Emergence, Dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil
Abstract
:Simple Summary
Abstract
1. Introduction
2. Classification into Serovars
3. Antimicrobial Resistance
4. Emergence and Dissemination
4.1. Salmonella Gallinarum
4.2. Salmonella Typhimurium
4.3. Salmonella Enteritidis
4.4. Salmonella Heidelberg
4.5. Salmonella Minnesota
Serovar and Variants | Phenotypic Resistance | Genotypic Resistance | STs | References |
---|---|---|---|---|
Gallinarum (1,9,12:-:-) | Ampicillin, azithromycin, ciprofloxacin, enrofloxacin, fluoroquinolone, gentamicin, kanamycin, nalidixic acid, streptomycin, and tetracycline. | gyrA, aadA and aadB | 78, 92, 331, 470, 762, 747 | [32,90,91,92,93,94,95] |
Typhimurium (1,4,[5],12:i:1,2/ 1,4,[5],12:i:-/ 1,4,[5],12:-:1,2/ 1,4,[5],12:-:-) | Aminoglycoside, ampicillin, aztreonam, cefepime, ceftriaxone, chloramphenicol, ciprofloxacin, colistin, doxycycline, fluoroquinolone, gentamicin, nalidixic acid, streptomycin, sulfamethoxazole, sulfonamide, tetracycline, and trimethoprim. | aac(3)-lla, aac(3)-lld, aadA1, aadA2, aph(6)-ld, blaCTX-M-2, blaTEM-1B, dfrA1, floR, mrc-1, strA, strB, sul1, sul2, tet(A), and tet(B) | 19, 128, 213, 313 | [32,49,130,136,137] |
Enteritidis (1,9,12:g:-/ 1,9,12:-:m/ 1,9,12:-:-) | Gentamicin, nalidixic acid, streptomycin, sulfonamide, tetracycline, and trimethoprim-sulfamethoxazole. | aac(3)-Iva, aac(6′)-Iaa, aph(3″)-Ib, aph(4)-Ia, aph(6)-Id, mdf(A), tet(34), tet(A) | 11, 183, 136, 310, 814 | [32,149,154,155,156,157] |
Heidelberg (1,4,[5],12:r:1,2/ 1,4,[5],12:r:-/ 1,4,[5],12:-:1,2/ 1,4,[5],12:-:-) | Amoxicillin, ampicillin, aztreonam, cefepime, cefotaxime, cefoxitin, ceftazidime, ceftiofur, ceftriaxone, cephalothin, chloramphenicol, ciprofloxacin, clavulanic acid, colistin, doxycycline, florfenicol, gentamicin, meropenem, nalidixic acid, pefloxacin, penicillin, quinolone, streptomycin, sulfamethoxazole, sulfonamide, tetracycline, tobramycin, and trimethoprim. | aac(3)-Via, aadA1, aadA8, aph(3′)-Ia, blaCMY-2, blaCTX-M, blaCTX-M-2, blaCTX-M-8, blaTEM-1B, cmlA1, dfrA15, fosA7, mdf(A), mphB, qnrB1, strA, strB, sul1, sul2, sul3, tet(34), tet(A) | 15, 2071, 3377, 7556 | [29,34,44,49,69,136,178,185,190,191,193,195,196,197,198,199] |
Minnesota (21:b:e,n,x) | Amoxicillin, ampicillin, cefazoline, cefoxitin, ceftazidime, ceftiofur, ceftriaxone, cephalothin, chloramphenicol, ciprofloxacin, clavulanic acid, gentamicin, nalidixic acid, neomycin, penicillin, streptomycin, sulfamethoxazole, sulfonamide, tetracycline, and trimethoprim. | aadA1, ant(3″)-Ia, aph(3′)-Ia, aphA1, blaCMY-2, blaCTX-M, blaCTX-M-8, blaTEM, mdf(A), qnrB19, qnrB5, sul2, tet(A) | 285, 548, 3088, 7557, 7558 | [34,47,49,50,213,214,215,217] |
4.6. Other Salmonella Serovars
5. Prevention and Control
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD (Organisation for Economic Co-Operation and Development). Meat Consumption. 2022. Available online: https://data.oecd.org/agroutput/meat-consumption.htm (accessed on 13 January 2022).
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The golden egg: Nutritional value, bioactivities, and emerging benefits for human health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ABPA (Associação Brasileira de Proteína Animal). Relatório Anual. 2021. Available online: http://abpa-br.org/wp-content/uploads/2021/04/ABPA_Relatorio_Anual_2021_web.pdf (accessed on 15 January 2022).
- Gomes, B.C.; Franco, B.D.; De Martinis, E.C. Microbiological food safety issues in Brazil: Bacterial pathogens. Foodborne Pathog. Dis. 2013, 10, 197–205. [Google Scholar] [CrossRef]
- Abebe, E.; Gugsa, G.; Ahmed, M. Review on major foodborne zoonotic bacterial pathogens. J. Trop. Med. 2020, 2020, 4674235. [Google Scholar] [CrossRef] [PubMed]
- Arnaut-Rollier, I.; Vauterin, L.; De Vos, P.; Massart, D.L.; Devriese, L.A.; De Zutter, L.; Van Hoof, J. A numerical taxonomic study of the Pseudomonas flora isolated from poultry meat. J. Appl. Microbiol. 1999, 87, 15–28. [Google Scholar] [CrossRef]
- Säde, E.; Murros, A.; Björkroth, J. Predominant enterobacteria on modified-atmosphere packaged meat and poultry. Food Microbiol. 2013, 34, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Shivaprasad, H.L. Fowl typhoid and pullorum disease. Rev. Sci. Tech. 2000, 19, 405–424. [Google Scholar] [CrossRef] [PubMed]
- MAPA (Ministério da Agricultura, Pecuária e Abastecimento). Instrução Normativa No 78, de 3 de Novembro de 2003. 2003. Available online: https://www.gov.br/agricultura/pt-br/assuntos/sanidade-animal-e-vegetal/saude-animal/programas-de-saude-animal/pnsa/2003_78.INconsolidada.pdf (accessed on 20 January 2021).
- Issenhuth-Jeanjean, S.; Roggentin, P.; Mikoleit, M.; Guibourdenche, M.; de Pinna, E.; Nair, S.; Fields, P.I.; Weill, F.X. Supplement 2008–2010 (no. 48) to the White-Kauffmann-Le Minor scheme. Res. Microbiol. 2014, 165, 526–530. [Google Scholar] [CrossRef] [Green Version]
- Grimont, P.A.D.; Weill, F. Antigenic Formulae of the Salmonella Serovars, 9th ed.; Institut Pasteur, WHO Collaborating Center for Reference and Research on Salmonella: Paris, France, 2007. [Google Scholar]
- Sánchez-Vargas, F.M.; Abu-El-Haija, M.A.; Gómez-Duarte, O.G. Salmonella infections: An update on epidemiology, management, and prevention. Travel Med. Infect. Dis. 2011, 9, 263–277. [Google Scholar] [CrossRef]
- Uzzau, S.; Brown, D.J.; Wallis, T.; Rubino, S.; Leori, G.; Bernard, S.; Casadesús, J.; Platt, D.J.; Olsen, J.E. Host adapted serotypes of Salmonella enterica. Epidemiol. Infect. 2000, 125, 229–255. [Google Scholar] [CrossRef] [PubMed]
- Crook, P.D.; Aguilera, J.F.; Threlfall, E.J.; O’Brien, S.J.; Sigmundsdóttir, G.; Wilson, D.; Fisher, I.S.; Ammon, A.; Briem, H.; Cowden, J.M.; et al. A European outbreak of Salmonella enterica serotype Typhimurium definitive phage type 204b in 2000. Clin. Microbiol. Infect. 2003, 9, 839–845. [Google Scholar] [CrossRef] [Green Version]
- Barco, L.; Barrucci, F.; Olsen, J.E.; Ricci, A. Salmonella source attribution based on microbial subtyping. Int. J. Food Microbiol. 2013, 163, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Lan, R.; Reeves, P.R.; Octavia, S. Population structure, origins and evolution of major Salmonella enterica clones. Infect. Genet. Evol. 2009, 9, 996–1005. [Google Scholar] [CrossRef] [PubMed]
- Mughini-Gras, L.; Franz, E.; van Pelt, W. New paradigms for Salmonella source attribution based on microbial subtyping. Food Microbiol. 2018, 71, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Glynn, M.K.; Bopp, C.; Dewitt, W.; Dabney, P.; Mokhtar, M.; Angulo, F.J. Emergence of multidrug-resistant Salmonella enterica serotype Typhimurium DT104 infections in the United States. N. Engl. J. Med. 1998, 338, 1333–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghilardi, A.C.; Tavechio, A.T.; Fernandes, S.A. Antimicrobial susceptibility, phage types, and pulse types of Salmonella Typhimurium, in São Paulo, Brazil. Memórias Inst. Oswaldo Cruz 2006, 101, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, L.R.; do Nascimento, V.P.; de Oliveira, S.D.; Rodrigues, D.P.; dos Reis, E.M.; Seki, L.M.; Ribeiro, A.R.; Fernandes, S.A. Phage types of Salmonella enteritidis isolated from clinical and food samples, and from broiler carcasses in southern Brazil. Rev. Inst. Med. Trop. São Paulo 2003, 45, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Nunes, I.A.; Helmuth, R.; Schroeter, A.; Mead, G.C.; Santos, M.A.; Solari, C.A.; Silva, O.R.; Ferreira, A.J. Phage typing of Salmonella enteritidis from different sources in Brazil. J. Food Prot. 2003, 66, 324–327. [Google Scholar] [CrossRef]
- Gast, R.K. Bacterial diseases: Salmonella infection. In Diseases of Poultry, 12th ed.; Saif, Y.M., Fadly, A.M., Glisson, J.R., McDougald, L.R., Nolan, L.K., Swayne, D.E., Eds.; Blackwell Publishing: Oxford, UK, 2008; pp. 619–636. [Google Scholar]
- Bergamini, F.; Iori, A.; Massi, P.; Pongolini, S. Multilocus variable-number of tandem-repeats analysis of Salmonella enterica serotype Gallinarum and comparison with pulsed-field gel electrophoresis genotyping. Vet. Microbiol. 2011, 149, 430–436. [Google Scholar] [CrossRef]
- Yoshida, C.E.; Kruczkiewicz, P.; Laing, C.R.; Lingohr, E.J.; Gannon, V.P.; Nash, J.H.; Taboada, E.N. The Salmonella In Silico Typing Resource (SISTR): An open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS ONE 2016, 11, e0147101. [Google Scholar] [CrossRef] [Green Version]
- Alikhan, N.F.; Zhou, Z.; Sergeant, M.J.; Achtman, M. A genomic overview of the population structure of Salmonella. PLoS Genet. 2018, 14, e1007261. [Google Scholar] [CrossRef] [Green Version]
- Kipper, D.; Hellfeldt, R.M.; De Carli, S.; Lehmann, F.K.M.; Fonseca, A.S.K.; Ikuta, N.; Lunge, V.R. Salmonella serotype assignment by sequencing analysis of intergenic regions of ribosomal RNA operons. Poult. Sci. 2019, 98, 5989–5998. [Google Scholar] [CrossRef]
- Zhang, S.; den Bakker, H.C.; Li, S.; Chen, J.; Dinsmore, B.A.; Lane, C.; Lauer, A.C.; Fields, P.I.; Deng, X. SeqSero2: Rapid and improved Salmonella serotype determination using whole-genome sequencing data. Appl. Environ. Microbiol. 2019, 85, e01746-19. [Google Scholar] [CrossRef]
- Pijnacker, R.; Dallman, T.J.; Tijsma, A.S.L.; Hawkins, G.; Larkin, L.; Kotila, S.M.; Amore, G.; Amato, E.; Suzuki, P.M.; Denayer, S.; et al. An international outbreak of Salmonella enterica serotype Enteritidis linked to eggs from Poland: A microbiological and epidemiological study. Lancet Infect. Dis. 2019, 19, 778–786. [Google Scholar] [CrossRef]
- Van den Berg, R.R.; Dissel, S.; Rapallini, M.L.B.A.; van der Weijden, C.C.; Wit, B.; Heymans, R. Characterization and whole genome sequencing of closely related multidrug-resistant Salmonella enterica serovar Heidelberg isolates from imported poultry meat in the Netherlands. PLoS ONE 2019, 14, e0219795. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Goering, R.V.; Simjee, S.; Foley, S.L.; Zervos, M.J. Application of molecular techniques to the study of hospital infection. Clin. Microbiol. Rev. 2006, 19, 512–530. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Raoult, D.; Fournier, P.E. Bacterial strain typing in the genomic era. FEMS Microbiol. Rev. 2009, 33, 892–916. [Google Scholar] [CrossRef] [Green Version]
- Achtman, M.; Wain, J.; Weill, F.X.; Nair, S.; Zhou, Z.; Sangal, V.; Krauland, M.G.; Hale, J.L.; Harbottle, H.; Uesbeck, A.; et al. Enterica MLST Study Group. Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog. 2012, 8, e1002776. [Google Scholar] [CrossRef] [Green Version]
- Chattaway, M.A.; Langridge, G.C.; Wain, J. Salmonella nomenclature in the genomic era: A time for change. Sci. Rep. 2021, 11, 7494. [Google Scholar] [CrossRef]
- Silveira, L.; Nunes, A.; Pista, Â.; Isidro, J.; Belo Correia, C.; Saraiva, M.; Batista, R.; Castanheira, I.; Machado, J.; Gomes, J.P. Characterization of multidrug-resistant isolates of Salmonella enterica serovars Heidelberg and Minnesota from fresh poultry meat imported to Portugal. Microb. Drug Resist. 2021, 27, 87–98. [Google Scholar] [CrossRef]
- Crump, J.A.; Sjölund-Karlsson, M.; Gordon, M.A.; Parry, C.M. Epidemiology, Clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin. Microbiol. Rev. 2015, 28, 901–937. [Google Scholar] [CrossRef] [Green Version]
- Swartz, M.N. Human diseases caused by foodborne pathogens of animal origin. Clin. Infect. Dis. 2002, 34, 111–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokma-Bakker, M.H.; Bondt, N.; Neijenhuis, F.; Mevius, D.J.; Ruiter, S.J.M. Antibiotic Use in Brazilian Broiler and Pig Production: An Indication and Forecast of Trends; Report 714; Wageningen UR Livestock Research: Lelystad, The Netherlands, 2014; pp. 1–25. [Google Scholar]
- Chattopadhyay, M.K. Use of antibiotics as feed additives: A burning question. Front. Microbiol. 2014, 5, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, G.L.; Panzenhagen, P.; Ferrari, R.G.; Dos Santos, A.; Paschoalin, V.M.F.; Conte-Junior, C.A. Frequency of antimicrobial resistance genes in Salmonella from Brazil by in silico whole-genome sequencing analysis: An overview of the last four decades. Front. Microbiol. 2020, 11, 1864. [Google Scholar] [CrossRef]
- Dias de Oliveira, S.; Siqueira Flores, F.; dos Santos, L.R.; Brandelli, A. Antimicrobial resistance in Salmonella enteritidis strains isolated from broiler carcasses, food, human and poultry-related samples. Int. J. Food Microbiol. 2005, 97, 297–305. [Google Scholar] [CrossRef]
- Voss-Rech, D.; Potter, L.; Vaz, C.S.; Pereira, D.I.; Sangioni, L.A.; Vargas, Á.C.; de Avila Botton, S. Antimicrobial resistance in nontyphoidal Salmonella isolated from human and poultry-related samples in Brazil: 20-Year meta-analysis. Foodborne Pathog. Dis. 2017, 14, 116–124. [Google Scholar] [CrossRef]
- OIE (World Organization for Animal Health). OIE Annual Report on Antimicrobial Agents Intended for Use in Animals. 2021. Available online: https://www.oie.int/app/uploads/2021/05/a-fifth-annual-report-amr.pdf (accessed on 24 January 2022).
- Saraiva, M.M.S.; Lim, K.; do Monte, D.F.M.; Givisiez, P.E.N.; Alves, L.B.R.; de Freitas Neto, O.C.; Kariuki, S.; Júnior, A.B.; de Oliveira, C.J.B.; Gebreyes, W.A. Antimicrobial resistance in the globalized food chain: A One Health perspective applied to the poultry industry. Braz. J. Microbiol. 2022, 53, 465–486. [Google Scholar] [CrossRef]
- Kipper, D.; Orsi, R.H.; Carroll, L.M.; Mascitti, A.K.; Streck, A.F.; Fonseca, A.S.K.; Ikuta, N.; Tondo, E.C.; Wiedmann, M.; Lunge, V.R. Recent evolution and genomic profile of Salmonella enterica serovar Heidelberg isolates from poultry flocks in Brazil. Appl. Environ. Microbiol. 2021, 87, e0103621. [Google Scholar] [CrossRef]
- Shah, D.H.; Paul, N.C.; Sischo, W.C.; Crespo, R.; Guard, J. Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poult. Sci. 2017, 96, 687–702. [Google Scholar] [CrossRef]
- Andrysiak, A.K.; Olson, A.B.; Tracz, D.M.; Dore, K.; Irwin, R.; Ng, L.K.; Gilmour, M.W. Canadian Integrated Program for Antimicrobial Resistance Surveillance Collaborative. Genetic characterization of clinical and agri-food isolates of multi drug resistant Salmonella enterica serovar Heidelberg from Canada. BMC Microbiol. 2008, 8, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moura, Q.; Fernandes, M.R.; Cerdeira, L.; Ienne, S.; Souza, T.A.; Negrão, F.J.; Lincopan, N. Draft genome sequence of a multidrug-resistant CMY-2-producing Salmonella enterica subsp. enterica serovar Minnesota ST3088 isolated from chicken meat. J. Glob. Antimicrob. Resist. 2017, 8, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 2019, 365, eaaw1944. [Google Scholar] [CrossRef] [Green Version]
- Monte, D.F.; Lincopan, N.; Berman, H.; Cerdeira, L.; Keelara, S.; Thakur, S.; Fedorka-Cray, P.J.; Landgraf, M. Genomic features of high-priority Salmonella enterica serovars circulating in the food production chain, Brazil, 2000–2016. Sci. Rep. 2019, 9, 11058. [Google Scholar] [CrossRef] [Green Version]
- Kipper, D.; Carroll, L.M.; Mascitti, A.K.; Streck, A.F.; Fonseca, A.S.K.; Ikuta, N.; Lunge, V.R. Genomic characterization of Salmonella Minnesota clonal lineages associated with poultry production in Brazil. Animals 2020, 10, 2043. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, I.B.B.E.; Silva, R.L.; Menezes, J.; Machado, S.C.A.; Rodrigues, D.P.; Pomba, C.; Abreu, D.L.C.; Nascimento, E.R.; Aquino, M.H.C.; Pereira, V.L.A. High prevalence of multidrug-resistant nontyphoidal Salmonella recovered from broiler chickens and chicken carcasses in Brazil. Braz. J. Poult. Sci. 2020, 22, 1–6. [Google Scholar] [CrossRef]
- Rau, R.B.; Ribeiro, A.R.; dos Santos, A.; Barth, A.L. Antimicrobial resistance of Salmonella from poultry meat in Brazil: Results of a nationwide survey. Epidemiol. Infect. 2021, 149, E228. [Google Scholar] [CrossRef]
- Maki, J.J.; Klima, C.L.; Sylte, M.J.; Looft, T. The microbial pecking order: Utilization of intestinal microbiota for poultry health. Microorganisms 2019, 7, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oakley, B.B.; Lillehoj, H.S.; Kogut, M.H.; Kim, W.K.; Maurer, J.J.; Pedroso, A.; Lee, M.D.; Collett, S.R.; Johnson, T.J.; Cox, N.A. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett. 2014, 360, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.S. Integrated colonization control of Salmonella in poultry. Poult. Sci. 1988, 67, 928–932. [Google Scholar] [CrossRef]
- Foley, S.L.; Nayak, R.; Hanning, I.B.; Johnson, T.J.; Han, J.; Ricke, S.C. Population dynamics of Salmonella enterica serotypes in commercial egg and poultry production. Appl. Environ. Microbiol. 2011, 77, 4273–4279. [Google Scholar] [CrossRef] [Green Version]
- Dunkley, K.D.; Callaway, T.R.; Chalova, V.I.; McReynolds, J.L.; Hume, M.E.; Dunkley, C.S.; Kubena, L.F.; Nisbet, D.J.; Ricke, S.C. Foodborne Salmonella ecology in the avian gastrointestinal tract. Anaerobe 2009, 15, 26–35. [Google Scholar] [CrossRef]
- Tanner, J.R.; Kingsley, R.A. Evolution of Salmonella within hosts. Trends Microbiol. 2018, 26, 986–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mebrhatu, M.T.; Cenens, W.; Aertsen, A. An overview of the domestication and impact of the Salmonella mobilome. Crit. Rev. Microbiol. 2014, 40, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Staes, I.; Passaris, I.; Cambré, A.; Aertsen, A. Population heterogeneity tactics as driving force in Salmonella virulence and survival. Food Res. Int. 2019, 125, 108560. [Google Scholar] [CrossRef]
- Cheng, R.A.; Eade, C.R.; Wiedmann, M. Embracing diversity: Differences in virulence mechanisms, disease severity, and host adaptations contribute to the success of nontyphoidal Salmonella as a foodborne pathogen. Front. Microbiol. 2019, 10, 1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, S.L.; Brumell, J.H.; Pfeifer, C.G.; Finlay, B.B. Salmonella pathogenicity islands: Big virulence in small packages. Microbes Infect. 2000, 2, 145–156. [Google Scholar] [CrossRef]
- Shivaprasad, H.L. Pullorum disease and fowl typhoid. In Diseases of Poultry, 11th ed.; Saif, Y.M., Ed.; Iowa State Press: Ames, IA, USA, 2003. [Google Scholar]
- Tavechio, A.T.; Fernandes, S.A.; Neves, B.C.; Dias, A.M.; Irino, K. Changing patterns of Salmonella serovars: Increase of Salmonella enteritidis in São Paulo, Brazil. Rev. Inst. Med. Trop. São Paulo 1996, 38, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Bäumler, A.J.; Hargis, B.M.; Tsolis, R.M. Tracing the origins of Salmonella outbreaks. Science 2000, 287, 50–52. [Google Scholar] [CrossRef]
- Silva, E.N.; Duarte, A. Salmonella enteritidis em aves: Retrospectiva no Brasil. Rev. Bras. Cienc. Avic. 2002, 4, 85–100. [Google Scholar] [CrossRef]
- Foley, S.L.; Lynne, A.M.; Nayak, R. Salmonella challenges: Prevalence in swine and poultry and potential pathogenicity of such isolates. J. Anim. Sci. 2008, 86, E149–E162. [Google Scholar] [CrossRef]
- Pulido-Landínez, M.; Sánchez-Ingunza, R.; Guard, J.; Pinheiro do Nascimento, V. Assignment of serotype to Salmonella enterica isolates obtained from poultry and their environment in southern Brazil. Lett. Appl. Microbiol. 2013, 57, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Voss-Rech, D.; Vaz, C.S.; Alves, L.; Coldebella, A.; Leão, J.A.; Rodrigues, D.P.; Back, A. A temporal study of Salmonella enterica serotypes from broiler farms in Brazil. Poult. Sci. 2015, 94, 433–441. [Google Scholar] [CrossRef]
- Langridge, G.C.; Fookes, M.; Connor, T.R.; Feltwell, T.; Feasey, N.; Parsons, B.N.; Seth-Smith, H.M.; Barquist, L.; Stedman, A.; Humphrey, T.; et al. Patterns of genome evolution that have accompanied host adaptation in Salmonella. Proc. Natl. Acad. Sci. USA 2015, 112, 863–868. [Google Scholar] [CrossRef] [Green Version]
- Wigley, P. Salmonella enterica serovar Gallinarum: Addressing fundamental questions in bacteriology sixty years on from the 9R vaccine. Avian Pathol. 2017, 46, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matos, M.; Sommer, F.; Liebhart, D.; Bilic, I.; Hess, M.; Hess, C. An outbreak of Pullorum Disease in a young layer parent flock in Austria presented with central nervous system signs. Avian Dis. 2021, 65, 159–164. [Google Scholar] [CrossRef]
- Freitas Neto, O.C.; Arroyave, W.; Alessi, A.C.; Fagliari, J.J.; Berchieri, A. Infection of commercial laying hens with Salmonella Gallinarum: Clinical, anatomopathological and haematological studies. Braz. J. Poult. Sci. 2002, 9, 133–141. [Google Scholar] [CrossRef]
- Zanetti, N.S.; De Carli, S.; Souza, M.N.; Lehmann, F.K.M.; Kipper, D.; Dias, K.K.R.; Fonseca, A.S.K.; Lunge, V.R.; Ikuta, N. Molecular detection and characterization of Salmonella Gallinarum from poultry farms in Brazil. J. Appl. Poult. 2019, 28, 1335–1341. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Z.; Qiang, B.; Xu, Y.; Chen, X.; Li, Q.; Jiao, X. Loss and gain in the evolution of the Salmonella enterica serovar Gallinarum biovar Pullorum genome. mSphere 2019, 4, e00627-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, R.; Li, Z.; Zhou, X.; Huang, C.; Hu, Y.; Geng, S.; Chen, X.; Li, Q.; Pan, Z.; Jiao, X. Induction of arthritis in chickens by infection with novel virulent Salmonella Pullorum strains. Vet. Microbiol. 2019, 228, 165–172. [Google Scholar] [CrossRef]
- Schat, K.A.; Nagaraja, K.V.; Saif, Y.M. Pullorum Disease: Evolution of the eradication strategy. Avian Dis. 2021, 65, 227–236. [Google Scholar] [CrossRef]
- Bullis, K. The history of avian medicine in the U.S. II: Pullorum disease and fowl typhoid. Avian Dis. 1977, 21, 422–435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhuang, L.; Wang, C.; Zhang, P.; Zhang, T.; Shao, H.; Han, X.; Gong, J. Virulence gene distribution of Salmonella Pullorum isolates recovered from chickens in China (1953–2015). Avian Dis. 2018, 62, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Le Bouquin, S.; Bonifait, L.; Thépault, A.; Ledein, T.; Guillon, F.; Rouxel, S.; Souillard, R.; Chemaly, M. Epidemiological and bacteriological investigations using whole-genome sequencing in a recurrent outbreak of Pullorum Disease on a quail farm in France. Animals 2020, 11, 29. [Google Scholar] [CrossRef]
- OIE (World Organization for Animal Health). Animal Desease Events. 2016. Available online: https://wahis.oie.int/#/events?viewAll=true (accessed on 1 February 2022).
- Foley, S.L.; Johnson, T.J.; Ricke, S.C.; Nayak, R.; Danzeisen, J. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol. Mol. Biol. Rev. 2013, 77, 582–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, J.P.; Skov, M.N.; Hinz, K.H.; Bisgaard, M. Salmonella enterica serovar Gallinarum biovar gallinarum in layers: Epidemiological investigations of a recent outbreak in Denmark. Avian Pathol. 1994, 23, 489–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrow, P.A.; Freitas Neto, O.C. Pullorum disease and fowl typhoid—New thoughts on old diseases: A review. Avian Pathol. 2011, 40, 1–13. [Google Scholar] [CrossRef] [PubMed]
- De Carli, S.; Gräf, T.; Kipper, D.; Lehmann, F.K.M.; Zanetti, N.; Siqueira, F.M.; Cibulski, S.; Fonseca, A.S.K.; Ikuta, N.; Lunge, V.R. Molecular and phylogenetic analyses of Salmonella Gallinarum trace the origin and diversification of recent outbreaks of fowl typhoid in poultry farms. Vet. Microbiol. 2017, 212, 80–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koerich, P.K.V.; Fonseca, B.B.; Balestrin, E.; Tagliari, V.; Hoepers, P.G.; Ueira-Vieira, C.; Oldoni, I.; Rauber, R.H.; Ruschel, L.; Nascimento, V.P. Salmonella Gallinarum field isolates and its relationship to vaccine strain SG9R. Br. Poult. Sci. 2018, 59, 154–159. [Google Scholar] [CrossRef]
- Celis-Estupiñan, A.L.D.P.; Batista, D.F.A.; Cardozo, M.V.; Secundo de Souza, A.I.; Rodrigues Alves, L.B.; Maria de Almeida, A.; Barrow, P.A.; Berchieri, A., Jr.; Caetano de Freitas Neto, O. Further investigations on the epidemiology of fowl typhoid in Brazil. Avian Pathol. 2017, 46, 416–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaid, R.K.; Thakur, Z.; Anand, T.; Kumar, S.; Tripathi, B.N. Comparative genome analysis of Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum decodes strain specific genes. PLoS ONE 2021, 16, e0255612. [Google Scholar] [CrossRef]
- Kim, N.H.; Ha, E.J.; Ko, D.S.; Lee, C.Y.; Kim, J.H.; Kwon, H.J. Molecular evolution of Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum in the field. Vet. Microbiol. 2019, 235, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Li, X.; Wang, Y.; Wang, F.; Ge, H.; Pan, Z.; Xu, Y.; Wang, Y.; Jiao, X.; Chen, X. Epidemic patterns of antimicrobial resistance of Salmonella enterica serovar Gallinarum biovar Pullorum isolates in China during the past half-century. Poult. Sci. 2021, 100, 100894. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Kim, K.S.; Kim, J.H.; Tak, R.B. Salmonella gallinarum gyrA mutations associated with fluoroquinolone resistance. Avian Pathol. 2004, 33, 251–257. [Google Scholar] [CrossRef]
- Nhung, N.T.; Chansiripornchai, N.; Carrique-Mas, J.J. Antimicrobial resistance in bacterial poultry pathogens: A review. Front. Vet. Sci. 2017, 4, 126. [Google Scholar] [CrossRef] [Green Version]
- Seo, K.W.; Kim, J.J.; Mo, I.P.; Lee, Y.J. Molecular characteristic of antimicrobial resistance of Salmonella Gallinarum isolates from chickens in Korea, 2014 to 2018. Poult. Sci. 2019, 98, 5416–5423. [Google Scholar] [CrossRef] [PubMed]
- Penha Filho, R.A.C.; Ferreira, J.C.; Kanashiro, A.M.B.; Darini, A.L.C.; Berchieri, A., Jr. Antimicrobial susceptibility of Salmonella Gallinarum and Salmonella Pullorum isolated from ill poultry in Brazil. Ciência Rural. 2016, 46, 513–518. [Google Scholar] [CrossRef]
- Rizzo, N.N.; Pottker, E.S.; Webber, B.; Borges, K.A.; Duarte, S.C.; Levandowski, R.; Ruschel, L.R.; Rodrigues, L.B. Effect of two lytic bacteriophages against multidrug-resistant and biofilm-forming Salmonella Gallinarum from poultry. Br. Poult. Sci. 2020, 61, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.K.M.Z.; Akter, M.R.; Islam, S.K.S.; Alam, J.; Neogi, S.B.; Yamasaki, S.; Kabir, S.M.L. Salmonella Gallinarum in small-scale commercial layer flocks: Occurrence, molecular diversity and antibiogram. Vet. Sci. 2021, 8, 71. [Google Scholar] [CrossRef]
- Bawn, M.; Alikhan, N.F.; Thilliez, G.; Kirkwood, M.; Wheeler, N.E.; Petrovska, L.; Dallman, T.J.; Adriaenssens, E.M.; Hall, N.; Kingsley, R.A. Evolution of Salmonella enterica serotype Typhimurium driven by anthropogenic selection and niche adaptation. PLoS Genet. 2020, 16, e1008850. [Google Scholar] [CrossRef] [PubMed]
- Chevance, F.F.; Hughes, K.T. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 2008, 6, 455–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Li, S.; Gu, W.; den Bakker, H.; Boxrud, D.; Taylor, A.; Roe, C.; Driebe, E.; Engelthaler, D.M.; Allard, M.; et al. Zoonotic source attribution of Salmonella enterica serotype Typhimurium using genomic surveillance data, United States. Emerg. Infect. Dis. 2019, 25, 82–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.A. Human Salmonella typhimurium infection due to duck eggs, with special reference to flocks of ducks. Br. Med. J. 1952, 2, 125–127. [Google Scholar] [CrossRef] [Green Version]
- McCoy, J.H. Trends in Salmonella food poisoning in England and Wales 1941–72. J. Hyg. 1975, 74, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Sadler, W.W.; Yamamoto, R.; Adler, H.E.; Stewart, G.F. Survey of market poultry for Salmonella infection. Appl. Microbiol. 1961, 9, 72–76. [Google Scholar] [CrossRef]
- Helms, M.; Ethelberg, S.; Mølbak, K. DT104 Study Group. International Salmonella Typhimurium DT104 infections, 1992–2001. Emerg. Infect. Dis. 2005, 11, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Branchu, P.; Bawn, M.; Kingsley, R.A. Genome variation and molecular epidemiology of Salmonella enterica serovar Typhimurium pathovariants. Infect. Immun. 2018, 86, e00079-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, R.O.D.; Souza, M.N.; Cecconi, M.C.P.; Timm, L.; Ikuta, N.; Simon, D.; Wolf, J.M.; Lunge, V.R. Increasing prevalence and dissemination of invasive nontyphoidal Salmonella serotype Typhimurium with multidrug resistance in hospitalized patients from southern Brazil. Braz. J. Infect. Dis. 2018, 22, 424–432. [Google Scholar] [CrossRef]
- Ferrari, R.G.; Rosario, D.K.A.; Cunha-Neto, A.; Mano, S.B.; Figueiredo, E.E.S.; Conte-Junior, C.A. Worldwide epidemiology of Salmonella serovars in animal-based foods: A meta-analysis. Appl. Environ. Microbiol. 2019, 85, e00591-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poppe, C.; Smart, N.; Khakhria, R.; Johnson, W.; Spika, J.; Prescott, J. Salmonella Typhimurium DT104: A virulent and drug-resistant pathogen. Can. Vet. J. 1998, 39, 559–565. [Google Scholar]
- Mather, A.E.; Reid, S.W.; Maskell, D.J.; Parkhill, J.; Fookes, M.C.; Harris, S.R.; Brown, D.J.; Coia, J.E.; Mulvey, M.R.; Gilmour, M.W.; et al. Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts. Science 2013, 341, 1514–1517. [Google Scholar] [CrossRef] [Green Version]
- Leekitcharoenphon, P.; Hendriksen, R.S.; Le Hello, S.; Weill, F.X.; Baggesen, D.L.; Jun, S.R.; Ussery, D.W.; Lund, O.; Crook, D.W.; Wilson, D.J.; et al. Global genomic epidemiology of Salmonella enterica serovar Typhimurium DT104. Appl. Environ. Microbiol. 2016, 82, 2516–2526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller-Doblies, D.; Speed, K.; Davies, R.H. A retrospective analysis of Salmonella serovars isolated from pigs in Great Britain between 1994 and 2010. Prev. Vet. Med. 2013, 110, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Parsons, B.N.; Crayford, G.; Humphrey, T.J.; Wigley, P. Infection of chickens with antimicrobial-resistant Salmonella enterica Typhimurium DT193 and monophasic Salmonella Typhimurium-like variants: An emerging risk to the poultry industry? Avian Pathol. 2013, 42, 443–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echeita, M.; Herrera, S.; Usera, M. Atypical, fljB-negative Salmonella enterica strain of serovar 4,5,12:i:– appears to be a monophasic variant of serovar Typhimurium. J. Clin. Microbiol. 2001, 39, 2981–2983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavechio, A.T.; Ghilardi, A.C.; Fernandes, S.A. Multiplex PCR identification of the atypical and monophasic Salmonella enterica subsp. enterica serotype 1,4,[5],12:i:- in São Paulo State, Brazil: Frequency and antibiotic resistance patterns. Rev. Inst. Med. Trop. São Paulo 2004, 46, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Mossong, J.; Marques, P.; Ragimbeau, C.; Huberty-Krau, P.; Losch, S.; Meyer, G.; Moris, G.; Strottner, C.; Rabsch, W.; Schneider, F. Outbreaks of monophasic Salmonella enterica serovar 4,[5],12:i:- in Luxembourg, 2006. Eurosurveillance 2007, 12, E11–E12. [Google Scholar] [CrossRef] [Green Version]
- Agasan, A.; Kornblum, J.; Williams, G.; Pratt, C.C.; Fleckenstein, P.; Wong, M.; Ramon, A. Profile of Salmonella enterica subsp. enterica (subspecies I) serotype 4,5,12:i:- strains causing food-borne infections in New York City. J. Clin. Microbiol. 2002, 40, 1924–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamperini, K.; Soni, V.; Waltman, D.; Sanchez, S.; Theriault, E.C.; Bray, J.; Maurer, J.J. Molecular characterization reveals Salmonella enterica serovar 4,[5],12:i:- from poultry is a variant Typhimurium serovar. Avian Dis. 2007, 51, 958–964. [Google Scholar] [CrossRef]
- Tavechio, A.T.; Fernandes, S.A.; Ghilardi, A.C.; Soule, G.; Ahmed, R.; Melles, C.E. Tracing lineage by phenotypic and genotypic markers in Salmonella enterica subsp. enterica serovar 1,4,[5],12:i:- and Salmonella Typhimurium isolated in state of São Paulo, Brazil. Memórias Inst. Oswaldo Cruz 2009, 104, 1042–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA (European Food Safety Authority). Report of the Task Force on Zoonoses Data Collection on the Analysis of the baseline study on the prevalence of Salmonella in holdings of laying hen flocks of Gallus gallus. EFSA J. 2007, 5, 97r. [Google Scholar] [CrossRef] [Green Version]
- Dookeran, M.M.; Baccus-Taylor, G.S.; Akingbala, J.O.; Tameru, B.; Lammerding, A.M. Transmission of Salmonella on broiler chickens and carcasses from production to retail in Trinidad and Tobago. J. Agric. Biodivers. Res. 2012, 1, 78–84. [Google Scholar]
- Taunay, A.E.; Fernandes, S.A.; Tavechio, A.T.; Neves, B.C.; Dias, A.M.; Irino, K. The role of public health laboratory in the problem of salmonellosis in São Paulo, Brazil. Rev. Inst. Med. Trop. São Paulo 1996, 38, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavechio, A.T.; Ghilardi, A.C.; Peresi, J.T.; Fuzihara, T.O.; Yonamine, E.K.; Jakabi, M.; Fernandes, S.A. Salmonella serotypes isolated from nonhuman sources in São Paulo, Brazil, from 1996 through 2000. J. Food Prot. 2002, 65, 1041–1044. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.A.; Tavechio, A.T.; Ghilardi, A.C.; Dias, A.M.; Almeida, I.A.; Melo, L.C. Salmonella serovars isolated from humans in São Paulo State, Brazil, 1996-2003. Rev. Inst. Med. Trop. São Paulo 2006, 48, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Capalonga, R.; Ramos, R.C.; Both, J.M.; Soeiro, M.L.; Longaray, S.M.; Haas, S.; Tondo, E.C. Salmonella serotypes, resistance patterns, and food vehicles of salmonellosis in southern Brazil between 2007 and 2012. J. Infect. Dev. Ctries. 2014, 8, 811–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neto, W.S.; Leotti, V.B.; Pires, S.M.; Hald, T.; Corbellini, L.G. Non-typhoidal human salmonellosis in Rio Grande do Sul, Brazil: A combined source attribution study of microbial subtyping and outbreak data. Int. J. Food Microbiol. 2021, 338, 108992. [Google Scholar] [CrossRef] [PubMed]
- Barrow, P.A.; Jones, M.A.; Smith, A.L.; Wigley, P. The long view: Salmonella the last forty years. Avian Pathol. 2012, 41, 413–420. [Google Scholar] [CrossRef]
- Hugas, M.; Beloeil, P. Controlling Salmonella along the food chain in the European Union—Progress over the last ten years. Eurosurveillance 2014, 19, 20804. [Google Scholar] [CrossRef] [Green Version]
- Hassan, J.O.; Curtiss, R., 3rd. Development and evaluation of an experimental vaccination program using a live avirulent Salmonella Typhimurium strain to protect immunized chickens against challenge with homologous and heterologous Salmonella serotypes. Infect. Immun. 1994, 62, 5519–5527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groves, P.J.; Sharpe, S.M.; Muir, W.I.; Pavic, A.; Cox, J.M. Live and inactivated vaccine regimens against caecal Salmonella Typhimurium colonisation in laying hens. Aust. Vet. J. 2016, 94, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wolfenden, A.; Mandal, R.K.; Faulkner, O.; Hargis, B.; Kwon, Y.M.; Bielke, L. Evaluation of recombinant Salmonella vaccines to provide cross-serovar and cross-serogroup protection. Poult. Sci. 2017, 96, 4352–4360. [Google Scholar] [CrossRef] [PubMed]
- De Melo, A.N.F.; Monte, D.F.M.; de Souza Pedrosa, G.T.; Balkey, M.; Jin, Q.; Brown, E.; Allard, M.; de Oliveira, T.C.R.M.; Cao, G.; Magnani, M.; et al. Genomic investigation of antimicrobial resistance determinants and virulence factors in Salmonella enterica serovars isolated from contaminated food and human stool samples in Brazil. Int. J. Food Microbiol. 2021, 343, 109091. [Google Scholar] [CrossRef] [PubMed]
- Mouttotou, N.; Ahmad, S.; Kamran, Z.; Koutoulis, K.C. Prevalence, risks and antibiotic resistance of Salmonella in poultry production chain. In Current Topics in Salmonella and Salmonellosis; InTechOpen: London, UK, 2017; pp. 215–234. [Google Scholar] [CrossRef]
- Reis, R.O.; Cecconi, M.C.; Timm, L.; Souza, M.N.; Ikuta, N.; Wolf, J.M.; Lunge, V.R. Salmonella isolates from urine cultures: Serotypes and antimicrobial resistance in hospital settings. Braz. J. Microbiol. 2019, 50, 445–448. [Google Scholar] [CrossRef]
- Bessa, M.C.; Michael, G.B.; Canu, N.; Canal, C.W.; Cardoso, M.; Rabsch, W.; Rubino, S. Phenotypic and genetic characterization of Salmonella enterica subsp. enterica serovar Typhimurium isolated from pigs in Rio Grande do Sul, Brazil. Res. Vet. Sci. 2007, 83, 302–310. [Google Scholar] [CrossRef]
- Almeida, F.; Medeiros, M.I.; Kich, J.D.; Falcão, J.P. Virulence-associated genes, antimicrobial resistance and molecular typing of Salmonella Typhimurium strains isolated from swine from 2000 to 2012 in Brazil. J. Appl. Microbiol. 2016, 120, 1677–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, F.; Seribelli, A.A.; Medeiros, M.I.C.; Rodrigues, D.D.P.; de MelloVarani, A.; Luo, Y.; Allard, M.W.; Falcão, J.P. Phylogenetic and antimicrobial resistance gene analysis of Salmonella Typhimurium strains isolated in Brazil by whole genome sequencing. PLoS ONE. 2018, 13, e0201882. [Google Scholar] [CrossRef] [Green Version]
- Perin, A.P.; Martins, B.T.F.; Barreiros, M.A.B.; Yamatogi, R.S.; Nero, L.A.; Dos Santos Bersot, L. Occurrence, quantification, pulse types, and antimicrobial susceptibility of Salmonella sp. isolated from chicken meat in the state of Paraná, Brazil. Braz. J. Microbiol. 2020, 51, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Rau, R.B.; de Lima-Morales, D.; Wink, P.L.; Ribeiro, A.R.; Barth, A.L. Salmonella enterica mcr-1 positive from food in Brazil: Detection and characterization. Foodborne Pathog. Dis. 2020, 17, 202–208. [Google Scholar] [CrossRef]
- Galanis, E.; Lo Fo Wong, D.M.; Patrick, M.E.; Binsztein, N.; Cieslik, A.; Chalermchikit, T.; Aidara-Kane, A.; Ellis, A.; Angulo, F.J.; Wegener, H.C.; et al. Webbased surveillance and global Salmonella distribution, 2000–2002. Emerg. Infect. Dis. 2006, 12, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Rodrigue, D.C.; Tauxe, R.V.; Rowe, B. International increase in Salmonella Enteritidis: A new pandemic? Epidemiol. Infect. 1990, 105, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Guard-Petter, J. The chicken, the egg and Salmonella enteritidis. Environ. Microbiol. 2001, 3, 421–430. [Google Scholar] [CrossRef]
- Rampling, A.; Anderson, J.R.; Upson, R.; Peters, E.; Ward, L.R.; Rowe, B. Salmonella enteritidis phage type 4 infection of broiler chickens: A hazard to public health. Lancet 1989, 2, 436–438. [Google Scholar] [CrossRef]
- Rabsch, W.; Hargis, B.M.; Tsolis, R.M.; Kingsley, R.A.; Hinz, K.H.; Tschäpe, H.; Bäumler, A.J. Competitive exclusion of Salmonella enteritidis by Salmonella gallinarum in poultry. Emerg. Infect. Dis. 2000, 6, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Patrick, M.E.; Adcock, P.M.; Gomez, T.M.; Altekruse, S.F.; Holland, B.H.; Tauxe, R.V.; Swerdlow, D.L. Salmonella Enteritidis infections, United States, 1985–1999. Emerg. Infect. Dis. 2004, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, T.J.; Baskerville, A.; Mawer, S.; Rowe, B.; Hopper, S. Salmonella enteritidis phage type 4 from the contents of intact eggs: A study involving naturally infected hens. Epidemiol. Infect. 1989, 103, 415–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rampling, A. Salmonella enteritidis five years on. Lancet 1993, 342, 317–318. [Google Scholar] [CrossRef]
- Alexandre, M.; Pozo, C.; González, V.; Martínez, M.C.; Prat, S.; Fernández, A.; Fica, A.; Fernández, J.; Heitmann, I. Detection of Salmonella enteritidis in samples of poultry products for human consumption in the Chilean metropolitan area. Rev. Med. Chil. 2000, 128, 1075–1083. [Google Scholar] [PubMed]
- Kottwitz, L.B.M.; Scheffer, M.C.; Dalla-Costa, L.M.; Farah, S.M.S.S.; Moscalewski, W.S.B.; Magnani, M.; de Oliveira, T.C.R.M. Molecular characterization and resistance profile of Salmonella Enteritidis PT4 and PT9 strains isolated in Brazil. J. Med. Microbiol. 2011, 60, 1026–1031. [Google Scholar] [CrossRef]
- Caffer, M.I.; Eiguer, T. Salmonella enteritidis in Argentina. Int. J. Food Microbiol. 1994, 21, 15–19. [Google Scholar] [CrossRef]
- Mascitti, A.K.; Kipper, D.; Dos Reis, R.O.; da Silva, J.S.; Fonseca, A.S.K.; Ikuta, N.; Tondo, E.C.; Lunge, V.R. Retrospective whole-genome comparison of Salmonella enterica serovar Enteritidis from foodborne outbreaks in Southern Brazil. Braz. J. Microbiol. 2021, 52, 1523–1533. [Google Scholar] [CrossRef]
- de Freitas Neto, O.C.; Mesquita, A.L.; de Paiva, J.B.; Zotesso, F.; Berchieri Júnior, A. Control of Salmonella enterica serovar Enteritidis in laying hens by inactivated Salmonella Enteritidis vaccines. Braz. J. Microbiol. 2008, 39, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Obe, T.; Nannapaneni, R.; Schilling, W.; Zhang, L.; McDaniel, C.; Kiess, A. Prevalence of Salmonella enterica on poultry processing equipment after completion of sanitization procedures. Poult. Sci. 2020, 99, 4539–4548. [Google Scholar] [CrossRef] [PubMed]
- Penha Filho, R.A.; de Paiva, J.B.; Arguello, Y.M.; da Silva, M.D.; Gardin, Y.; Resende, F.; Berchieri, A.B., Jr.; Sesti, L. Efficacy of several vaccination programmes in commercial layer and broiler breeder hens against experimental challenge with Salmonella enterica serovar Enteritidis. Avian Pathol. 2009, 38, 367–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huberman, Y.D.; Velilla, A.V.; Terzolo, H.R. Evaluation of different live Salmonella Enteritidis vaccine schedules administered during layer hen rearing to reduce excretion, organ colonization, and egg contamination. Poult. Sci. 2019, 98, 2422–2431. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, F.A.; Brandelli, A.; Tondo, E.C. Antimicrobial resistance in Salmonella enteritidis from foods involved in human salmonellosis outbreaks in southern Brazil. New Microbiol. 2006, 29, 49–54. [Google Scholar]
- Vaz, C.S.; Streck, A.F.; Michael, G.B.; Marks, F.S.; Rodrigues, D.P.; Dos Reis, E.M.; Cardoso, M.R.; Canal, C.W. Antimicrobial resistance and subtyping of Salmonella enterica subspecies enterica serovar Enteritidis isolated from human outbreaks and poultry in southern Brazil. Poult. Sci. 2010, 89, 1530–1536. [Google Scholar] [CrossRef] [PubMed]
- Campioni, F.; Moratto Bergamini, A.M.; Falcão, J.P. Genetic diversity, virulence genes and antimicrobial resistance of Salmonella Enteritidis isolated from food and humans over a 24-year period in Brazil. Food Microbiol. 2012, 32, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Campioni, F.; Souza, R.A.; Martins, V.V.; Stehling, E.G.; Bergamini, A.M.M.; Falcão, J.P. Prevalence of gyrA mutations in nalidixic acid-resistant strains of Salmonella Enteritidis isolated from humans, food, chickens, and the farm environment in Brazil. Microb. Drug Resist. 2017, 23, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Habbs, V.H. About a new type of bacteria from the paratyphoid enteritic group. J. Bacterial. 1933, 130, 374–396. [Google Scholar]
- Deblais, L.; Lorentz, B.; Scaria, J.; Nagaraja, K.V.; Nisar, M.; Lauer, D.; Voss, S.; Rajashekara, G. Comparative genomic studies of Salmonella Heidelberg isolated from chicken- and turkey-associated farm environmental samples. Front. Microbiol. 2018, 9, 1841. [Google Scholar] [CrossRef] [Green Version]
- Eurosurveillance Editorial Team. European Union Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food 2012 published. Eurosurveillance 2014, 19, 20748. [Google Scholar] [CrossRef] [Green Version]
- CDC (Centers for Disease Control and Prevention). Multistate Outbreak of Multidrug-Resistant Salmonella Heidelberg Infections Linked to Contact with Dairy Calves (Final Update). 2018. Available online: http://www.cdc.gov/Salmonella/heidelberg-11-16/index.html (accessed on 15 January 2022).
- Jones, T.F.; Ingram, L.A.; Cieslak, P.R.; Vugia, D.J.; Tobin-D’Angelo, M.; Hurd, S.; Medus, C.; Cronquist, A.; Ângulo, F.J. Salmonellosis outcomes differ substantially by serotype. J. Infect. Dis. 2008, 198, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.A.; Craven, C.; Wells, J.G. Salmonella Heidelberg enteritis and bacteremia. An epidemic on two pediatric wards. Am. J. Med. 1976, 60, 509–516. [Google Scholar] [CrossRef]
- Asmar, B.I.; Abdel-Haq, N. Nontyphoidal Salmonella infection in children: Relation to bacteremia, age, and infecting serotype. Infect. Dis. 2016, 48, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Chittick, P.; Sulka, A.; Tauxe, R.V.; Fry, A.M. A summary of national reports of foodborne outbreaks of Salmonella Heidelberg infections in the United States: Clues for disease prevention. J. Food Prot. 2006, 69, 1150–1153. [Google Scholar] [CrossRef] [PubMed]
- Hennessy, T.W.; Cheng, L.H.; Kassenborg, H.; Ahuja, S.D.; Mohle-Boetani, J.; Marcus, R.; Shiferaw, B.; Angulo, F.J. Emerging Infections Program FoodNet Working Group. Egg consumption is the principal risk factor for sporadic Salmonella serotype Heidelberg infections: A case-control study in FoodNet sites. Clin. Infect. Dis. 2004, 38, S237–S243. [Google Scholar] [CrossRef] [Green Version]
- CDC (Centers for Disease Control and Prevention). Outbreak of Salmonella Heidelberg infections linked to a single poultry producer—13 states, 2012–2013. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 553–556. [Google Scholar]
- Routh, J.A.; Pringle, J.; Mohr, M.; Bidol, S.; Arends, K.; Adams-Cameron, M.; Hancock, W.T.; Kissler, B.; Rickert, R.; Folster, J.; et al. Nationwide outbreak of multidrug-resistant Salmonella Heidelberg infections associated with ground turkey: United States, 2011. Epidemiol. Infect. 2015, 143, 3227–3234. [Google Scholar] [CrossRef] [PubMed]
- Gieraltowski, L.; Higa, J.; Peralta, V.; Green, A.; Schwensohn, C.; Rosen, H.; Libby, T.; Kissler, B.; Marsden-Haug, N.; Booth, H.; et al. National outbreak of multidrug resistant Salmonella Heidelberg infections linked to a single poultry company. PLoS ONE 2016, 11, e0162369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bearson, B.L.; Bearson, S.M.D.; Looft, T.; Cai, G.; Shippy, D.C. Characterization of a multidrug-resistant Salmonella enterica serovar Heidelberg outbreak strain in commercial turkeys: Colonization, transmission, and host transcriptional response. Front. Vet. Sci. 2017, 4, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, M.; Gollarza, L.; Sockett, D.; Aulik, N.; Patton, E.; Francois Watkins, L.K.; Gambino-Shirley, K.J.; Folster, J.P.; Chen, J.C.; Tagg, K.A.; et al. Outbreak of multidrug-resistant Salmonella Heidelberg infections linked to dairy calf exposure, United States, 2015–2018. Foodborne Pathog. Dis. 2022, 19, 199–208. [Google Scholar] [CrossRef]
- Fontaine, R.E.; Cohen, M.L.; Martin, W.T.; Vernon, T.M. Epidemic salmonellosis from cheddar cheese: Surveillance and prevention. Am. J. Epidemiol. 1980, 111, 247–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, B.R.; Griffin, P.M.; Cole, D.; Walsh, K.A.; Chai, S.J. Outbreak-associated Salmonella enterica serotypes and food Commodities, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 1239–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antony, L.; Behr, M.; Sockett, D.; Miskimins, D.; Aulik, N.; Christopher-Hennings, J.; Nelson, E.; Allard, M.W.; Scaria, J. Genome divergence and increased virulence of outbreak associated Salmonella enterica subspecies enterica serovar Heidelberg. Gut Pathog. 2018, 10, 53. [Google Scholar] [CrossRef] [Green Version]
- Green, A.; Defibaugh-Chavez, S.; Douris, A.; Vetter, D.; Atkinson, R.; Kissler, B.; Khroustalev, A.; Robertson, K.; Sharma, Y.; Becker, K.; et al. Intensified sampling in response to a Salmonella Heidelberg outbreak associated with multiple establishments within a single poultry corporation. Foodborne Pathog. Dis. 2018, 15, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, F.T.; Rives, D.V.; Carey, J.B. Salmonella contamination in commercial eggs and an egg production facility. Poult. Sci. 1995, 74, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Currie, A.; MacDougall, L.; Aramini, J.; Gaulin, C.; Ahmed, R.; Isaacs, S. Frozen chicken nuggets and strips and eggs are leading risk factors for Salmonella Heidelberg infections in Canada. Epidemiol. Infect. 2005, 133, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, L.R.; van der Graaf-van Bloois, L.; Donado-Godoy, P.; León, M.; Clavijo, V.; Arévalo, A.; Bernal, J.F.; Mevius, D.J.; Wagenaar, J.A.; Zomer, A.; et al. Genomic characterization of extended-spectrum cephalosporin-resistant Salmonella enterica in the Colombian poultry chain. Front. Microbiol. 2018, 9, 2431. [Google Scholar] [CrossRef]
- Aravena, C.; Valencia, B.; Villegas, A.; Ortega, M.; Fernández, R.A.; Araya, R.P.; Saavedra, A.; Del Campo, R. Caracterización de cepas clínicas y ambientales de Salmonella enterica subsp. enterica serovar Heidelberg aisladas en Chile [Characterization of Salmonella Heidelberg strains isolated in Chile]. Rev. Med. Chil. 2019, 147, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Gelaw, A.K.; Nthaba, P.; Matle, I. Detection of Salmonella from animal sources in South Africa between 2007 and 2014. J. S. Afr. Vet. Assoc. 2018, 89, e1–e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mammina, C.; Talini, M.; Pontello, M.; Di Noto, A.M.; Nastasi, A. Clonal circulation of Salmonella enterica serotype Heidelberg in Italy? Eurosurveillance 2003, 8, 222–225. [Google Scholar] [CrossRef]
- Hofer, E.; da Silva Filho, S.J.; dos Reis, E.M.F. Prevalência de sorovares de Salmonella isolados de aves no Brasil. Pesqui. Vet. Bras. 1997, 17, 55–62. [Google Scholar] [CrossRef]
- Voss-Rech, D.; Kramer, B.; Silva, V.S.; Rebelatto, R.; Abreu, P.G.; Coldebella, A.; Vaz, C.S.L. Longitudinal study reveals persistent environmental Salmonella Heidelberg in Brazilian broiler farms. Vet. Microbiol. 2019, 233, 118–123. [Google Scholar] [CrossRef] [PubMed]
- RASFF (The Rapid Alert System for Food and Feed). Food and Feed Safety Alerts. 2018. Available online: https://webgate.ec.europa.eu/rasff-window/portal/ (accessed on 20 January 2022).
- Melo, R.T.; Galvão, N.N.; Guidotti-Takeuchi, M.; Peres, P.A.B.M.; Fonseca, B.B.; Profeta, R.; Azevedo, V.A.C.; Monteiro, G.P.; Brenig, B.; Rossi, D.A. Molecular characterization and survive abilities of Salmonella Heidelberg strains of poultry origin in Brazil. Front. Microbiol. 2021, 12, 674147. [Google Scholar] [CrossRef] [PubMed]
- Borges, K.A.; Furian, T.Q.; Souza, S.N.; Menezes, R.; Tondo, E.C.; Salle, C.T.; Moraes, H.L.; Nascimento, V.P. Biofilm formation capacity of Salmonella serotypes at different temperature conditions. Pesqui. Vet. Bras. 2018, 38, 71–76. [Google Scholar] [CrossRef]
- Lucca, V.; Apellanis Borges, K.; Quedi Furian, T.; Borsoi, A.; Pippi Salle, C.T.; de Souza Moraes, H.L.; Pinheiro do Nascimento, V. Influence of the norepinephrine and medium acidification in the growth and adhesion of Salmonella Heidelberg isolated from poultry. Microb. Pathog. 2020, 138, 103799. [Google Scholar] [CrossRef] [PubMed]
- Vincent, C.; Usongo, V.; Berry, C.; Tremblay, D.M.; Moineau, S.; Yousfi, K.; Doualla-Bell, F.; Fournier, E.; Nadon, C.; Goodridge, L.; et al. Comparison of advanced whole genome sequence-based methods to distinguish strains of Salmonella enterica serovar Heidelberg involved in foodborne outbreaks in Québec. Food Microbiol. 2018, 73, 99–110. [Google Scholar] [CrossRef]
- Kerr, E.J.; Stafford, R.; Rathnayake, I.U.; Graham, R.M.A.; Fearnley, E.; Gregory, J.; Glasgow, K.; Wright, R.; Sintchenko, V.; Wang, Q.; et al. Multistate Outbreak of Salmonella enterica Serovar Heidelberg with Unidentified Source, Australia, 2018–2019. Emerg. Infect. Dis. 2022, 28, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Edirmanasinghe, R.; Finley, R.; Parmley, E.J.; Avery, B.P.; Carson, C.; Bekal, S.; Golding, G.; Mulvey, M.R. A Whole-genome sequencing approach to study cefoxitin-resistant Salmonella enterica serovar Heidelberg isolates from various sources. Antimicrob. Agents Chemother. 2017, 61, e01919-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.J.; Li, J.; Zhang, X.; Gao, F.; Benton, C.S.; Andam, C.P. Diverse lineages of multidrug resistant clinical Salmonella enterica and a cryptic outbreak in New Hampshire, USA revealed from a year-long genomic surveillance. Infect. Genet. Evol. 2021, 87, 104645. [Google Scholar] [CrossRef] [PubMed]
- Dutil, L.; Irwin, R.; Finley, R.; Ng, L.K.; Avery, B.; Boerlin, P.; Bourgault, A.M.; Cole, L.; Daignault, D.; Desruisseau, A.; et al. Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerg. Infect. Dis. 2010, 16, 48–54. [Google Scholar] [CrossRef]
- Fitch, F.M.; Carmo-Rodrigues, M.S.; Oliveira, V.G.; Gaspari, M.V.; Dos Santos, A.; de Freitas, J.B.; Pignatari, A.C. β-Lactam resistance genes: Characterization, epidemiology, and first detection of blaCTX-M-1 and blaCTX-M-14 in Salmonella spp. isolated from poultry in Brazil-Brazil Ministry of Agriculture’s Pathogen Reduction Program. Microb. Drug Resist. 2016, 22, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Borsoi, A.; Santin, E.; Santos, L.R.; Salle, C.T.; Moraes, H.L.; Nascimento, V.P. Inoculation of newly hatched broiler chicks with two Brazilian isolates of Salmonella Heidelberg strains with different virulence gene profiles, antimicrobial resistance, and pulsed field gel electrophoresis patterns to intestinal changes evaluation. Poult. Sci. 2009, 88, 750–758. [Google Scholar] [CrossRef]
- Medeiros, M.A.; Oliveira, D.C.; Rodrigues Ddos, P.; Freitas, D.R. Prevalence and antimicrobial resistance of Salmonella in chicken carcasses at retail in 15 Brazilian cities. Rev. Panam. Salud Pública 2011, 30, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Giuriatti, J.; Stefani, L.M.; Brisola, M.C.; Crecencio, R.B.; Bitner, D.S.; Faria, G.A. Salmonella Heidelberg: Genetic profile of its antimicrobial resistance related to extended spectrum β-lactamases (ESBLs). Microb. Pathog. 2017, 109, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Santin, E.; Hayashi, R.M.; Wammes, J.C.; Gonzalez-Esquerra, R.; Carazzolle, M.F.; Freire, C.C.M.; Monzani, P.S.; da Cunha, A.F. Phenotypic and genotypic features of a Salmonella Heidelberg strain isolated in broilers in Brazil and their possible association to antibiotics and short-chain organic acids resistance and susceptibility. Front. Vet. Sci. 2017, 4, 184. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.I.S.; Saraiva, M.M.S.; Casas, M.R.T.; Oliveira, G.M.; Cardozo, M.V.; Benevides, V.P.; Barbosa, F.O.; Freitas Neto, O.C.; Almeida, A.M.; Berchieri, A.J. High occurrence of β-lactamase-producing Salmonella Heidelberg from poultry origin. PLoS ONE 2020, 15, e0230676. [Google Scholar] [CrossRef] [PubMed]
- Gomes, V.T.M.; Moreno, L.Z.; Silva, A.P.S.; Thakur, S.; La Ragione, R.; Mather, A.E.; Moreno, A.M. Characterization of Salmonella enterica contamination in pork and poultry meat from São Paulo/Brazil: Serotypes, genotypes and antimicrobial resistance profiles. Pathogens 2022, 11, 358. [Google Scholar] [CrossRef]
- Jiménez, M.; Martínez-Urtaza, J.; Chaidez, C. Geographical and temporal dissemination of Salmonellae isolated from domestic animal hosts in the Culiacan Valley, Mexico. Microb. Ecol. 2011, 61, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, M.; Martinez-Urtaza, J.; Rodriguez-Alvarez, M.X.; Leon-Felix, J.; Chaidez, C. Prevalence and genetic diversity of Salmonella spp. in a river in a tropical environment in Mexico. J. Water Health 2014, 12, 874–884. [Google Scholar] [CrossRef]
- McCracken, D.A. Salmonella minnesota infection in Northamptonshire. J. R. Sanit. Inst. 1954, 74, 1091–1100. [Google Scholar] [CrossRef]
- Al-Ghamdi, M.; Al-Sabty, S.; Kannan, A.; Rowe, B. An outbreak of food poisoning in a workers’ camp in Saudi Arabia caused by Salmonella minnesota. J. Diarrhoeal Dis. Res. JSTOR 1989, 7, 18–20. [Google Scholar]
- CDC (Centers for Disease Control and Prevention). Incidence and trends of infection with pathogens transmitted commonly through food—Foodborne diseases active surveillance network, 10 U.S. sites, 1996–2012. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 283–287. [Google Scholar]
- EFSA (European Food Safety Authority). Scientific report of EFSA and ECDC: The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks. 2012EFSA J. 2014, 12, 3547. [Google Scholar]
- Steinebrunner, N.; Sandig, C.; Zimmermann, S.; Stremmel, W.; Eisenbach, C.; Mischnik, A. Salmonella enterica serovar Minnesota urosepsis in a patient with Crohn’s disease in the absence of recent or current gastrointestinal symptoms. J. Med. Microbiol. 2013, 62, 1360–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, P.R.; Bruner, D.W. Two new Salmonella types isolated from fowls. J. Hyg. 1938, 38, 716–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solowey, M.; McFarlane, V.H.; Spaulding, E.H.; Chemerda, C. Microbiology of spray-dried whole egg: II. Incidence and types of Salmonella. Am. J. Public Health Nation’s Health 1947, 37, 971–982. [Google Scholar] [CrossRef] [Green Version]
- Tabo, D.A.; Diguimbaye, C.D.; Granier, S.A.; Moury, F.; Brisabois, A.; Elgroud, R.; Millemann, Y. Prevalence and antimicrobial resistance of non-typhoidal Salmonella serotypes isolated from laying hens and broiler chicken farms in N’Djamena, Chad. Vet. Microbiol. 2013, 166, 293–298. [Google Scholar] [CrossRef]
- RASFF (The Rapid Alert System for Food and Feed). Annual Report 2017. 2017. Available online: https://op.europa.eu/en/publication-detail/-/publication/f4adf22f-4f7c-11e9-a8ed-01aa75ed71a1/language-en (accessed on 12 January 2022).
- Silva, P.L.A.P.A.; Goulart, L.R.; Reis, T.F.M.; Mendonça, E.P.; Melo, R.T.; Penha, V.A.S.; Peres, P.A.B.M.; Hoepers, P.G.; Beletti, M.E.; Fonseca, B.B. Biofilm formation in different Salmonella serotypes isolated from poultry. Curr. Microbiol. 2019, 76, 124–129. [Google Scholar] [CrossRef]
- Costa, R.G.; Festivo, M.L.; Araujo, M.S.; Reis, E.M.; Lázaro, N.S.; Rodrigues, D.P. Antimicrobial susceptibility and serovars of Salmonella circulating in commercial poultry carcasses and poultry products in Brazil. J. Food Prot. 2013, 76, 2011–2017. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, E.P.; de Melo, R.T.; Nalevaiko, P.C.; Monteiro, G.P.; Fonseca, B.B.; Galvão, N.N.; Giombelli, A.; Rossi, D.A. Spread of the serotypes and antimicrobial resistance in strains of Salmonella spp. isolated from broiler. Braz. J. Microbiol. 2019, 50, 515–522. [Google Scholar] [CrossRef]
- Moreira, J.P.F.F.; do Monte, D.F.M.; Lima, C.A.; de Oliveira, C.J.B.; da Silva Martins, N.R.; Berchieri, A., Jr.; de Freitas Neto, O.C. Molecular genotyping reveals inter-regional relatedness among antimicrobial resistant Salmonella Minnesota strains isolated from poultry farm and humans, Brazil. Braz. J. Microbiol. 2022, 53, 503–508. [Google Scholar] [CrossRef]
- Agostinho Davanzo, E.F.; Dos Santos, R.L.; Castro, V.H.L.; Palma, J.M.; Pribul, B.R.; Dallago, B.S.L.; Fuga, B.; Medeiros, M.; Titze de Almeida, S.S.; da Costa, H.M.B.; et al. Molecular characterization of Salmonella spp. and Listeria monocytogenes strains from biofilms in cattle and poultry slaughterhouses located in the federal District and State of Goiás, Brazil. PLoS ONE 2021, 16, e0259687. [Google Scholar] [CrossRef]
- Penha Filho, R.A.C.; Ferreira, J.C.; Kanashiro, A.M.I.; Berchieri, A., Jr.; Darini, A.L.D.C. Emergent multidrug-resistant nontyphoidal Salmonella serovars isolated from poultry in Brazil coharboring blaCTX-M-2 and qnrB or blaCMY-2 in large plasmids. Diagn. Microbiol. Infect. Dis. 2019, 95, 93–98. [Google Scholar] [CrossRef]
- Almeida, F.; Pitondo-Silva, A.; Oliveira, M.A.; Falcão, J.P. Molecular epidemiology and virulence markers of Salmonella Infantis isolated over 25 years in São Paulo State, Brazil. Infect. Genet. Evol. 2013, 19, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Merino, L.A.; Ronconi, M.C.; Navia, M.M.; Ruiz, J.; Sierra, J.M.; Cech, N.B.; Lodeiro, N.S.; Vila, J. Analysis of the clonal relationship among clinical isolates of Salmonella enterica serovar Infantis by different typing methods. Rev. Inst. Med. Trop. São Paulo 2003, 45, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, E.P.; Melo, R.T.; Oliveira, M.R.; Monteiro, G.P.; Peres, P.A.; Fonseca, B.B.; Giombelli, A.; Rossi, D.A. Characteristics of virulence, resistance and genetic diversity of strains of Salmonella Infantis isolated from broiler chicken in Brazil. Pesqui. Veterinária Bras. 2020, 40, 29–38. [Google Scholar] [CrossRef]
- Cunha-Neto, A.D.; Carvalho, L.A.; Carvalho, R.C.T.; Dos Prazeres Rodrigues, D.; Mano, S.B.; Figueiredo, E.E.S.; Conte, C.A., Jr. Salmonella isolated from chicken carcasses from a slaughterhouse in the state of Mato Grosso, Brazil: Antibiotic resistance profile, serotyping, and characterization by repetitive sequence-based PCR system. Poult. Sci. 2018, 97, 1373–1381. [Google Scholar] [CrossRef]
- Baptista, D.Q.; Santos, A.F.; Aquino, M.H.C.; Abreu, D.L.; Rodrigues, D.P.; Nascimento, E.R.; Pereira, V.L. Prevalência e susceptibilidade antimicrobiana de sorotipos de Salmonella spp. isolados de frangos vivos e carcaças no estado do Rio de Janeiro. Pesqui. Vet. Bras. 2018, 38, 1278–1285. [Google Scholar] [CrossRef] [Green Version]
- Mattiello, S.P.; Drescher, G.; Barth, V.C., Jr.; Ferreira, C.; Oliveira, S.D. Characterization of antimicrobial resistance in Salmonella enterica strains isolated from Brazilian poultry production. Antonie van Leeuwenhoek 2015, 108, 1227–1238. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Kellermann, A.; dos Santos, L.R.; Fittél, A.P.; do Nascimento, V.P. Resistência antimicrobiana em Salmonella enterica subsp. enterica sorovar Hadar isoladas de carcaças de frango. Arq. Inst. Biológico 2022, 73, 357–360. [Google Scholar] [CrossRef]
- Monte, D.F.M.; Nethery, M.A.; Barrangou, R.; Landgraf, M.; Fedorka-Cray, P.J. Whole-genome sequencing analysis and CRISPR genotyping of rare antibiotic-resistant Salmonella enterica serovars isolated from food and related sources. Food Microbiol. 2021, 93, 103601. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.H.; Sarker, S.; Islam, M.S.; Islam, M.A.; Karim, M.R.; Kayesh, M.E.H.; Shiddiky, M.J.A.; Anwer, M.S. Sustainable antibiotic-free broiler meat production: Current trends, challenges, and possibilities in a developing country perspective. Biology 2020, 9, 411. [Google Scholar] [CrossRef]
- Iannetti, L.; Romagnoli, S.; Cotturone, G.; Podaliri Vulpiani, M. Animal welfare assessment in antibiotic-free and conventional broiler chicken. Animals 2021, 11, 2822. [Google Scholar] [CrossRef] [PubMed]
- Lekagul, A.; Tangcharoensathien, V.; Yeung, S. Patterns of antibiotic use in global pig production: A systematic review. Vet. Anim. Sci. 2019, 7, 100058. [Google Scholar] [CrossRef]
- Ruvalcaba-Gómez, J.M.; Villagrán, Z.; Valdez-Alarcón, J.J.; Martínez-Núñez, M.; Gomez-Godínez, L.J.; Ruesga-Gutiérrez, E.; Anaya-Esparza, L.M.; Arteaga-Garibay, R.I.; Villarruel-López, A. Non-antibiotics strategies to control Salmonella infection in poultry. Animals 2022, 12, 102. [Google Scholar] [CrossRef]
- Ricke, S.C.; Dittoe, D.K.; Richardson, K.E. Formic acid as an antimicrobial for poultry production: A review. Front. Vet. Sci. 2020, 7, 563. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Moore, R.J.; Stanley, D.; Chousalkar, K.K. The gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety. Appl. Environ. Microbiol. 2020, 86, e00600-20. [Google Scholar] [CrossRef]
- Ricke, S.C.; Lee, S.I.; Kim, S.A.; Park, S.H.; Shi, Z. Prebiotics and the poultry gastrointestinal tract microbiome. Poult. Sci. 2020, 99, 670–677. [Google Scholar] [CrossRef]
- Jha, R.; Das, R.; Oak, S.; Mishra, P. Probiotics (direct-fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: A systematic review. Animals 2020, 10, 1863. [Google Scholar] [CrossRef]
- Khan, S.; Chousalkar, K.K. Salmonella Typhimurium infection disrupts but continuous feeding of Bacillus based probiotic restores gut microbiota in infected hens. J. Anim. Sci. Biotechnol. 2020, 11, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, A.; Arif, M.; Sajjad, N.; Al-Ghadi, M.Q.; Alagawany, M.; Abd El-Hack, M.E.; Alhimaidi, A.R.; Elnesr, S.S.; Almutairi, B.O.; Amran, R.A.; et al. Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. Poult. Sci. 2020, 99, 6946–6953. [Google Scholar] [CrossRef]
- Sit, C.S.; Vederas, J.C. Approaches to the discovery of new antibacterial agents based on bacteriocins. Biochem. Cell Biol. 2008, 86, 116–123. [Google Scholar] [CrossRef]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Abd El-Hack, M.E.; Barkat, R.A.; Gabr, A.A.; Foda, M.A.; Noreldin, A.E.; Khafaga, A.F.; El-Sabrout, K.; et al. Potential role of important nutraceuticals in poultry performance and health—A comprehensive review. Res. Vet. Sci. 2021, 137, 9–29. [Google Scholar] [CrossRef] [PubMed]
- Atterbury, R.J.; Van Bergen, M.A.; Ortiz, F.; Lovell, M.A.; Harris, J.A.; De Boer, A.; Wagenaar, J.A.; Allen, V.M.; Barrow, P.A. Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl. Environ. Microbiol. 2007, 73, 4543–4549. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.W. The use of live vaccines in experimental Salmonella gallinarum infection in chickens with observations on their interference effect. J. Hyg. 1956, 54, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Desin, T.S.; Köster, W.; Potter, A.A. Salmonella vaccines in poultry: Past, present and future. Expert Rev. Vaccines 2013, 12, 87–96. [Google Scholar] [CrossRef]
- Crouch, C.F.; Pugh, C.; Patel, A.; Brink, H.; Wharmby, C.; Watts, A.; van Hulten, M.C.W.; de Vries, S.P.W. Reduction in intestinal colonization and invasion of internal organs after challenge by homologous and heterologous serovars of Salmonella enterica following vaccination of chickens with a novel trivalent inactivated Salmonella vaccine. Avian Pathol. 2020, 49, 666–677. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, H.S.; Yim, J.H.; Kim, Y.J.; Kim, D.H.; Chon, J.W.; Kim, H.; Om, A.S.; Seo, K.H. Comparison of the isolation rates and characteristics of Salmonella isolated from antibiotic-free and conventional chicken meat samples. Poult. Sci. 2017, 96, 2831–2838. [Google Scholar] [CrossRef]
- Cui, L.; Liu, Q.; Jiang, Z.; Song, Y.; Yi, S.; Qiu, J.; Hao, G.; Sun, S. Characteristics of Salmonella from chinese native chicken breeds fed on conventional or antibiotic-free diets. Front. Vet. Sci. 2021, 8, 607491. [Google Scholar] [CrossRef]
- Yin, X.; M’ikanatha, N.M.; Nyirabahizi, E.; McDermott, P.F.; Tate, H. Antimicrobial resistance in non-Typhoidal Salmonella from retail poultry meat by antibiotic usage-related production claims—United States, 2008–2017. Int. J. Food Microbiol. 2021, 342, 109044. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kipper, D.; Mascitti, A.K.; De Carli, S.; Carneiro, A.M.; Streck, A.F.; Fonseca, A.S.K.; Ikuta, N.; Lunge, V.R. Emergence, Dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil. Vet. Sci. 2022, 9, 405. https://doi.org/10.3390/vetsci9080405
Kipper D, Mascitti AK, De Carli S, Carneiro AM, Streck AF, Fonseca ASK, Ikuta N, Lunge VR. Emergence, Dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil. Veterinary Sciences. 2022; 9(8):405. https://doi.org/10.3390/vetsci9080405
Chicago/Turabian StyleKipper, Diéssy, Andréa Karoline Mascitti, Silvia De Carli, Andressa Matos Carneiro, André Felipe Streck, André Salvador Kazantzi Fonseca, Nilo Ikuta, and Vagner Ricardo Lunge. 2022. "Emergence, Dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil" Veterinary Sciences 9, no. 8: 405. https://doi.org/10.3390/vetsci9080405