Minimally Invasive Surgical Strategies for the Treatment of Atrial Fibrillation: An Evolving Role in Contemporary Cardiac Surgery
Abstract
1. Introduction
2. Patient Selection and Indications
3. Technologies
4. Minimally Invasive Surgical Techniques
4.1. Mini-Thoracotomy Ablation
4.2. Thoracoscopic Ablation
4.3. Hybrid Approach
4.4. Convergent Procedure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AF | Atrial Fibrillation |
| CT | Computed Tomography |
| RF | Radiofrequency |
| LAA | Left Atrial Appendage |
| CPB | Cardiopulmonary Bypass |
| PVI | Pulmonary Vein Isolation |
| EP | Electrophysiologist |
| SR | Sinus Rhythm |
| LA | Left Atrium |
| ACT | Activated Clotting Time |
| SGLT2i | Sodium–Glucose Cotransporter 2 Inhibitor |
| PFA | Pulsed Field Ablation |
References
- Staerk, L.; Sherer, J.A.; Ko, D.; Benjamin, E.J.; Helm, R.H. Atrial Fibrillation: Epidemiology, Pathophysiology, and Clinical Outcomes. Circ. Res. 2017, 120, 1501–1517. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sagris, M.; Vardas, E.P.; Theofilis, P.; Antonopoulos, A.S.; Oikonomou, E.; Tousoulis, D. Atrial Fibrillation: Pathogenesis, Predisposing Factors, and Genetics. Int. J. Mol. Sci. 2021, 23, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sovari, A.A.; Dudley, S.C., Jr. Reactive oxygen species-targeted therapeutic interventions for atrial fibrillation. Front. Physiol. 2012, 3, 311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Siasos, G.; Tsioufis, C.; Tousoulis, D. Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines 2021, 9, 781. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bizhanov, K.A.; Abzaliyev, K.B.; Baimbetov, A.K.; Sarsenbayeva, A.B.; Lyan, E. Atrial fibrillation: Epidemiology, pathophysiology, and clinical complications (literature review). J. Cardiovasc. Electrophysiol. 2023, 34, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Dilaveris, P.E.; Kennedy, H.L. Silent atrial fibrillation: Epidemiology, diagnosis, and clinical impact. Clin. Cardiol. 2017, 40, 413–418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ko, D.; Chung, M.K.; Evans, P.T.; Benjamin, E.J.; Helm, R.H. Atrial Fibrillation: A Review. JAMA 2025, 333, 329–342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McGilvray, M.M.O.; Barron, L.; Yates, T.E.; Zemlin, C.W.; Damiano, R.J., Jr. The Cox-Maze procedure: What lesions and why. JTCVS Tech. 2022, 17, 84–93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1–e156, Erratum in Circulation 2024, 149, e1413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. ESCScientific Document Group 2024 ESCGuidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef] [PubMed]
- MacGregor, R.M.; Melby, S.J.; Schuessler, R.B.; Damiano, R.J. Energy Sources for the Surgical Treatment of Atrial Fibrillation. Innovations 2019, 14, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Melby, S.J.; Schuessler, R.B.; Damiano, R.J., Jr. Ablation technology for the surgical treatment of atrial fibrillation. ASAIO J. 2013, 59, 461–468. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whitlock, R.P.; Vincent, J.; Blackall, M.H.; Hirsh, J.; Fremes, S.; Novick, R.; Devereaux, P.J.; Teoh, K.; Lamy, A.; Connolly, S.J.; et al. Left Atrial Appendage Occlusion Study II (LAAOS II). Can. J. Cardiol. 2013, 29, 1443–1447. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, R.P.; Belley-Cote, E.P.; Paparella, D.; Healey, J.S.; Brady, K.; Sharma, M.; Reents, W.; Budera, P.; Baddour, A.J.; Fila, P.; et al. Left Atrial Appendage Occlusion during Cardiac Surgery to Prevent Stroke. N. Engl. J. Med. 2021, 384, 2081–2091. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Pothineni, N.V.K.; Singh, V.; Bawa, D.; Darden, D.; Kabra, R.; Singh, A.; Memon, S.; Romeya, A.; Van Meeteren, J.; et al. Long-Term Imaging and Clinical Outcomes of Surgical Left Atrial Appendage Occlusion with AtriClip. Am. J. Cardiol. 2023, 201, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Bartus, K.; Han, F.T.; Bednarek, J.; Myc, J.; Kapelak, B.; Sadowski, J.; Lelakowski, J.; Bartus, S.; Yakubov, S.J.; Lee, R.J. Percutaneous left atrial appendage suture ligation using the LARIAT device in patients with atrial fibrillation: Initial clinical experience. J. Am. Coll. Cardiol. 2013, 62, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Tarzia, V.; Ponzoni, M.; Lena, T.; Gerosa, G. Simultaneous epicardial atrial fibrillation ablation and left atrial appendage ligation: Early considerations. Ann. Cardiothorac. Surg. 2024, 13, 176–178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tilz, R.R.; Fink, T.; Bartus, K.; Wong, T.; Vogler, J.; Nentwich, K.; Panniker, S.; Fang, Q.; Piorkowski, C.; Liosis, S.; et al. A collective European experience with left atrial appendage suture ligation using the LARIAT+ device. Europace 2020, 22, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Wolf, R.K.; Schneeberger, E.W.; Osterday, R.; Miller, D.; Merrill, W.; Flege, J.B., Jr.; Gillinov, A.M. Video-assisted bilateral pulmonary vein isolation and left atrial appendage exclusion for atrial fibrillation. J. Thorac. Cardiovasc. Surg. 2005, 130, 797–802, Erratum in J. Thorac. Cardiovasc. Surg. 2006, 131, 772. [Google Scholar] [CrossRef] [PubMed]
- Zembala, M.O.; Suwalski, P. Minimally invasive surgery for atrial fibrillation. J Thorac. Dis. 2013, 5 (Suppl. S6), S704–S712. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Avazzadeh, S.; McBride, S.; O’Brien, B.; Coffey, K.; Elahi, A.; O’Halloran, M.; Soo, A.; Quinlan, L.R. Ganglionated Plexi Ablation for the Treatment of Atrial Fibrillation. J. Clin. Med. 2020, 9, 3081. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bisleri, G.; Pandey, A.K.; Verma, S.; Ali Hassan, S.M.; Yanagawa, B.; Khandaker, M.; Gaudino, M.; Russo, A.M.; Verma, A.; Bhatt, D.L.; et al. Combined Minimally Invasive Surgical and Percutaneous Catheter Ablation of Atrial Fibrillation: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 81, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Kiankhooy, A.; McMenamy, M.E. The Convergent procedure for AF: A surgeon’s perspective. J. Cardiovasc. Electrophysiol. 2022, 33, 1919–1926. [Google Scholar] [CrossRef] [PubMed]
- Geršak, B.; Podlogar, V.; Prolič Kalinšek, T.; Jan, M. Long-Term Outcomes after Convergent Procedure for Atrial Fibrillation. J. Clin. Med. 2024, 13, 5508. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Praet, K.M.; Nersesian, G.; Kofler, M.; Heil, E.; Unbehaun, A.; Klein, C.; Kempfert, J.; Falk, V.; Gerds-Li, J.H.; Starck, C. Minimally invasive approach to the treatment of atrial fibrillation: Concomitant Convergent and LARIAT procedure. Multimed. Man. Cardiothorac. Surg. 2022, 2022. [Google Scholar] [CrossRef] [PubMed]
- Schena, S.; Lindemann, J.; Carlson, A.; Wilcox, T.; Oujiri, J.; Berger, M.; Gasparri, M. Robotic-enhanced hybrid ablation for persistent and long-standing atrial fibrillation: Early assessment of feasibility, safety, and efficacy. JTCVS Tech. 2024, 25, 81–93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harlaar, N.; Oudeman, M.A.; Trines, S.A.; de Ruiter, G.S.; Mertens, B.J.; Khan, M.; Klautz, R.J.M.; Zeppenfeld, K.; Tjon, A.; Braun, J.; et al. Long-term follow-up of thoracoscopic ablation in long-standing persistent atrial fibrillation. Interact. Cardiovasc. Thorac. Surg. 2022, 34, 990–998. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muneretto, C.; Baudo, M.; Rosati, F.; Petruccelli, R.D.; Curnis, A.; Di Bacco, L.; Benussi, S. Thoracoscopic Surgical Ablation of Lone Atrial Fibrillation: Long-term Outcomes at 7 Years. Ann. Thorac. Surg. 2023, 116, 1292–1299. [Google Scholar] [CrossRef] [PubMed]
- Eranki, A.; Wilson-Smith, A.; Flynn, C.; Williams, M.; Manganas, C. Mid term freedom from atrial fibrillation following hybrid ablation, a systematic review and meta analysis. J. Cardiothorac. Surg. 2023, 18, 155. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haldar, S.; Khan, H.R.; Boyalla, V.; Kralj-Hans, I.; Jones, S.; Lord, J.; Onyimadu, O.; Satishkumar, A.; Bahrami, T.; De Souza, A.; et al. Catheter ablation vs. thoracoscopic surgical ablation in long-standing persistent atrial fibrillation: CASA-AF randomized controlled trial. Eur. Heart J. 2020, 41, 4471–4480. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ad, N.; Henry, L.; Hunt, S.; Holmes, S.D. Impact of clinical presentation and surgeon experience on the decision to perform surgical ablation. Ann. Thorac. Surg. 2013, 96, 763–768, discussion 768–769. [Google Scholar] [CrossRef] [PubMed]
- McClure, G.R.; Belley-Cote, E.P.; Jaffer, I.H.; Dvirnik, N.; An, K.R.; Fortin, G.; Spence, J.; Healey, J.; Singal, R.K.; Whitlock, R.P. Surgical ablation of atrial fibrillation: A systematic review and meta-analysis of randomized controlled trials. Europace 2018, 20, 1442–1450. [Google Scholar] [CrossRef] [PubMed]
- Osmancik, P.; Budera, P.; Talavera, D.; Hlavicka, J.; Herman, D.; Holy, J.; Cervinka, P.; Smid, J.; Hanak, P.; Hatala, R.; et al. Five-year outcomes in cardiac surgery patients with atrial fibrillation undergoing concomitant surgical ablation versus no ablation. The long-term follow-up of the PRAGUE-12 Study. Heart Rhythm 2019, 16, 1334–1340. [Google Scholar] [CrossRef] [PubMed]
- Fedele, D.; Casuso Alvarez, M.; Maida, A.; Vasumini, N.; Amicone, S.; Canton, L.; Di Leo, M.; Basile, M.; Manaresi, T.; Angeli, F.; et al. Prevention of atrial fibrillation with SGLT2 inhibitors across the spectrum of cardiovascular disorders: A meta-analysis of randomised controlled trials. Eur. Heart J. Cardiovasc. Pharmacother. 2025, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Dukkipati, S.R.; Neuzil, P.; Anic, A.; Petru, J.; Funasako, M.; Cochet, H.; Minami, K.; Breskovic, T.; Sikiric, I.; et al. Pulsed Field Ablation of Paroxysmal Atrial Fibrillation: 1-Year Outcomes of IMPULSE, PEFCAT, and PEFCAT II. JACC Clin. Electrophysiol. 2021, 7, 614–627. [Google Scholar] [CrossRef] [PubMed]
| Energy Source | Mechanism of Action | Tissue Penetration | Advantages | Limitations |
|---|---|---|---|---|
| Radiofrequency (RF) | Resistive heating via alternating current | 3–5 mm | Well-established, transmurality can be monitored, available in unipolar and bipolar forms | Risk of charring, incomplete lesions in thick atrial tissue, esophageal and coronary artery injury |
| Cryoablation | Freezing leads to ice crystal formation and cellular disruption | 4–6 mm | Preserves tissue architecture, less thrombogenic, good for pulmonary vein isolation | Longer application time, risk of incomplete lesions in warm areas |
| High-Intensity Focused Ultrasound | Acoustic energy generates heat at focal point | 3–6 mm | Precise, no direct tissue contact needed, lower collateral damage | Limited availability, risk of esophageal injury |
| Microwave | Electromagnetic radiation causes molecular agitation and heat | 3–10 mm | Can create wide, continuous lesions | Less controlled lesion size, possible collateral damage |
| Laser | Focused light energy converted into heat | 2–4 mm | High precision, minimal collateral damage | Expensive, limited penetration depth, less widespread use |
| Technique | Surgical Approach | Energy Source | Advantages | Limitations |
|---|---|---|---|---|
| Mini-Thoracotomy Ablation | Left mini-thoracotomy (anterior axillary line) | Bipolar RF/Cryoablation | Direct access to LA, compatible with LAA exclusion, good transmurality | Unilateral access, less flexible for biatrial lesions |
| Thoracoscopic Ablation | Bilateral thoracoscopic access | Bipolar RF/Cryoablation | No sternotomy, good visualization, pulmonary vein isolation (PVI) | Technically demanding, requires single-lung ventilation, limited access to LA |
| Hybrid Approach (Surgical + EP) | Thoracoscopic + transcatheter (staged or simultaneous) | Bipolar RF/Cryo + Endocardial RF | Comprehensive lesion sets, improved long-term success, tailored per patient | Requires coordination between specialties, multiple procedures |
| Convergent Procedure | Subxiphoid or limited thoracoscopic + endocardial | Unipolar RF + Endocardial RF | Posterior LA wall ablation, suitable for persistent AF, less invasive | Limited epicardial access, technically demanding, not for all AF types |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benvegnù, L.; Cibin, G.; Perrone, F.; Tarzia, V.; D’Onofrio, A.; Luciani, G.B.; Gerosa, G.; Onorati, F. Minimally Invasive Surgical Strategies for the Treatment of Atrial Fibrillation: An Evolving Role in Contemporary Cardiac Surgery. J. Cardiovasc. Dev. Dis. 2025, 12, 289. https://doi.org/10.3390/jcdd12080289
Benvegnù L, Cibin G, Perrone F, Tarzia V, D’Onofrio A, Luciani GB, Gerosa G, Onorati F. Minimally Invasive Surgical Strategies for the Treatment of Atrial Fibrillation: An Evolving Role in Contemporary Cardiac Surgery. Journal of Cardiovascular Development and Disease. 2025; 12(8):289. https://doi.org/10.3390/jcdd12080289
Chicago/Turabian StyleBenvegnù, Luciana, Giorgia Cibin, Fabiola Perrone, Vincenzo Tarzia, Augusto D’Onofrio, Giovanni Battista Luciani, Gino Gerosa, and Francesco Onorati. 2025. "Minimally Invasive Surgical Strategies for the Treatment of Atrial Fibrillation: An Evolving Role in Contemporary Cardiac Surgery" Journal of Cardiovascular Development and Disease 12, no. 8: 289. https://doi.org/10.3390/jcdd12080289
APA StyleBenvegnù, L., Cibin, G., Perrone, F., Tarzia, V., D’Onofrio, A., Luciani, G. B., Gerosa, G., & Onorati, F. (2025). Minimally Invasive Surgical Strategies for the Treatment of Atrial Fibrillation: An Evolving Role in Contemporary Cardiac Surgery. Journal of Cardiovascular Development and Disease, 12(8), 289. https://doi.org/10.3390/jcdd12080289

