in Patients with Myocardial Infarction. N. Engl. J. Med. 2024, 390, 1481–1492. [Google Scholar] [CrossRef]
- Biscaglia, S.; Guiducci, V.; Escaned, J.; Moreno, R.; Lanzilotti, V.; Santarelli, A.; Cerrato, E.; Sacchetta, G.; Jurado-Roman, A.; Menozzi, A.; et al. Complete or Culprit-Only PCI in Older Patients with Myocardial Infarction. N. Engl. J. Med. 2023, 389, 889–898. [Google Scholar] [CrossRef]
- Xenogiannis, I.; Pavlidis, A.N.; Kaier, T.E.; Rigopoulos, A.G.; Karamasis, G.V.; Triantafyllis, A.S.; Vardas, P.; Brilakis, E.S.; Kalogeropoulos, A.S. The role of intravascular imaging in chronic total occlusion percutaneous coronary intervention. Front. Cardiovasc. Med. 2023, 10, 1199067. [Google Scholar] [CrossRef]
- Galassi, A.R.; Sumitsuji, S.; Boukhris, M.; Brilakis, E.S.; Di Mario, C.; Garbo, R.; Spratt, J.C.; Christiansen, E.H.; Gagnor, A.; Avran, A.; et al. Utility of Intravascular Ultrasound in Percutaneous Revascularization of Chronic Total Occlusions: An Overview. JACC Cardiovasc. Interv. 2016, 9, 1979–1991. [Google Scholar] [CrossRef]
- Brilakis, E. Manual of Chronic Total Occlusion Interventions: A Step-by-Step Approach; Academic Press: London, UK, 2017. [Google Scholar]
- Werner, G.S. Use of Coronary Computed Tomographic Angiography to Facilitate Percutaneous Coronary Intervention of Chronic Total Occlusions. Circ. Cardiovasc. Interv. 2019, 12, e007387. [Google Scholar] [CrossRef]
- Synetos, A.; Koliastasis, L.; Ktenopoulos, N.; Katsaros, O.; Vlasopoulou, K.; Drakopoulou, M.; Apostolos, A.; Tsalamandris, S.; Latsios, G.; Toutouzas, K.; et al. Recent Advances in Coronary Chronic Total Occlusions. J. Clin. Med. 2025, 14, 1535. [Google Scholar] [CrossRef]
- Panuccio, G.; Werner, G.S.; De Rosa, S.; Torella, D.; Leistner, D.M.; Siegrist, P.T.; Haghikia, A.; Skurk, C.; Mashayekhi, K.; Landmesser, U.; et al. Full-Moon Coronary Calcification as Detected With Computed Tomography Angiography in Chronic Total Occlusion Percutaneous Coronary Intervention. Am. J. Cardiol. 2024, 222, 149–156. [Google Scholar] [CrossRef]
- Bozika, M.; Apostolos, A.; Nastouli, K.-M.; Papafaklis, M.I.; Skalidis, I.; Terentes-Printzios, D.; Karanasos, A.; Koutsogiannis-Korkontzelos, C.; Boliaris, G.; Floropoulos, S.; et al. Clinical Impact of CT-Based FFR in Everyday Cardiology: Bridging Computation and Decision-Making. Biomedicines 2025, 13, 1969. [Google Scholar] [CrossRef]
- Liu, L.; Pan, Y.; Ma, Z.; Tian, J.; Xing, H.; Zhang, M.; Zhang, M.; Xu, F.; Ren, Y.; Zhang, L.; et al. Improved evaluation of coronary artery diseases from patients with coronary calcification utilizing FFR(CT): A comparative study against CCTA. Hell. J. Cardiol. 2025, in press. [Google Scholar] [CrossRef]
- De la Garza-Salazar, F.; Lankenau-Vela, D.L.; Cadena-Nuñez, B.; González-Cantú, A.; Romero-Ibarguengoitia, M.E. The Effect of Functional and Intra-Coronary Imaging Techniques on Fluoroscopy Time, Radiation Dose and Contrast Volume during Coronary Angiography. Sci. Rep. 2020, 10, 6950. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, C.G.; Hideo-Kajita, A.; Bulant, C.A.; Maso-Talou, G.D.; Mariani, J., Jr.; Pinton, F.A.; Falcão, B.A.A.; Esteves-Filho, A.; Franken, M.; Feijóo, R.A.; et al. Coronary fractional flow reserve derived from intravascular ultrasound imaging: Validation of a new computational method of fusion between anatomy and physiology. Catheter. Cardiovasc. Interv. 2019, 93, 266–274. [Google Scholar] [CrossRef]
- Seike, F.; Uetani, T.; Nishimura, K.; Kawakami, H.; Higashi, H.; Fujii, A.; Aono, J.; Nagai, T.; Inoue, K.; Suzuki, J.; et al. Intravascular Ultrasound-Derived Virtual Fractional Flow Reserve for the Assessment of Myocardial Ischemia. Circ. J. 2018, 82, 815–823. [Google Scholar] [CrossRef]
- Yu, W.; Tanigaki, T.; Ding, D.; Wu, P.; Du, H.; Ling, L.; Huang, B.; Li, G.; Yang, W.; Zhang, S.; et al. Accuracy of Intravascular Ultrasound-Based Fractional Flow Reserve in Identifying Hemodynamic Significance of Coronary Stenosis. Circ. Cardiovasc. Interv. 2021, 14, e009840. [Google Scholar] [CrossRef]
- Seike, F.; Mintz, G.S.; Matsumura, M.; Ali, Z.A.; Liu, M.; Jeremias, A.; Ben-Yehuda, O.; De Bruyne, B.; Serruys, P.W.; Yasuda, K.; et al. Impact of Intravascular Ultrasound-Derived Lesion-Specific Virtual Fractional Flow Reserve Predicts 3-Year Outcomes of Untreated Nonculprit Lesions: The PROSPECT Study. Circ. Cardiovasc. Interv. 2022, 15, 851–860. [Google Scholar] [CrossRef]
- Zafar, H.; Sharif, F.; Leahy, M.J. Feasibility of intracoronary frequency domain optical coherence tomography derived fractional flow reserve for the assessment of coronary artery stenosis. Int. Heart J. 2014, 55, 307–311. [Google Scholar] [CrossRef]
- Poon, E.K.W.; Thondapu, V.; Revalor, E.; Ooi, A.; Barlis, P. Coronary optical coherence tomography-derived virtual fractional flow reserve (FFR): Anatomy and physiology all-in-one. Eur. Heart J. 2017, 38, 3604–3605. [Google Scholar] [CrossRef]
- Huang, J.; Emori, H.; Ding, D.; Kubo, T.; Yu, W.; Huang, P.; Zhang, S.; Gutiérrez-Chico, J.L.; Akasaka, T.; Wijns, W.; et al. Diagnostic performance of intracoronary optical coherence tomography-based versus angiography-based fractional flow reserve for the evaluation of coronary lesions. EuroIntervention 2020, 16, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Huang, J.; Jia, D.; Chen, S.; Raffel, O.C.; Ding, D.; Tian, F.; Kan, J.; Zhang, S.; Yan, F.; et al. Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity. EuroIntervention 2019, 15, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Yu, W.; Ding, D.; Li, C.; Huang, J.; Kubo, T.; Wijns, W.; Tu, S. Diagnostic Performance of Intracoronary Optical Coherence Tomography-Modulated Quantitative Flow Ratio for Assessing Coronary Stenosis. J. Soc. Cardiovasc. Angiogr. Interv. 2023, 2, 101043. [Google Scholar] [CrossRef] [PubMed]
- Jeremias, A.; Maehara, A.; Matsumura, M.; Shlofmitz, R.A.; Maksoud, A.; Akasaka, T.; Bezerra, H.G.; Fearon, W.F.; Samady, H.; Samuels, B.; et al. Optical Coherence Tomography-Based Functional Stenosis Assessment: FUSION-A Prospective Multicenter Trial. Circ. Cardiovasc. Interv. 2024, 17, e013702. [Google Scholar] [CrossRef]
- Sanz Sánchez, J.; Farjat Pasos, J.I.; Martinez Solé, J.; Hussain, B.; Kumar, S.; Garg, M.; Chiarito, M.; Teira Calderón, A.; Sorolla-Romero, J.A.; Echavarria Pinto, M.; et al. Fractional flow reserve use in coronary artery revascularization: A systematic review and meta-analysis. iScience 2023, 26, 107245. [Google Scholar] [CrossRef]
- Sreenivasan, J.; Reddy, R.K.; Jamil, Y.; Malik, A.; Chamie, D.; Howard, J.P.; Nanna, M.G.; Mintz, G.S.; Maehara, A.; Ali, Z.A.; et al. Intravascular Imaging-Guided Versus Angiography-Guided Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis of Randomized Trials. J. Am. Heart Assoc. 2024, 13, e031111. [Google Scholar] [CrossRef]
- Koros, R.; Karanasos, A.; Papafaklis, M.I.; Xygka, G.; Vasilagkos, G.; Apostolos, A.; Kallinikos, F.; Papageorgiou, M.; Tampaki, N.M.; Fotopoulou, C.M.; et al. Latest Evidence on Intravascular Imaging: A Literature Review. J. Clin. Med. 2025, 14, 4714. [Google Scholar] [CrossRef]
- Apostolos, A.; Chlorogiannis, D.; Vasilagkos, G.; Katsanos, K.; Toutouzas, K.; Aminian, A.; Alexopoulos, D.; Davlouros, P.; Tsigkas, G. Safety and efficacy of shortened dual antiplatelet therapy after complex percutaneous coronary intervention: A systematic review and meta-analysis. Hell. J. Cardiol. 2023, 71, 33–41. [Google Scholar] [CrossRef]
- Apostolos, A.; Travlos, C.; Tsioulos, G.; Chlorogiannis, D.D.; Karanasos, A.; Papafaklis, M.; Alexopoulos, D.; Toutouzas, K.; Davlouros, P.; Tsigkas, G. Duration of Dual Antiplatelet Treatment After Percutaneous Coronary Intervention in Patients With Diabetes: A Systematic Review and Meta-analysis. J. Cardiovasc. Pharmacol. 2024, 83, 64–72. [Google Scholar] [CrossRef]
- Apostolos, A.; Vasilagkos, G.; Toutouzas, K.; Tsigkas, G. DAPT Shortening After Complex PCI: Examining the Fine Print. J. Am. Coll. Cardiol. 2023, 81, e191. [Google Scholar] [CrossRef]
- Apostolos, A.; Bozika, M.; Nastouli, K.M.; Chlorogiannis, D.D.; Dimitriadis, K.; Toutouzas, K.; Tsioufis, K.; Davlouros, P.; Tsigkas, G. Duration of dual antiplatelet treatment after percutaneous coronary intervention in patients with chronic kidney disease: A systematic review and meta-analysis. Coron. Artery Dis. 2025, 36, 437–445. [Google Scholar] [CrossRef]
- Bujak, M.; Malinowski, K.; Siudak, Z.; Ćmiel, A.; Lesiak, M.; Bartuś, S.; Legutko, J.; Wańha, W.; Witkowski, A.; Dudek, D.; et al. Sex Differences in Fractional Flow Reserve Utilization. J. Clin. Med. 2024, 13, 4028. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Tonino, P.A.; De Bruyne, B.; Yong, A.S.; Tremmel, J.A.; Pijls, N.H.; Fearon, W.F. The impact of sex differences on fractional flow reserve-guided percutaneous coronary intervention: A FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) substudy. JACC Cardiovasc. Interv. 2012, 5, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Bairey Merz, C.N.; Shaw, L.J.; Reis, S.E.; Bittner, V.; Kelsey, S.F.; Olson, M.; Johnson, B.D.; Pepine, C.J.; Mankad, S.; Sharaf, B.L.; et al. Insights from the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study: Part II: Gender differences in presentation, diagnosis, and outcome with regard to gender-based pathophysiology of atherosclerosis and macrovascular and microvascular coronary disease. J. Am. Coll. Cardiol. 2006, 47, S21–S29. [Google Scholar] [CrossRef]
- Rashid, M.; Stevens, C.; Zaman, S.; Pinilla-Echeverri, N.; Velagapudi, P.; Chieffo, A.; Shoaib, A.; Ludman, P.; Mills, N.L.; Nolan, J.; et al. Sex Differences in Use of Intracoronary Imaging in Patients Undergoing Percutaneous Coronary Intervention. JACC Cardiovasc. Interv. 2022, 15, 1290–1292. [Google Scholar] [CrossRef] [PubMed]
- Iwańczyk, S.; Dit Al Hakim, S.A.; Skrzypińska, M.; Stanisz, Z.; Woźniak, P.; Gościniak, W.; Araszkiewicz, A.; Al Salman, F.; Hok, A.; Mhanna, M.; et al. Sex-based differences in complex percutaneous coronary intervention-insights from the COMPLEX registry. Hell. J. Cardiol. 2024, 80, 107–111. [Google Scholar] [CrossRef]
- Panuccio, G.; Carabetta, N.; Torella, D.; De Rosa, S. Clinical impact of coronary revascularization over medical treatment in chronic coronary syndromes: A systematic review and meta-analysis. Hell. J. Cardiol. 2024, 78, 60–71. [Google Scholar] [CrossRef]
- Kang, J.; Koo, B.K.; Hu, X.; Lee, J.M.; Hahn, J.Y.; Yang, H.M.; Shin, E.S.; Nam, C.W.; Doh, J.H.; Lee, B.K.; et al. Comparison of Fractional FLow Reserve And Intravascular ultrasound-guided Intervention Strategy for Clinical OUtcomes in Patients with InteRmediate Stenosis (FLAVOUR): Rationale and design of a randomized clinical trial. Am. Heart J. 2018, 199, 7–12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsigkas, G.; Nastouli, K.-M.; Apostolos, A.; Spyropoulou, P.; Bozika, M.; Papafaklis, M.I.; Rouzi, S.; Tsimara, E.; Karanasos, A.; Mplani, V.; et al. When Functional Assessment Meets Intravascular Imaging in Patients with Coronary Artery Disease. J. Cardiovasc. Dev. Dis. 2025, 12, 319. https://doi.org/10.3390/jcdd12080319
Tsigkas G, Nastouli K-M, Apostolos A, Spyropoulou P, Bozika M, Papafaklis MI, Rouzi S, Tsimara E, Karanasos A, Mplani V, et al. When Functional Assessment Meets Intravascular Imaging in Patients with Coronary Artery Disease. Journal of Cardiovascular Development and Disease. 2025; 12(8):319. https://doi.org/10.3390/jcdd12080319
Chicago/Turabian StyleTsigkas, Grigorios, Kassiani-Maria Nastouli, Anastasios Apostolos, Panagiota Spyropoulou, Maria Bozika, Michail I. Papafaklis, Stella Rouzi, Effrosyni Tsimara, Antonios Karanasos, Virginia Mplani, and et al. 2025. "When Functional Assessment Meets Intravascular Imaging in Patients with Coronary Artery Disease" Journal of Cardiovascular Development and Disease 12, no. 8: 319. https://doi.org/10.3390/jcdd12080319
APA StyleTsigkas, G., Nastouli, K.-M., Apostolos, A., Spyropoulou, P., Bozika, M., Papafaklis, M. I., Rouzi, S., Tsimara, E., Karanasos, A., Mplani, V., & Davlouros, P. (2025). When Functional Assessment Meets Intravascular Imaging in Patients with Coronary Artery Disease. Journal of Cardiovascular Development and Disease, 12(8), 319. https://doi.org/10.3390/jcdd12080319