Hybrid PET/CT and PET/MR in Coronary Artery Disease: An Update for Clinicians, with Insights into AI-Guided Integration
Abstract
1. Introduction
2. Principles and Technical Aspects
Technical Parameters: Spatial/Temporal Resolution, Acquisition Time, and Radiation Dose
3. Clinical Applications in Ischemic Artery Disease
3.1. Ischemia and Viability Assessment
3.2. Anatomy–Function Mismatch and Microvascular Disease
3.3. Revascularization Guidance and Prognostic Value
3.4. Plaque Biology and Risk Stratification
3.5. Inflammatory and Infiltrative Myocardial Disease in CAD Context
3.6. Modality Selection and Complementary Use
4. Limitations of Hybrid Imaging in CAD
5. Future Directions and Artificial Intelligence
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAD | Coronary Artery Disease |
PET | Positron Emission Tomography |
CT | Computed Tomography |
MR | Magnetic Resonance |
PET/CT | Positron Emission Tomography/Computed Tomography |
PET/MR | Positron Emission Tomography/Magnetic Resonance Imaging |
FDG | Fluorodeoxyglucose |
NaF | Sodium Fluoride |
CFR | Coronary Flow Reserve |
MBF | Myocardial Blood Flow |
MFR | Myocardial Flow Reserve |
AI | Artificial Intelligence |
CMR | Cardiac Magnetic Resonance |
CMD | Coronary Microvascular Dysfunction |
MPI | Myocardial Perfusion Imaging |
LGE | Late Gadolinium Enhancement |
CTAC | CT Attenuation Correction |
CAC | Coronary Artery Calcium |
EAT | Epicardial Adipose Tissue |
XAI | Explainable Artificial Intelligence |
SHAP | SHapley Additive exPlanations |
APC | Article Processing Charge |
References
- Woodruff, R.C.; Tong, X.; Khan, S.S.; Shah, N.S.; Jackson, S.L.; Loustalot, F.; Vaughan, A.S. Trends in Cardiovascular Disease Mortality Rates and Excess Deaths, 2010–2022. Am. J. Prev. Med. 2024, 66, 582–589. [Google Scholar] [CrossRef]
- Mensah, G.A.; Fuster, V.; Murray, C.J.; Roth, G.A.; Global Burden of Cardiovascular Diseases and Risks Collaborators. Global Burden of Cardiovascular Diseases and Risks, 1990–2022. J. Am. Coll. Cardiol. 2023, 82, 2350–2473. [Google Scholar] [CrossRef]
- Kazimierczyk, R.; Kaminski, K.A.; Nekolla, S.G. Cardiac PET/MRI: Recent Developments and Future Aspects. Semin. Nucl. Med. 2024, 54, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Di Carli, M.F.; Murthy, V.L. Cardiac PET/CT for the evaluation of known or suspected coronary artery disease. RadioGraphics 2011, 31, 1239–1254. [Google Scholar] [CrossRef]
- Robson, P.M.; Dey, D.; Newby, D.E.; Berman, D.; Li, D.; Fayad, Z.A.; Dweck, M.R. MR/PET Imaging of the Cardiovascular System. JACC Cardiovasc. Imaging 2017, 10 Pt A, 1165–1179. [Google Scholar] [CrossRef]
- Di Cesare, M.; Perel, P.; Taylor, S.; Kabudula, C.; Bixby, H.; Gaziano, T.A.; McGhie, D.V.; Mwangi, J.; Pervan, B.; Narula, J.; et al. The Heart of the World. Glob. Heart 2024, 19, 11. [Google Scholar] [CrossRef]
- Global Cardiovascular Risk Consortium; Magnussen, C.; Ojeda, F.M.; Leong, D.P.; Alegre-Diaz, J.; Amouyel, P.; Aviles-Santa, L.; De Bacquer, D.; Ballantyne, C.M.; Bernabé-Ortiz, A.; et al. Global Effect of Modifiable Risk Factors on Cardiovascular Disease and Mortality. N. Engl. J. Med. 2023, 389, 1273–1285. [Google Scholar] [CrossRef]
- Panis, V.; Donal, E. Imaging Techniques for Cardiac Function. Appl. Sci. 2021, 11, 10549. [Google Scholar] [CrossRef]
- Cardoso, R.; Leucker, T.M. Applications of PET-MR Imaging in Cardiovascular Disorders. PET Clin. 2020, 15, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Caobelli, F.; Dweck, M.R.; Albano, D.; Gheysens, O.; Georgoulias, P.; Nekolla, S.; Lairez, O.; Leccisotti, L.; Lubberink, M.; Massalha, S.; et al. Hybrid cardiovascular imaging. A clinical consensus statement of the european association of nuclear medicine (EANM) and the european association of cardiovascular imaging (EACVI) of the ESC. Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 1095–1118. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T.; Chen, X.; Scheifele, M.; Fischer, M.; Clauss, S.; Klimek, K.; A Werner, R. 18F labeled myocardial perfusion PET: New precision in cardiac imaging. Trends Cardiovasc. Med. 2025, 35, 407–414. [Google Scholar] [CrossRef]
- Wilk, B.; Wisenberg, G.; Dharmakumar, R.; Thiessen, J.D.; Goldhawk, D.E.; Prato, F.S. Hybrid PET/MR imaging in myocardial inflammation post-myocardial infarction. J. Nucl. Cardiol. 2020, 27, 2083–2099. [Google Scholar] [CrossRef]
- Evans, N.R.; Tarkin, J.M.; Le, E.P.; Sriranjan, R.S.; Corovic, A.; Warburton, E.A.; Rudd, J.H. Integrated cardiovascular assessment of atherosclerosis using PET/MRI. Br. J. Radiol. 2020, 93, 20190921. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Mubeen, I.; Ullah, N.; Shah, S.S.U.D.; Khan, B.A.; Zahoor, M.; Ullah, R.; Khan, F.A.; Sultan, M.A.; Li, C. Modern Diagnostic Imaging Technique Applications and Risk Factors in the Medical Field: A Review. BioMed Res. Int. 2022, 2022, 5164970. [Google Scholar] [CrossRef]
- Sciagrà, R.; Lubberink, M.; Hyafil, F.; Saraste, A.; Slart, R.H.J.A.; Agostini, D.; Nappi, C.; Georgoulias, P.; Bucerius, J.; Rischpler, C.; et al. EANM procedural guidelines for PET/CT quantitative myocardial perfusion imaging. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1040–1069. [Google Scholar] [CrossRef]
- Nensa, F.; Bamberg, F.; Rischpler, C.; Menezes, L.; Poeppel, T.D.; la Fougère, C.; Beitzke, D.; Rasul, S.; Loewe, C.; Nikolaou, K.; et al. Hybrid cardiac imaging using PET/MRI: A joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM). Eur. Radiol. 2018, 28, 4086–4101. [Google Scholar] [CrossRef]
- Knaapen, P.; de Haan, S.; Hoekstra, O.S.; Halbmeijer, R.; Appelman, Y.E.; Groothuis, J.G.J.; Comans, E.F.; Meijerink, M.R.; Lammertsma, A.A.; Lubberink, M.; et al. Cardiac PET-CT: Advanced hybrid imaging for the detection of coronary artery disease. Neth. Heart J. 2010, 18, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Rischpler, C.; Nekolla, S.G.; Dregely, I.; Schwaiger, M. Hybrid PET/MR imaging of the heart: Potential, initial experiences, and future prospects. J. Nucl. Med. 2013, 54, 402–415. [Google Scholar] [CrossRef]
- Hunold, P.; Jakob, H.; Erbel, R.; Barkhausen, J.; Heilmaier, C. Accuracy of myocardial viability imaging by cardiac MRI and PET depending on left ventricular function. World J. Cardiol. 2018, 10, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Galassi, A.R.; Vadalà, G.; Werner, G.S.; Cosyns, B.; Sianos, G.; Hill, J.; Dudek, D.; Picano, E.; Novo, G.; Andreini, D.; et al. Evaluation and management of patients with coronary chronic total occlusions considered for revascularisation. A clinical consensus statement of the European Association of Percutaneous Cardiovascular Interventions (EAPCI) of the ESC, the European Association of Cardiovascular Imaging (EACVI) of the ESC, and the ESC Working Group on Cardiovascular Surgery. EuroIntervention 2024, 20, e174–e184. [Google Scholar] [CrossRef]
- Barrio, P.; López-Melgar, B.; Fidalgo, A.; Romero-Castro, M.J.; Moreno-Arciniegas, A.; Field, C.; Garcerant, M.; Shihadeh, L.A.; Díaz-Antón, B.; de Aguiar, S.R.; et al. Additional value of hybrid PET/MR imaging versus MR or PET performed sepa-rately to assess cardiovascular disease. Rev. Esp. Cardiol. (Engl. Ed.) 2021, 74, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Valenta, I.; Dilsizian, V.; Quercioli, A.; Ruddy, T.D.; Schindler, T.H. Quantitative PET/CT measures of myocardial flow reserve and atherosclerosis for cardiac risk assessment and predicting adverse patient outcomes. Curr. Cardiol. Rep. 2013, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Schindler, T.H.; Fearon, W.F.; Pelletier-Galarneau, M.; Ambrosio, G.; Sechtem, U.; Ruddy, T.D.; Patel, K.K.; Bhatt, D.L.; Bateman, T.M.; Gewirtz, H.; et al. Myocardial Perfusion PET for the Detection and Reporting of Coronary Microvascular Dysfunction: A JACC: Cardiovascular Imaging Expert Panel Statement. JACC Cardiovasc. Imaging 2023, 16, 536–548. [Google Scholar] [CrossRef]
- Taqueti, V.R.; Di Carli, M.F. Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 2625–2641. [Google Scholar] [CrossRef]
- Højstrup, S.; Hansen, K.W.; Talleruphuus, U.; Marner, L.; Galatius, S.; Rauf, M.; Bjerking, L.H.; Jakobsen, L.; Christiansen, E.H.; Bouchelouche, K.; et al. Coronary Microvascular Disease Assessed by 82-Rubidium Positron Emission Tomography Myocardial Perfusion Imaging Is Associated with Small Vessel Disease of the Kidney and Brain. J. Am. Heart Assoc. 2023, 12, e028767. [Google Scholar] [CrossRef] [PubMed]
- Bhandiwad, A.R.; Valenta, I.; Jain, S.; Schindler, T.H. PET-determined prevalence of coronary microvascular dysfunction and different types in a cardio-metabolic risk population. Int. J. Cardiol. Heart Vasc. 2023, 46, 101206. [Google Scholar] [CrossRef]
- Tonet, E.; Pompei, G.; Faragasso, E.; Cossu, A.; Pavasini, R.; Passarini, G.; Tebaldi, M.; Campo, G. Coronary Microvascular Dysfunction: PET, CMR and CT Assessment. J. Clin. Med. 2021, 10, 1848. [Google Scholar] [CrossRef]
- Bravo, P.E.; Di Carli, M.F.; Dorbala, S. Role of PET to evaluate coronary microvascular dysfunction in non-ischemic cardiomyopathies. Heart Fail. Rev. 2017, 22, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Miller, E.J.; Sadeghi, M.M. PET-Based Imaging of Ischemic Heart Disease. PET Clin. 2019, 14, 211–221. [Google Scholar] [CrossRef]
- Hoek, R.; van Diemen, P.A.; Somsen, Y.B.O.; de Winter, R.W.; Jukema, R.A.; Dahdal, J.E.; Raijmakers, P.G.; Driessen, R.S.; Danad, I.; Knaapen, P. Myocardial perfusion imaging in advanced coronary artery disease. Eur. J. Clin. Investig. 2025, 55, e70024. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.A.; Salerno, M. Clinical Utility and Future Applications of PET/CT and PET/CMR in Cardiology. Diagnostics 2016, 6, 32. [Google Scholar] [CrossRef]
- Kwiecinski, J.; Wolny, R.; Chwala, A.; Slomka, P. Advances in the Assessment of Coronary Artery Disease Activity with PET/CT and CTA. Tomography 2023, 9, 328–341. [Google Scholar] [CrossRef]
- Mayer, M.; Borja, A.J.; Hancin, E.C.; Auslander, T.; Revheim, M.-E.; Moghbel, M.C.; Werner, T.J.; Alavi, A.; Rajapakse, C.S. Imaging Atherosclerosis by PET, with Emphasis on the Role of FDG and NaF as Potential Biomarkers for This Disorder. Front. Physiol. 2020, 11, 511391. [Google Scholar] [CrossRef] [PubMed]
- Xie, E.; Sung, E.; Saad, E.; Trayanova, N.; Wu, K.C.; Chrispin, J. Advanced imaging for risk stratification for ventricular arrhythmias and sudden cardiac death. Front. Cardiovasc. Med. 2022, 9, 884767. [Google Scholar] [CrossRef]
- Lucinian, Y.A.; Martineau, P.; Abikhzer, G.; Harel, F.; Pelletier-Galarneau, M. Novel tracers to assess myocardial inflammation with radionuclide imaging. J. Nucl. Cardiol. 2024, 42, 102012. [Google Scholar] [CrossRef]
- Kottam, A.; Hanneman, K.; Schenone, A.; Daubert, M.A.; Sidhu, G.D.; Gropler, R.J.; Garcia, M.J.; American Heart Association Council on Cardiovascular Radiology and Intervention. State-of-the-Art Imaging of Infiltrative Cardiomyopathies: A Scientific Statement From the American Heart Association. Circ. Cardiovasc. Imaging 2023, 16, e000081. [Google Scholar] [CrossRef]
- Slart, R.H.J.A.; Glaudemans, A.W.J.M.; Gheysens, O.; Lubberink, M.; Kero, T.; Dweck, M.R.; Habib, G.; Gaemperli, O.; Saraste, A.; Gimelli, A.; et al. Procedural recommendations of cardiac PET/CT imaging: Standardization in inflammatory-, infective-, infiltrative-, and innervation (4Is)-related cardiovascular diseases: A joint collaboration of the EACVI and the EANM. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1016–1039. [Google Scholar] [CrossRef] [PubMed]
- Morrone, D.; Gentile, F.; Aimo, A.; Cameli, M.; Barison, A.; Picoi, M.E.; Guglielmo, M.; Villano, A.; DeVita, A.; Mandoli, G.E.; et al. Perspectives in noninvasive imaging for chronic coronary syndromes. Int. J. Cardiol. 2022, 365, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.W.; Marinelli, B.; van der Laan, A.M.; Sena, B.F.; Gorbatov, R.; Leuschner, F.; Dutta, P.; Iwamoto, Y.; Ueno, T.; Begieneman, M.P.; et al. PET/MRI of inflammation in myocardial infarction. J. Am. Coll. Cardiol. 2012, 59, 153–163. [Google Scholar] [CrossRef]
- Lassen, M.L.; Kwiecinski, J.; Slomka, P.J. Gating Approaches in Cardiac PET Imaging. PET Clin. 2019, 14, 271–279. [Google Scholar] [CrossRef]
- Rischpler, C.; Nekolla, S.G.; Heusch, G.; Umutlu, L.; Rassaf, T.; Heusch, P.; Herrmann, K.; Nensa, F. Cardiac PET/MRI—An update. Eur. J. Hybrid Imaging 2019, 3, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Tzimas, G.; Ryan, D.T.; Murphy, D.J.; Leipsic, J.A.; Dodd, J.D. Cardiovascular CT, MRI, and PET/CT in 2021: Review of Key Articles. Radiology 2022, 305, 538–554. [Google Scholar] [CrossRef]
- Kajander, S.; Joutsiniemi, E.; Saraste, M.; Pietilä, M.; Ukkonen, H.; Saraste, A.; Sipilä, H.; Teräs, M.; MäkI, M.; Airaksinen, J.; et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation 2010, 122, 603–613. [Google Scholar] [CrossRef]
- Carreras-Delgado, J.; Pérez-Dueñas, V.; Riola-Parada, C.; García-Cañamaque, L. PET/MRI: A luxury or a necessity? PET/RM: ¿un lujo o una necesidad? Rev. Espanola Med. Nucl. Imagen Mol. 2016, 35, 313–320. [Google Scholar] [CrossRef]
- Zaharchuk, G.; Davidzon, G. Artificial Intelligence for Optimization and Interpretation of PET/CT and PET/MR Images. Semin. Nucl. Med. 2021, 51, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Golub, I.S.; Thummala, A.; Morad, T.; Dhaliwal, J.; Elisarraras, F.; Karlsberg, R.P.; Cho, G.W. Artificial Intelligence in Nuclear Cardiac Imaging: Novel Advances, Emerging Techniques, and Recent Clinical Trials. J. Clin. Med. 2025, 14, 2095. [Google Scholar] [CrossRef]
- Erdagli, H.; Uzun Ozsahin, D.; Uzun, B. Evaluation of myocardial perfusion imaging techniques and artificial intelligence (AI) tools in coronary artery disease (CAD) diagnosis through multi-criteria decision-making method. Cardiovasc. Diagn. Ther. 2024, 14, 1134–1147. [Google Scholar] [CrossRef]
- Marcinkiewicz, A.M.; Zhang, W.; Shanbhag, A.; Miller, R.J.H.; Lemley, M.; Ramirez, G.; Buchwald, M.; Killekar, A.; Kavanagh, P.B.; Feher, A.; et al. Holistic AI analysis of hybrid cardiac perfusion images for mortality prediction. npj Digit. Med. 2025, 8, 1–9. [Google Scholar] [CrossRef]
- Juarez-Orozco, L.E.; Niemi, M.; Yeung, M.W.; Benjamins, J.W.; Maaniitty, T.; Teuho, J.; Saraste, A.; Knuuti, J.; van der Harst, P.; Klén, R. Hybridizing machine learning in survival analysis of cardiac PET/CT imaging. J. Nucl. Cardiol. 2023, 30, 2750–2759. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.C.; Weir-McCall, J.R.; Baldassarre, L.A.; De Cecco, C.N.; Choi, A.D.; Dey, D.; Dweck, M.R.; Isgum, I.; Kolossvary, M.; Leipsic, J.; et al. Artificial Intelligence and Machine Learning for Cardiovascular Computed Tomography (CCT): A White Paper of the Society of Cardiovascular Computed Tomography (SCCT). J. Cardiovasc. Comput. Tomogr. 2024, 18, 519–532. [Google Scholar] [CrossRef]
- Slomka, P.J.; Miller, R.J.; Isgum, I.; Dey, D. Application and Translation of Artificial Intelligence to Cardiovascular Imaging in Nuclear Medicine and Noncontrast CT. Semin. Nucl. Med. 2020, 50, 357–366. [Google Scholar] [CrossRef] [PubMed]
Application | Description | Reference | Preferred Modality/Rationale |
---|---|---|---|
Ischemia assessment | Quantitative perfusion imaging using 13N-ammonia, 15O-water or 82Rb during stress testing | [4,15,16,18] | Either: PET/CT for rapid workflow and coronary anatomy; PET/MR if tissue characterization or radiation minimization is important |
Viability imaging | FDG uptake combined with MR markers (LGE, T1 mapping) to assess hibernating myocardium | [16,17,18] | PET/MR preferred LGE, mapping ± FDG; PET/CT if MR is contraindicated |
Coronary microvascular dysfunction (CMD) | Evaluation of myocardial flow reserve (MFR); CMD classification (classical vs. endogen types) | [20,21,22,23] | Either: PET/MR adds tissue characterization, PET/CT provides faster acquisition |
Vulnerable plaque detection | Identification of biologically active plaques with 18F-NaF PET uptake | [7,30,31] | PET/CT preferred for co-localization of NaF uptake with CTA high-risk features |
Infiltrative and inflammatory cardiomyopathies | Combined FDG-PET and MR for sarcoidosis, myocarditis, amyloidosis in CAD contexts | [34,35,36] | PET/MR preferred for comprehensive tissue characterization without radiation |
Revascularization planning | Integration of perfusion and viability data to guide interventions and avoid unnecessary PCI | [23,24,25] | Either: PET/CT if CTA needed for vessel planning, PET/MR if viability and scar burden assessment is key |
AI-assisted quantification and prediction | Deep learning for segmentation, risk stratification, and ultra-low-dose PET | [14,42] | Either, depending on base modality; AI enhances both |
AI Application | Description | References |
---|---|---|
Dose reduction and image reconstruction | Deep learning enables PET image denoising and reconstruction with up to 75% dose reduction, preserving diagnostic accuracy and improving efficiency. | [44] |
Automated functional analysis | AI extracts myocardial perfusion, ejection fraction, and wall motion from MPI datasets, achieving expert-level diagnostic performance. | [16,46] |
Advanced risk stratification | ML integrates imaging, clinical, and biochemical variables for individualized risk prediction in CAD patients. | [47,48] |
Multimodal prognostic modeling | Hybrid AI models combining CTAC, CAC, EAT, and radiomics enhance prediction of MACE and mortality across large populations. | [48] |
Explainable and interpretable AI (XAI) | SHAP and feature attribution methods provide transparent model reasoning, bridging AI output with clinical decision-making. | [49,50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veneziano, F.A.; Gioia, F.A.; Gentile, F. Hybrid PET/CT and PET/MR in Coronary Artery Disease: An Update for Clinicians, with Insights into AI-Guided Integration. J. Cardiovasc. Dev. Dis. 2025, 12, 338. https://doi.org/10.3390/jcdd12090338
Veneziano FA, Gioia FA, Gentile F. Hybrid PET/CT and PET/MR in Coronary Artery Disease: An Update for Clinicians, with Insights into AI-Guided Integration. Journal of Cardiovascular Development and Disease. 2025; 12(9):338. https://doi.org/10.3390/jcdd12090338
Chicago/Turabian StyleVeneziano, Francesco Antonio, Flavio Angelo Gioia, and Francesco Gentile. 2025. "Hybrid PET/CT and PET/MR in Coronary Artery Disease: An Update for Clinicians, with Insights into AI-Guided Integration" Journal of Cardiovascular Development and Disease 12, no. 9: 338. https://doi.org/10.3390/jcdd12090338
APA StyleVeneziano, F. A., Gioia, F. A., & Gentile, F. (2025). Hybrid PET/CT and PET/MR in Coronary Artery Disease: An Update for Clinicians, with Insights into AI-Guided Integration. Journal of Cardiovascular Development and Disease, 12(9), 338. https://doi.org/10.3390/jcdd12090338