Prevalence, Diagnosis and Improving the Effectiveness of Therapy of Mastitis in Cows of Dairy Farms in East Kazakhstan
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Base of the Study
2.2. Stages of Research and Treatment of Cows
2.3. Testing for Mastitis
2.4. Biochemical Blood Tests
2.5. Determination of the Chemical Composition of the Feed
- m1 is the mass of the beaker with the sample before drying, g;
- m2—mass of the beaker with the sample after drying and cooling, g;
- m—mass of empty beaker, g.
2.6. Determination of Carotene in Feeds
2.7. Determination of the Reserve Alkalinity of Blood by Kondrakhin’s Method
2.8. Statistics
3. Results
3.1. Incidence of Mastitis in Cows on Dairy Farms of Balke and Madi-R
3.2. Feeding Diets of Cows
3.3. Analysis of Cow’s Blood
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zainettinova, D.; Muhamadieva, N.; Julanov, M.; Stefanyk, V.; Zaviruha, V.; Sarhambaeva, I. The effectiveness of the treatment of cows with mastitis. Sci. Messenger Lviv. Natl. Univ. Vet. Med. Biotechnologies. Ser. Vet. Sci. 2019, 21, 178–181. [Google Scholar] [CrossRef] [Green Version]
- Oraz, G.T.; Ospanov, A.B.; Chomanov, U.C.; Kenenbay, G.S.; Tursunov, A.A. Study of beef nutritional value of meat breed cattle of Kazakhstan. J. Hyg. Eng. Des. 2019, 29, 99–105. [Google Scholar]
- Arkhipov, A.A.; Stollar, A.T. Adequate treatment for acute mastitis-the key to herd well-being. Vet. Med. 2008, 11, 15–17. [Google Scholar]
- Van Hoeij, R.J.; Lam, T.J.G.M.; Bruckmaier, R.M.; Dijkstra, J.; Remmelink, G.J.; Kemp, B.; van Knegsel, A.T.M. Udder health of dairy cows fed different dietary energy levels after a short or no dry period without use of dry cow antibiotics. J. Dairy Sci. 2018, 101, 4570–4585. [Google Scholar] [CrossRef]
- Dalanezi, F.M.; Joaquim, S.F.; Guimarães, F.F.; Guerra, S.T.; Lopes, B.C.; Schmidt, E.M.S.; Cerri, R.L.A.; Langoni, H. Influence of pathogens causing clinical mastitis on reproductive variables of dairy cows. J. Dairy Sci. 2020, 103, 3648–3655. [Google Scholar] [CrossRef] [PubMed]
- Pyörälä, S. Indicators of inflammation in the diagnosis of mastitis. Vet Res. 2003, 34, 565–578. [Google Scholar] [CrossRef] [Green Version]
- Chelnokova, M.I.; Shcherbakova, N.A. Diagnosis and therapy of mastitis of cows. Proc. Velikoluk. State Agric. Acad. 2018, 1, 20–24. [Google Scholar]
- Procópio, T.F.; Moura, M.C.; Bento, E.F.; Soares, T.; Coelho, L.C.; Bezerra, R.P.; Mota, R.A.; Porto, A.L.; Paiva, P.M.; Napoleão, T.H. Looking for alternative treatments for bovine and caprine mastitis: Evaluation of the potential of Calliandra surinamensis leaf pinnulae lectin (CasuL), both alone and in combination with antibiotics. MicrobiologyOpen 2019, 8, e869. [Google Scholar] [CrossRef] [Green Version]
- Waminal, Y.O.; Gambol, M.R.; Sabado, A.C.; Vallejos, J.P.M.; Briones, R.C.; Estabillo, E.J.M. Mastitis Detection in Holstein Sahiwal Crossbred Cattle (Bos taurus) Using Different Brands and Dilution Levels of Liquid Anionic Surfactants. Anim. Prod. 2021, 23, 144–150. [Google Scholar] [CrossRef]
- Qaisar, H.M.U.; Ahmad, T.; Rizwan, M.; Saqib, M. Antimicrobial efficacy of combination of lincomycin and spiramycin (Lispiracin™) as systemic dry cow therapy for controlling bovine mastitis. Punjab Univ. J. Zool. 2017, 32, 197–201. [Google Scholar]
- Zhumanov, K.T.; Biyashev, K.B.; Biyashev, B.K.; Sansyzbai, A.R.; Valdovska, A.; Koshkinbaev, S.S. The study of morphological properties of mastitis pathogens cows. Res. Results 2015, 3, 35–39. [Google Scholar]
- Gao, J.; Liu, Y.C.; Wang, Y.; Li, H.; Wang, X.M.; Wu, Y.; Zhang, D.R.; Gao, S.; Qi, Z.L. Impact of yeast and lactic acid bacteria on mastitis and milk microbiota composition of dairy cows. AMB Express 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Biziulevichius, G.A.; Lukauskas, K. In vivo studies on lysosubtilin. 3. Efficacy for treatment of mastitis and superficial lesions of the udder and teats in cows. Vet. Res. 1998, 29, 441–456. [Google Scholar] [PubMed]
- Malek dos Reis, C.B.; Barreiro, J.R.; Mestieri, L.; Porcionato, M.A.; dos Santos, M.V. Effect of somatic cell count and mastitis pathogens on milk composition in Gyr cows. BMC Vet. Res. 2013, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Piepers, S.; De Meulemeester, L.; de Kruif, A.; Opsomer, G.; Barkema, H.W.; De Vliegher, S. Prevalence and distribution of mastitis pathogens in subclinically infected dairy cows in Flanders. Belgium. J Dairy Res. 2007, 74, 478–483. [Google Scholar] [CrossRef]
- Blowey, R.W.; Edmondson, P. Mastitis Control in Dairy Herds; CABI: Cambridge, MA, USA, 2010. [Google Scholar]
- Kakimov, A.; Muratbayev, A.; Zharykbasova, K.; Zharykbasov, Y.; Kassymov, S.; Zhumadilova, G.; Jumazhanova, M.; Utegenova, A. Developing HACCP plan for a fermented milk drink with encapsulated biologically active supplements. Eur. Asian J. Biosci. 2020, 14, 889–895. [Google Scholar]
- Sutra, L.; Poutrel, B. Virulence factors involved in the pathogenesis of bovine intramammary infections due to Staphylococcus aureus. J. Med. Microbiol. 1994, 40, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, A.; Aspán, A.; Nyman, A.; Unnerstad, H.E.; Waller, K.P. Associations between bacterial genotype and outcome of bovine clinical Staphylococcus aureus mastitis. Acta Vet. Scand. 2014, 56, 2. [Google Scholar] [CrossRef] [Green Version]
- Riekerink, R.O.; Barkema, H.W.; Kelton, D.F.; Scholl, D.T. Incidence rate of clinical mastitis on Canadian dairy farms. J. Dairy Sci. 2008, 91, 1366–1377. [Google Scholar] [CrossRef]
- Mekibib, B.; Furgasa, M.; Abunna, F.; Megersa, B.; Regassa, A. Bovine mastitis: Prevalence, risk factors and major pathogens in dairy farms of holeta town, central Ethiopia. Vet. World 2010, 3, 397–403. [Google Scholar] [CrossRef]
- Nyman, A.K.; Ekman, T.; Emanuelson, U.; Gustafsson, A.H.; Holtenius, K.; Waller, K.P.; Sandgren, C.H. Risk factors associated with the incidence of veterinary-treated clinical mastitis in Swedish dairy herds with a high milk yield and a low prevalence of subclinical mastitis. Prev. Vet. Med. 2007, 78, 142–160. [Google Scholar] [CrossRef] [PubMed]
- Krömker, V.; Leimbach, S. Mastitis treatment—Reduction in antibiotic usage in dairy cows. Reprod. Domest. Anim. 2017, 52, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirazi-Beheshtiha, S.H.; Safi, S.; Rabbani, V.; Bolourchi, M.; Ameri, M.; Khansari, M.R. The diagnostic value of determination of positive and negative acute phase proteins in milk from dairy cows with subclinical mastitis. Comp. Clin. Path. 2012, 21, 999–1003. [Google Scholar] [CrossRef]
- Barnouin, J.; Bord, S.; Bazin, S.; Chassagne, M. Dairy management practices associated with incidence rate of clinical mastitis in low somatic cell score herds in France. J. Dairy Sci. 2005, 88, 3700–3709. [Google Scholar] [CrossRef] [Green Version]
- Hoque, M.N.; Das, Z.C.; Rahman, A.N.; Hoque, M.M. Effect of administration of vitamin E, selenium and antimicrobial therapy on incidence of mastitis, productive and reproductive performances in dairy cows. Int. J. Vet. Sci. 2016, 4, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Song, Y.; Petrovski, K.; Eats, P.; Trott, D.J.; San Wong, H.; Page, S.W.; Perry, J.; Garg, S. Development of intramammary delivery systems containing lasalocid for the treatment of bovine mastitis: Impact of solubility improvement on safety, efficacy, and milk distribution in dairy cattle. Drug Des. Dev. Ther. 2015, 9, 631. [Google Scholar]
- McDougall, S. Intramammary treatment of clinical mastitis of dairy cows with a combination of lincomycin and neomycin, or penicillin and dihydrostreptomycin. N. Z. Vet. J. 2003, 51, 111–116. [Google Scholar] [CrossRef]
- Oliver, S.P.; Murinda, S.E. Antimicrobial resistance of mastitis pathogens. Vet. Clin. North Am. Food Anim. 2012, 28, 165–185. [Google Scholar] [CrossRef]
- Marimuthu, M.; Abdullah, F.F.J.; Mohammed, K.; Poshpum, S.D.S.; Adamu, L.; Osman, A.Y.; Abba, Y.; Tijjani, A. Prevalence and antimicrobial resistance assessment of subclinical mastitis in milk samples from selected dairy farms. Am. J. Anim. Vet. Sci. 2014, 9, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Smulski, S.; Gehrke, M.; Libera, K.; Cieslak, A.; Huang, H.; Patra, A.K.; Szumacher-Strabel, M. Effects of various mastitis treatments on the reproductive performance of cows. BMC Vet. Res. 2020, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kartashova, V.M.; Ivashura, A.I. Mastitis of Cows; Agropromizdat: Moscow, Russia, 1988. [Google Scholar]
- Sidorkin, E.A.; Ulizko, M.A.; Gritsay, O.S.; Koptsev, E.A.; Gostev, E.E. Mastomycin for the prevention of mastitis in cows in the dry period. Vet. Med. 2009, 2, 20–21. [Google Scholar]
- Pristromova, Y.I.; Yurkshtovich, Y.N.; Yurkshtovich, N.K.; Alinovskaya, V.A. Composition and physicochemical properties of antimicrobial gels based on carbopols. News Sci. Agroind. Complex 2018, 2, 452–454. [Google Scholar]
- Rysuly, M.; Parmankulova, T.N.; Sadvakas, A.S.; Hamzaeva, M.B.; Kurmangozhaeva, A.K.; Azymhan, D.T. Possibilities of application of local plants in treatment of oncological diseases. Vestn. KazNMU 2016, 1, 548. [Google Scholar]
- Studentsov, A.P. Diseases of the Udder of Cows; Selkhozgiz: Moscow, Russia, 1952. [Google Scholar]
- Available online: https://nz.virbac.com/products/mastitis-treatments/masticillin (accessed on 6 July 2022).
- Available online: http://armbio.bio/catalog/veterinary/stimulators/asd_fr_2 (accessed on 6 July 2022).
- GOST 13496.3 92; Compound Fodder, Feed Raw Materials. Methods of Determination of Moisture. IPK Publishing House of Standards: Moscow, Russia, 2000.
- GOST 13496.17 95; Feed. Method for the Determination of Carotene. Publishing House of Standards: Minsk, Belarus, 2000.
- Kondrakhin, I.P. Clinical Laboratory Diagnosis in Veterinary Medicine; Agropromizdat: Moscow, Russia, 1985. [Google Scholar]
- Muhee, A.; Malik, H.; Bhat, R.A.; Taifa, S.; Azad, M.N.; Rather, W. Phagocytic activity and the phagocytic index of milk PMN’s as a marker for diagnosis and monitoring of the therapeutic and prophylactic efficacy of antioxidant formulation in bovine mastitis. Vet. Arh. 2021, 91, 227–236. [Google Scholar] [CrossRef]
- Allore, H.G. A review of the incidence of mastitis in buffaloes and cattle. Pak. Vet. J. 1993, 13, 1–7. [Google Scholar]
- Khan, M.Z.; Khan, A. Basic facts of mastitis in dairy animals: A review. Pak. Vet. J. 2006, 26, 204–208. [Google Scholar]
- Thorberg, B.M.; Danielsson-Tham, M.L.; Emanuelson, U.; Persson Waller, K. Bovine subclinical mastitis caused by different types of coagulase-negative staphylococci. J Dairy Sci. 2009, 92, 4962–4970. [Google Scholar] [CrossRef] [Green Version]
- Abdrakhmanov, T.J. Development of Methods of Diagnosis, Therapy, Prevention of Postpartum Purulent-Catarrhal Endometritis and Subclinical Mastitis in Cows. PhD-thesis, S.Seifullin Kazakh Agrotechnical University, Astana, Kazakhstan, 2002. [Google Scholar]
- Bhatt, V.D.; Patel, M.S.; Joshi, C.G.; Kunjadia, A. Identification and antibiogram of microbes associated with bovine mastitis. Anim. Biotechnol. 2011, 22, 163–169. [Google Scholar] [CrossRef]
- Dingwell, R.T.; Leslie, K.E.; Schukken, Y.H.; Sargeant, J.M.; Timms, L.L. Evaluation of the California mastitis test to detect an intramammary infection with a major pathogen in early lactation dairy cows. Can. Vet. J. 2003, 44, 413–415. [Google Scholar]
- Loretts, O.G.; Barkova, A.S.; Elesin, A.V.; Khonina, T.G.; Shurmanova, E.I.; Barashkin, M.I.; Milstein, I.M. Dissemination, etiology, pathogenesis and treatment of cattle teat diseases in agricultural organizations of the Sverdlovsk region of Russian Federation. Res. J. Pharm. Biol. Chem. 2018, 9, 1867. [Google Scholar]
- Djulanov, M.N. The Role of Environmental Factors in the Etiology of Mastitis in Cows in Kazakhstan. Ph.D. Thesis, Lvov Zooveterinary Institute, Lvov, Ukraine, 1992. [Google Scholar]
- Oskolkova, M.V.; Kuzmina, E.V. Effect of physical and chemical factors on mastitis occurrence in cows. Izv. Orenbg. State Agrar. Univ. 2015, 2, 98–100. [Google Scholar]
- Saleem, H.D.; Razooqi, M.A.; Gharban, H.A.J. Cumulative Effect of Subclinical Mastitis on Immunological and Biochemical Parameters in Cow Milk. Arch. Razi Inst. 2021, 76, 1629–1638. [Google Scholar] [CrossRef] [PubMed]
- Broom, D.M. Behaviour and welfare in relation to pathology. Appl. Anim. Behav. Sci. 2006, 97, 73–83. [Google Scholar] [CrossRef]
- Cervinkova, D.; Vlkova, H.; Borodacova, I.; Makovcova, J.; Babak, V.; Lorencova, A.; Vrtkova, I.; Marosevic, D.; Jaglic, Z. Prevalence of mastitis pathogens in milk from clinically healthy cows. Vet. Med. 2013, 58, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Witkowska, D.; Ponieważ, A. The Effect of Housing System on Disease Prevalence and Productive Lifespan of Dairy Herds—A Case Study. Animals 2022, 12, 1610. [Google Scholar] [CrossRef]
- Schukken, Y.H.; Weersink, A.; Leslie, K.E.; Martin, S.W. Dynamics and Regulation of Bulk Milk Somatic Cell Counts. Can. J. Vet. Res. 1993, 57, 131–135. [Google Scholar]
- Abdel Khalek, A.; Alanzi, J. Prevalence of Subclinical Mastitis in some Dairy Cattle Farms in Kuwait. Mansoura Vet. Med. J. 2019, 20, 46–51. [Google Scholar] [CrossRef]
- Alhussien, M.; Kaur, M.; Manjari, P.; Kimothi, S.P.; Mohanty, A.K.; Dang, A.K. A comparative study on the blood and milk cell counts of healthy, subclinical, and clinical mastitis Karan Fries cows. Vet. World. 2015, 8, 685–689. [Google Scholar] [CrossRef]
- Abboud, M.; El Rammouz, R.; Jammal, B.; Sleiman, M. In vitro and in vivo antimicrobial activity of two essential oils Thymus vulgaris and Lavandula angustifolia against bovine Staphylococcus and Streptococcus mastitis pathogen. Middle East J. Agric. Res. 2015, 4, 975–983. [Google Scholar]
- Dilshad, S.M.R.; Rehman, N.U.; Ahmad, N.; Iqbal, A. Documentation of ethnoveterinary practices for mastitis in dairy animals in Pakistan. Pak. Vet. J. 2010, 30, 167–171. [Google Scholar]
- Pașca, C.; Mărghitaș, L.A.; Dezmirean, D.S.; Matei, I.A.; Bonta, V.; Pașca, I.; Chirilă, F.; Cîmpean, A.; Fiț, N.I. Efficacy of natural formulations in bovine mastitis pathology: Alternative solution to antibiotic treatment. J. Vet. Res. 2020, 64, 523–529. [Google Scholar] [CrossRef] [PubMed]
Number of Milking Cows (Heads) | Time (days) Milked During the Year | Milk from One Cow per Day (Liters) | Annual Milking per Cow (Liters) | Annual Milking of Milk from All Cows (Tons) |
---|---|---|---|---|
200 | 305 | 20 | 6100 | 1220 |
Product Name | Application | Single Dose | Treatment Days | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
Mastiet Forte | Intracisternally, twice a day at 10–12 h intervals. | 1 syringe dispenser | + | + | + | + | + |
Ketoprof | Intramuscularly | 3 mL per 100 kg | + | + | + | ||
Healthivit | intramuscular | 6 mL | + |
Name of the Drug | Application | Dose | Treatment Days | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
“Dorob” | Intracisternally twice a day at intervals of 10–12 h. | 5 mL per quarter of the udder | + | + | + | + | + |
Diseases of Cows | 2016 | 2017 | 2018 | 2019 | ||||
---|---|---|---|---|---|---|---|---|
Number of Cases | % | Number of Cases | % | Number of Cases | % | Number of Cases | % | |
Clinical mastitis | 56 | 35.4 | 31 | 19.6 | 45 | 28.5 | 26 | 16.4 |
Including: | ||||||||
Serous mastitis | 13 | 14.4 | 8 | 15.6 | 13 | 20.6 | 5 | 10.6 |
Fibrinous acute mastitis | 16 | 17.7 | 4 | 7.8 | 7 | 11.1 | 2 | 4.2 |
Catarrhal mastitis | 24 | 32 | 16 | 21.3 | 19 | 25.3 | 16 | 21.3 |
Hemorrhagic mastitis | 1 | 1.1 | 3 | 5.8 | 5 | 7.9 | 2 | 4.2 |
Purulent mastitis | 2 | 2.2 | - | 1 | 1.5 | 1 | 2.1 | |
Subclinical mastitis | 34 | 36.5 | 20 | 21.5 | 18 | 19.3 | 21 | 22.6 |
Total | 90 | 100 | 51 | 100 | 63 | 100 | 47 | 100 |
Year | Season of the Year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Winter | Spring | Summer | Autumn | Total | ||||||
Number of Cases | % | Number of Cases | % | Number of Cases | % | Number of Cases | % | Number of Cases | % | |
2016 | 4 | 26.6 | 12 | 41.4 | 8 | 42.1 | 10 | 33.3 | 34 | 36.5 |
2017 | 3 | 20 | 6 | 20.7 | 5 | 26.3 | 6 | 20 | 20 | 21.5 |
2018 | 3 | 20 | 4 | 13.7 | 4 | 21 | 7 | 23.3 | 18 | 19.3 |
2019 | 5 | 33.3 | 7 | 24.1 | 2 | 10.5 | 7 | 23.3 | 21 | 22.6 |
Total | 15 | 100 | 29 | 100 | 19 | 100 | 30 | 100 | 93 | 100 |
Year | Season of the Year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Winter | Spring | Summer | Autumn | Total | ||||||
Number of Cases | % | Number of Cases | % | Number of Cases | % | Number of Cases | % | Number of Cases | % | |
2016 | 14 | 36.9 | 12 | 25 | 10 | 37 | 20 | 44.4 | 56 | 35.4 |
2017 | 5 | 13.1 | 9 | 18.7 | 6 | 22.2 | 11 | 24.4 | 31 | 19.6 |
2018 | 16 | 42.1 | 18 | 37.5 | 5 | 18.5 | 6 | 13.3 | 45 | 28.5 |
2019 | 3 | 7.8 | 9 | 18.7 | 6 | 22.2 | 8 | 17.8 | 26 | 16.4 |
Total | 38 | 100 | 48 | 100 | 27 | 100 | 45 | 100 | 158 | 100 |
Year | Season of the Year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Winter | Spring | Summer | Autumn | Total | ||||||
Number of Cases | % | Number of Cases | % | Number of Cases | % | Number of Cases | % | Number of Cases | % | |
2016 | 5 | 33.3 | 7 | 36.8 | 4 | 40 | 8 | 25.8 | 24 | 32 |
2017 | 3 | 20 | 5 | 26.3 | 2 | 20 | 6 | 19.3 | 16 | 21.3 |
2018 | 3 | 20 | 5 | 26.3 | 3 | 30 | 8 | 25.8 | 19 | 25.3 |
2019 | 4 | 26.6 | 2 | 10.5 | 1 | 10 | 9 | 29 | 16 | 21.3 |
Total | 15 | 100 | 19 | 100 | 10 | 100 | 31 | 100 | 75 | 100 |
Groups of Animals | Unit | Fodder | Silage | Monofeed | Hay | Sunflower Meal | Vitamin Supplement | Treacle, g | Chalk, g | Salt, g | Feed Units |
---|---|---|---|---|---|---|---|---|---|---|---|
Breeding cows | kg | 3.5 | 25 | 10 | 5 | 1.5 | 4 | 1000 | 25 | 60 | 12.1 |
Heifers at calving | kg | 350 g per 1 L | 20 | 10 | 8 | 1.5 | 3 | 1000 | 25 | 50 | 14.6 |
Dry cowbane | kg | 2.0 | 10 | 5 | 8 | - | - | 5000 | 20 | 50 | 8.8 |
Name | Carotene, mg/kg | Ca, g/kg | P, g/kg | Protein, g/kg | Crude Protein, g/kg | Feed Units, kg/kg | Moisture, % |
---|---|---|---|---|---|---|---|
Hay | 8.67 ± 1.60 | 4.48 ± 0.73 | 2.72 ± 1.39 | 50.50 ± 4.08 | - | 0.49 ± 0.04 | - |
Silage | 5.30 ± 2.15 | 0.56 ± 0.15 | 0.38 ± 0.12 | 11.00 ± 2.50 | 20.60 ± 3.47 | - | 78.77 ± 1.56 |
Indicator | Number of Calvings | Results, mg% | |||
---|---|---|---|---|---|
Ca | P | Alkaline Reserve | Carotene | ||
M ± m | 4.88 ± 0.36 | 9.37 ± 0.15 | 3.58 ± 0.07 | 363.46 ± 6.69 | 0.49 ± 0.03 |
Blood Parameters | ||||||||
---|---|---|---|---|---|---|---|---|
WBC | RBC | HGB | HCT | MCV | MCH | MCHC | RDW | PLT |
9.86 ± 1.59 × 109/L | 6.50 ± 0.39 × 1012/L | 79.50 ± 1.83 g/L | 17.79 ± 0.49% | 29.11 ± 0.64 fL | 12.27 ± 0.55 pg | 417.60 ± 5.28 g/L | 15.67 ± 0.34% | 240.10 ± 24.02 × 109/L |
Blood Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|
Groups | WBC × 109/L | RBC × 1012/L | HGB g/L | HCT % | MCV fL | MCH pg | MCHC g/L | RDW % | PLT × 109/L |
experimental, n = 10 | 13.88 ± 1.80 | 8.10 ± 0.73 | 98.40 ± 4.58 | 24.44 ± 1.10 | 31.66 ± 1.04 | 11.06 ± 1.09 | 413.80 ± 7.39 | 16.53 ± 0.29 | 243.50 ± 27.20 |
control, n = 10 | 8.99 ± 0.47 | 7.89 ± 0.46 | 133.20 ± 31.94 | 35.06 ± 1.60 | 46.88 ± 1.36 | 15.45 ± 0.43 | 344.40 ± 8.71 | 16.41 ± 0.40 | 311.00 ± 20.46 |
Indicators | Groups | |
---|---|---|
Control, n = 10 | Experimental, n = 10 | |
Cows recovered | 8 | 10 |
Cows not recovered | 2 | - |
Terms of recovery, days | 8.8 ± 0.39 | 6.2 ± 0.28 p < 0.05 |
Manifestations of relapses | 2 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhamadieva, N.; Julanov, M.; Zainettinova, D.; Stefanik, V.; Nurzhumanova, Z.; Mukataev, A.; Suychinov, A. Prevalence, Diagnosis and Improving the Effectiveness of Therapy of Mastitis in Cows of Dairy Farms in East Kazakhstan. Vet. Sci. 2022, 9, 398. https://doi.org/10.3390/vetsci9080398
Mukhamadieva N, Julanov M, Zainettinova D, Stefanik V, Nurzhumanova Z, Mukataev A, Suychinov A. Prevalence, Diagnosis and Improving the Effectiveness of Therapy of Mastitis in Cows of Dairy Farms in East Kazakhstan. Veterinary Sciences. 2022; 9(8):398. https://doi.org/10.3390/vetsci9080398
Chicago/Turabian StyleMukhamadieva, Nurzhamal, Mardan Julanov, Dinara Zainettinova, Vasyl Stefanik, Zhanat Nurzhumanova, Aitbek Mukataev, and Anuarbek Suychinov. 2022. "Prevalence, Diagnosis and Improving the Effectiveness of Therapy of Mastitis in Cows of Dairy Farms in East Kazakhstan" Veterinary Sciences 9, no. 8: 398. https://doi.org/10.3390/vetsci9080398
APA StyleMukhamadieva, N., Julanov, M., Zainettinova, D., Stefanik, V., Nurzhumanova, Z., Mukataev, A., & Suychinov, A. (2022). Prevalence, Diagnosis and Improving the Effectiveness of Therapy of Mastitis in Cows of Dairy Farms in East Kazakhstan. Veterinary Sciences, 9(8), 398. https://doi.org/10.3390/vetsci9080398