Comparative Study of Phenotypes and Genetics Related to the Growth Performance of Crossbred Thai Indigenous (KKU1 vs. KKU2) Chickens under Hot and Humid Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Animal Management
2.2. Genetic Model and Statistical Analysis
2.3. Specific Combining Ability
3. Results
3.1. Growth Performance
3.2. Specific Combining Ability and Heritability Estimates
3.3. Phenotypic Correlation and Genetic Correlation
3.4. Estimated Breeding Value
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boonkum, W.; Duangjinda, M.; Kananit, S.; Chankitisakul, V.; Kenchaiwong, W. Genetic effect and growth curve parameter estimation under heat stress in slow-growing Thai native chickens. Vet. Sci. 2021, 8, 297. [Google Scholar] [CrossRef]
- González Ariza, A.; Arando Arbulu, A.; Navas González, F.J.; Nogales Baena, S.; Delgado Bermejo, J.V.; Camacho Vallejo, M.E. The Study of Growth and Performance in Local Chicken Breeds and Varieties: A Review of Methods and Scientific Transference. Animals 2021, 11, 2492. [Google Scholar] [CrossRef]
- Padhi, M.K. Importance of indigenous breeds of chicken for rural economy and their improvements for higher production performance. Scientifica 2016, 2016, 2604685. [Google Scholar] [CrossRef] [Green Version]
- Mwacharo, J.M.; Jianlin, H.; Amano, T. Native African chicken: Valuable genetic resources for future breeding improvement. J. Anim. Genet. 2006, 34, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Tenzin, J.; Chankitisakul, V.; Boonkum, W. Association of polymorphisms of physiological candidate genes with phenotype and estimated breeding values of reproductive and growth traits in Thai indigenous chickens Genet. Mol. Res. 2020, 19, gmr18504. [Google Scholar] [CrossRef]
- Information and Communication Technology Center of Thai Department of Livestock Development (ICT-Thai DLD). Available online: http://ict.dld.go.th/webnew/images/stories/stat_web/yearly/2564/country/6-chick.pdf (accessed on 21 March 2022).
- FAO. FAO STAT Database Collection; FAO: Rome, Italy, 2021. [Google Scholar]
- Charoensin, S.; Laopaiboon, B.; Boonkum, W.; Phetcharaburanin, J.; Villareal, M.O.; Isoda, H.; Duangjinda, M. Thai native chicken as a potential functional meat source rich in anserine, anserine/carnosine, and antioxidant substance. Animals 2021, 11, 902–915. [Google Scholar] [CrossRef]
- Jaturasitha, S.; Srikanchai, T.; Kreuzer, M.; Wicke, M. Differences in carcass and meat characteristics between chicken indigenous to Northern Thailand (black-boned and Thai native) and imported extensive breeds (Bresse and Rhode Island Red). Poult. Sci. 2008, 87, 160–169. [Google Scholar] [CrossRef]
- Promwatee, N.; Loapaiboon, B.; Vongpralub, T.; Boonkum, W.; Duangjinda, M. Insulin-like growth factor I gene polymorphism associated with growth and carcass traits in Thai synthetic chickens. Genet. Mol. Res. 2013, 12, 4332–4341. [Google Scholar] [CrossRef]
- Chomchuen, K.; Tuntiyasawasdikul, V.; Chankitisakul, V.; Boonkum, W. Genetic evaluation of body weights and egg production traits using a multi-trait animal model and selection index in Thai native synthetic chickens (Kaimook e-san2). Animals 2022, 12, 335. [Google Scholar] [CrossRef]
- Tongsiri, S.; Jeyaruban, G.; Hermesch, S.; van der Werf, J.; Li, L.; Chormai, T. Genetic parameters and inbreeding effects for production traits of Thai native chickens. Asian-Australas. J. Anim. Sci. 2019, 32, 930–938. [Google Scholar] [CrossRef]
- Leroy, G.; Baumung, R.; Boettcher, P.; Scherf, B.; Hoffmann, I. Review: Sustainability of crossbreeding in developing countries; definitely not like crossing a meadow. Animal 2016, 10, 262–273. [Google Scholar] [CrossRef] [Green Version]
- Adedokun, S.A.; Sonaiya, E.B. Crossbreeding Nigeria indigenous with the Dahlem Red chickens for improved productivity and adaptability. Arch. Anim. Breed. 2002, 45, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Tunim, S.; Phasuk, Y.; Aggrey, S.E.; Duangjinda, M. Increasing fat deposition via upregulates the transcription of peroxisome proliferator-activated receptor gamma in native crossbred chickens. Animals 2021, 11, 90. [Google Scholar] [CrossRef]
- Misztal, I.; Tsuruta, S.; Lourenco, D.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPF90 Family of Programs. Available online: http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf (accessed on 9 August 2019).
- Griffing, B. Concept of general and specific combining ability in relation to diallel crossing system. Aust. J. Biol. Sci. 1956, 9, 463–493. [Google Scholar] [CrossRef]
- Kongpechr, S.; Sohsuebngarm, D. Comparison of carcass yields in four strains of commercial broiler chickens popularly raised in Thailand. KKU Vet. J. 2020, 30, 95–104. [Google Scholar]
- Promket, D.; Ruangwittayanusorn, K. The comparatives of growth and carcass performance of the Thai native chicken between economic selection (Chee kku12) and natural selection (chee n). Vet. Integr. Sci. 2021, 19, 247–257. [Google Scholar] [CrossRef]
- Dana, N.; vander Waaij, E.H.; van Arendonk, J.A.M. Genetic and phenotypic parameter estimates for body weights and egg production in Horro chicken of Ethiopia. Trop. Anim. Health Prod. 2011, 43, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Norris, D.; Ngambi, J.W. Genetic parameter estimates for body weight in local Venda chickens. Trop. Anim. Health Prod. 2006, 38, 605–609. [Google Scholar] [CrossRef]
- Niknafs, S.; Nejati-Javaremi, A.; Mehrabani-Yeganeh, H.; Fatemi, S.A. Estimation of genetic parameters for body weight and egg production traits in Mazandaran native chicken. Trop. Anim. Health Prod. 2012, 44, 1437–1443. [Google Scholar] [CrossRef]
- Sheng, Z.; Pettersson, M.E.; Hu, X.; Luo, C.; Qu, H.; Shu, D.; Shen, X.; Carlborg, Ö.; Li, N. Genetic dissection of growth traits in a Chinese indigenous × commercial broiler chicken cross. BMC Genom. 2013, 14, 151. [Google Scholar] [CrossRef] [Green Version]
- Khawaja, T.; Khan, S.H.; Mukhtar, N.; Ali, M.A.; Ahmed, T.; Ghafar, A. Comparative study of growth performance, egg production, egg characteristics and haemato-biochemical parameters of Desi, Fayoumi and Rhode Island Red chicken. J. Appl. Anim. Res. 2012, 40, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Padhi, M.K.; Chatterjee, R.N.; Rajkumar, U. A study on performance of a crossbred chicken developed using both exotic and indigenous breeds under backyard system of rearing. J. Poult. Sci. Technol. 2014, 2, 26–29. [Google Scholar]
- Nwachukwu, E.N.; Ogbu, C.C. Effect of feathering genes on growth performance of F2 backcrosses and comparison of F1 and F2 crosses of Abor Acre broiler breeder x native chickens in humid tropical environment. Niger. J. Anim. Prod. 2014, 41, 19–33. [Google Scholar] [CrossRef]
- Cho, H.M.; Son, H.C.; Wickramasuriya, S.S.; Macelline, S.P.; Hong, J.S.; Kim, Y.B.; Cho, S.H.; Heo, J.M.; Yi, Y.-J. Growth performance of crossed breed Korean domestic chickens for twelve weeks after hatching. Korean J. Agric. Sci. 2019, 46, 591–599. [Google Scholar]
- Muduli, S.; Behura, N.C.; Samal, L.; Bagh, J.; Champati, A.; Popalghat, H.K. Juvenile growth, efficiency and phenotypic correlation of body weight and growth traits of native Nusuri × broiler crosses under intensive management system. J. Pharm. Innov. 2019, 8, 258–263. [Google Scholar]
- Molee, A.; Kuadsantia, P.; Kaewnakian, P. Gene effects on body weight, carcass yield, and meat quality of Thai indigenous chicken. J. Poult. Sci. 2018, 55, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Tongsiri, S.; Van der Werf, J.H.J.; Li, L.; Jeyaruban, M.G.; Wolcott, M.L.; Hermesch, S.; Chormai, T. Using random regression models to estimate genetic variation in growth pattern and its association with sexual maturity of Thai native chickens. Br. Poult. Sci. 2020, 61, 615–623. [Google Scholar] [CrossRef]
- Saatci, M.; Omed, H.; Dewi, I.A. Genetic parameters from univariate and bivariate analyses of egg and weight traits in Japanese quail. Poult. Sci. 2006, 85, 185–190. [Google Scholar] [CrossRef]
- Manjula, P.; Park, H.-B.; Seo, D.; Choi, N.; Jin, S.; Ahn, S.J.; Heo, K.N.; Kang, B.S.; Lee, J.-H. Estimation of heritability and genetic correlation of body weight gain and growth curve parameters in Korean native chicken. Asian-Australas. J. Anim. Sci. 2018, 31, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Mookprom, S.; Boonkum, W.; Kunhareang, S.; Siripanya, S.; Duangjinda, M. Genetic evaluation of egg production curve in Thai native chickens by random regression and spline models. Poult. Sci. 2017, 96, 274–281. [Google Scholar] [CrossRef]
- Oleforuh-Okoleh, V.U. Estimation of genetic parameters and selection for egg production traits in a Nigerian local chicken ecotype. J. Agric. Biol. Sci. 2011, 6, 54–57. [Google Scholar]
- Padhi, M.K.; Chatterjee, R.N.; Rajkumar, U.; Bhattacharya, T.K.; Bhanja, S.K. Genetic and phenotypic parameters estimates for body weight, conformation, production and reproduction traits of PD1 (Vanaraja male line) during different periods. Indian J. Anim. Sci. 2015, 85, 883–888. [Google Scholar]
- Plaengkaew, S.; Khumpeerawat, P.; Stalder, K.J. Using non-linear models to describe growth curves for Thai black-bone chickens. Agric. Nat. Resour. 2021, 55, 1049–1056. [Google Scholar]
- Li, H.F.; Zhu, W.Q.; Chen, K.W.; Wu, X.; Tang, Q.P.; Gao, Y.S. Associations between GHR and IGF-1 gene polymorphisms, and reproductive traits in Wenchang chickens. Turk. J. Vet. Anim. Sci. 2008, 32, 281–285. [Google Scholar]
- Feng, X.P.; Kuhnlein, U.; Fairfull, R.W.; Aggrey, S.E.; Yao, J.; Zadworny, D. A genetic marker in the growth hormone receptor gene associated with body weight in chickens. J. Hered. 1998, 89, 355–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhnlein, U.; Ni, L.; Weigend, S.; Gavora, J.S.; Fairfull, W.; Zadworny, D. DNA polymorphisms in the chicken growth hormone gene: Response to selection for disease resistance and association with egg production. Anim. Genet. 1997, 28, 116–123. [Google Scholar] [CrossRef]
- Okeno, T.O.; Kahi, A.K.; Peters, K.J. Evaluation of breeding objectives for purebred and crossbred selection schemes for adoption in indigenous chicken breeding programmes. Br. Poult. Sci. 2013, 54, 62–75. [Google Scholar] [CrossRef]
Traits | Number of Records | Mean | SD | Min. | Max. | CV (%) |
---|---|---|---|---|---|---|
KKU1 chickens | ||||||
BW0 (g) | 653 | 36.30 | 4.75 | 26.00 | 52.00 | 13.09 |
BW2 (g) | 646 | 257.75 | 41.30 | 107.00 | 397.00 | 16.02 |
BW4 (g) | 645 | 717.53 | 100.34 | 329.00 | 978.00 | 13.98 |
BW6 (g) | 541 | 1240.52 | 170.59 | 760.00 | 1800.00 | 13.75 |
BrC6 (cm) | 541 | 25.87 | 1.48 | 19.80 | 30.00 | 5.72 |
ADG0–2 (g/day) | 646 | 15.82 | 2.77 | 5.36 | 25.79 | 17.51 |
ADG0–4 (g/day) | 645 | 24.33 | 3.54 | 10.43 | 33.57 | 14.55 |
ADG0–6 (g/day) | 541 | 28.68 | 4.09 | 17.00 | 42.12 | 14.26 |
KKU2 chickens | ||||||
BW0 (g) | 666 | 35.81 | 3.90 | 23.00 | 45.00 | 10.89 |
BW2 (g) | 654 | 193.42 | 28.70 | 101.00 | 263.00 | 14.84 |
BW4 (g) | 658 | 517.38 | 77.93 | 288.00 | 730.00 | 15.06 |
BW6 (g) | 658 | 931.31 | 134.60 | 450.00 | 1300.00 | 14.45 |
BrC6 (cm) | 656 | 22.94 | 1.77 | 18.00 | 28.20 | 7.72 |
ADG0–2 (g/day) | 654 | 11.25 | 1.95 | 4.57 | 16.43 | 17.33 |
ADG0–4 (g/day) | 658 | 17.30 | 2.73 | 9.14 | 24.61 | 15.78 |
ADG0–6 (g/day) | 658 | 21.32 | 3.18 | 9.79 | 30.17 | 14.92 |
Chickens | KKU1 | KKU2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Traits | SCA | SCA | ||||||||
BW0 | 0.21 | 9.58 | 4.73 | 14.31 | 0.669 (0.05) | 0.07 | 8.93 | 5.15 | 14.08 | 0.634 (0.04) |
BW2 | 10.61 | 457.73 | 554.62 | 1012.35 | 0.452 (0.07) | 8.08 | 249.05 | 384.98 | 634.03 | 0.393 (0.05) |
BW4 | 32.10 | 2698.20 | 4506.30 | 7204.50 | 0.375 (0.05) | 25.26 | 1924.00 | 3835.00 | 5759.00 | 0.334 (0.03) |
BW6 | 38.65 | 4094.80 | 7581.30 | 11,676.10 | 0.351 (0.02) | 32.85 | 3500.50 | 6925.00 | 10,425.50 | 0.336 (0.04) |
BrC6 | 0.37 | 1.33 | 3.04 | 4.37 | 0.304 (0.03) | 0.30 | 1.07 | 2.78 | 3.85 | 0.278 (0.03) |
ADG0–2 | 0.75 | 2.12 | 3.30 | 5.42 | 0.391 (0.02) | 0.58 | 1.13 | 1.98 | 3.11 | 0.362 (0.02) |
ADG0–4 | 1.14 | 3.67 | 7.64 | 11.31 | 0.324 (0.02) | 0.90 | 3.17 | 7.12 | 10.29 | 0.308 (0.02) |
ADG0–6 | 1.43 | 5.85 | 15.34 | 21.19 | 0.276 (0.01) | 1.05 | 4.77 | 15.77 | 20.54 | 0.232 (0.01) |
Traits | BW0 | BW2 | BW4 | BW6 | BrC6 | ADG0–2 | ADG0–4 | ADG0–6 |
---|---|---|---|---|---|---|---|---|
BW0 | - | 0.28 (0.05) | 0.17 (0.05) | 0.14 (0.03) | 0.09 (0.04) | 0.17 (0.02) | 0.12 (0.02) | 0.25 (0.03) |
BW2 | 0.26 (0.04) | - | 0.68 (0.01) | 0.58 (0.00) | 0.51 (0.04) | 0.59 (0.01) | 0.61 (0.03) | 0.51 (0.03) |
BW4 | 0.17 (0.01) | 0.75 (0.01) | - | 0.85 (0.00) | 0.66 (0.01) | 0.67 (0.02) | 0.71 (0.01) | 0.68 (0.08) |
BW6 | 0.13 (0.05) | 0.79 (0.02) | 0.80 (0.01) | - | 0.76 (0.02) | 0.58 (0.01) | 0.71 (0.02) | 0.75 (0.09) |
BrC6 | 0.10 (0.01) | 0.50 (0.06) | 0.64 (0.06) | 0.71 (0.03) | - | 0.62 (0.02) | 0.73 (0.00) | 0.81 (0.01) |
ADG0–2 | 0.15 (0.01) | 0.58 (0.01) | 0.75 (0.05) | 0.59 (0.05) | 0.50 (0.02) | - | 0.62 (0.01) | 0.72 (0.01) |
ADG0–4 | 0.10 (0.02) | 0.65 (0.05) | 0.77 (0.01) | 0.79 (0.04) | 0.63 (0.02) | 0.56 (0.02) | - | 0.75 (0.02) |
ADG0–6 | 0.06 (0.01) | 0.46 (0.05) | 0.67 (0.05) | 0.84 (0.01) | 0.66 (0.01) | 0.67 (0.02) | 0.72 (0.01) | - |
Traits | BW0 | BW2 | BW4 | BW6 | BrC6 | ADG0–2 | ADG0–4 | ADG0–6 |
---|---|---|---|---|---|---|---|---|
BW0 | - | 0.39 (0.05) | 0.29 (0.05) | 0.25 (0.03) | 0.32 (0.04) | 0.25 (0.02) | 0.24 (0.02) | 0.28 (0.03) |
BW2 | 0.34 (0.04) | - | 0.93 (0.01) | 0.89 (0.00) | 0.81 (0.04) | 0.79 (0.00) | 0.69 (0.03) | 0.67 (0.03) |
BW4 | 0.25 (0.04) | 0.88 (0.01) | - | 0.95 (0.00) | 0.96 (0.01) | 0.90 (0.02) | 0.94 (0.01) | 0.92 (0.08) |
BW6 | 0.22 (0.04) | 0.85 (0.02) | 0.95 (0.01) | - | 0.95 (0.02) | 0.91 (0.01) | 0.94 (0.02) | 0.97 (0.09) |
BrC6 | 0.23 (0.00) | 0.78 (0.06) | 0.80 (0.06) | 0.92 (0.03) | - | 0.82 (0.02) | 0.90 (0.00) | 0.96 (0.01) |
ADG0–2 | 0.25 (0.01) | 0.72 (0.01) | 0.88 (0.05) | 0.85 (0.05) | 0.76 (0.02) | - | 0.80 (0.01) | 0.89 (0.01) |
ADG0–4 | 0.24 (0.01) | 0.69 (0.05) | 0.95 (0.01) | 0.91 (0.04) | 0.83 (0.02) | 0.71 (0.02) | - | 0.93 (0.02) |
ADG0–6 | 0.21 (0.01) | 0.64 (0.05) | 0.92 (0.05) | 0.95 (0.01) | 0.97 (0.01) | 0.76 (0.02) | 0.87 (0.01) | - |
Chickens | Mixed-sex | ACC. | Male | ACC. | Female | ACC. |
---|---|---|---|---|---|---|
KKU1 | ||||||
BW0 | 4.25 ± 0.01 | 90.61 | 4.27 ± 0.01 | 92.68 | 3.80 ± 0.01 | 90.38 |
BW2 | 13.76 ± 0.03 | 73.30 | 14.89 ± 0.03 | 82.19 | 12.62 ± 0.05 | 73.36 |
BW4 | 35.55 ± 0.03 | 65.23 | 36.94 ± 0.05 | 74.05 | 31.39 ± 0.06 | 65.08 |
BW6 | 55.62 ± 0.07 | 63.05 | 65.39 ± 0.04 | 65.36 | 44.71 ± 0.05 | 71.33 |
BrC6 | 0.47 ± 0.03 | 75.31 | 0.48 ± 0.05 | 77.59 | 0.40 ± 0.05 | 73.27 |
ADG0–2 | 1.85 ± 0.06 | 72.27 | 1.90 ± 0.07 | 75.60 | 1.75 ± 0.04 | 72.68 |
ADG0–4 | 2.10 ± 0.06 | 72.21 | 2.14 ± 0.05 | 73.07 | 1.99 ± 0.05 | 72.00 |
ADG0–6 | 1.55 ± 0.04 | 68.11 | 1.59 ± 0.06 | 70.83 | 1.48 ± 0.08 | 66.84 |
KKU2 | ||||||
BW0 | 4.16 ± 0.01 | 86.76 | 4.10 ± 0.01 | 87.19 | 3.65 ± 0.01 | 86.25 |
BW2 | 13.28 ± 0.07 | 69.59 | 14.29 ± 0.05 | 69.70 | 12.75 ± 0.06 | 69.76 |
BW4 | 27.66 ± 0.08 | 62.89 | 29.52 ± 0.05 | 62.66 | 25.09 ± 0.08 | 63.00 |
BW6 | 47.54 ± 0.04 | 67.68 | 52.82 ± 0.02 | 67.36 | 39.93 ± 0.04 | 67.89 |
BrC6 | 0.38 ± 0.03 | 65.45 | 0.39 ± 0.03 | 65.28 | 0.36 ± 0.04 | 65.67 |
ADG0–2 | 1.74 ± 0.04 | 68.31 | 1.72 ± 0.04 | 68.46 | 1.56 ± 0.06 | 68.56 |
ADG0–4 | 1.80 ± 0.05 | 62.92 | 1.91 ± 0.04 | 62.92 | 1.77 ± 0.07 | 62.57 |
ADG0–6 | 1.30 ± 0.06 | 64.18 | 1.33 ± 0.05 | 64.22 | 1.29 ± 0.08 | 64.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chomchuen, K.; Tuntiyasawasdikul, V.; Chankitisakul, V.; Boonkum, W. Comparative Study of Phenotypes and Genetics Related to the Growth Performance of Crossbred Thai Indigenous (KKU1 vs. KKU2) Chickens under Hot and Humid Conditions. Vet. Sci. 2022, 9, 263. https://doi.org/10.3390/vetsci9060263
Chomchuen K, Tuntiyasawasdikul V, Chankitisakul V, Boonkum W. Comparative Study of Phenotypes and Genetics Related to the Growth Performance of Crossbred Thai Indigenous (KKU1 vs. KKU2) Chickens under Hot and Humid Conditions. Veterinary Sciences. 2022; 9(6):263. https://doi.org/10.3390/vetsci9060263
Chicago/Turabian StyleChomchuen, Kitsadee, Veeraya Tuntiyasawasdikul, Vibuntita Chankitisakul, and Wuttigrai Boonkum. 2022. "Comparative Study of Phenotypes and Genetics Related to the Growth Performance of Crossbred Thai Indigenous (KKU1 vs. KKU2) Chickens under Hot and Humid Conditions" Veterinary Sciences 9, no. 6: 263. https://doi.org/10.3390/vetsci9060263
APA StyleChomchuen, K., Tuntiyasawasdikul, V., Chankitisakul, V., & Boonkum, W. (2022). Comparative Study of Phenotypes and Genetics Related to the Growth Performance of Crossbred Thai Indigenous (KKU1 vs. KKU2) Chickens under Hot and Humid Conditions. Veterinary Sciences, 9(6), 263. https://doi.org/10.3390/vetsci9060263