Phenotypic and Genotypic Characterization of C. perfringens Isolates from Dairy Cows with a Pathological Puerperium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Gynaecological Examination and Sampling
2.2. Antibiotic Treatment
2.3. Bacteriological Cultures
2.4. ELISA
2.5. Bacterial Reference Strains
2.6. DNA- Extraction
2.7. Detection of Toxin Genes by PCR
2.8. Antimicrobial Susceptibility Testing
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Markey, B.K.; Cullinane, A.; Leonard, F.C.; Maguire, D.; Archambault, M. Clostridium species. In Clinical Veterinary Microbiology, 2nd ed.; Hewat, C., Ed.; Mosby Elsevier: Maryland Heights, MO, USA, 2013; pp. 215–237. [Google Scholar]
- Fohler, S.; Klein, G.; Hoedemaker, M.; Scheu, T.; Seyboldt, C.; Campe, A.; Jensen, K.C.; Abdulmawjood, A. Diversity of Clostridium perfringens toxin-genotypes from dairy farms. BMC Microbiol. 2016, 16, 199. [Google Scholar] [CrossRef] [Green Version]
- Uzal, F.A.; Freedman, J.C.; Shrestha, A.; Theoret, J.R.; Garcia, J.; Awad, M.M.; Adams, V.; Moore, R.J.; Rood, J.I.; McClane, B.A. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol. 2014, 9, 361–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selbitz, H.J.; Truyen, U.; Valentin-Weigand, P. Gattung Clostridium. In Tiermedizinische Mikrobiologie, Infektions- und Seuchenlehre, 10th ed.; Enke: Stuttgart, Germany, 2015. [Google Scholar]
- Uzal, F.A.; McClane, B.A. Recent progress in understanding the pathogenesis of Clostridium perfringens type C infections. Vet. Microbiol. 2011, 153, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canard, B.; Cole, S.T. Genome organization of the anaerobic pathogen Clostridium perfringens. Proc. Natl. Acad. Sci. USA 1989, 86, 6676–6680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messelhäußer, U. Pathogene Mikroorganismen: Clostridium Perfringens; Behr’s Verlag: Hamburg, Germany, 2013; p. 72. [Google Scholar]
- Uzal, F.A.; Vidal, J.E.; McClane, B.A.; Gurjar, A.A. Clostridium Perfringens Toxins Involved in Mammalian Veterinary Diseases. Open Toxinology J. 2010, 2, 24–42. Available online: https://www.ncbi.nlm.nih.gov/pubmed/24511335 (accessed on 7 February 2014). [CrossRef]
- Niilo, L. Clostridium perfringens in animal disease: A review of current knowledge. Can. Vet. J. 1980, 21, 141–148. Available online: https://www.ncbi.nlm.nih.gov/pubmed/6253040 (accessed on 10 February 2022).
- Nagahama, M.; Hayashi, S.; Morimitsu, S.; Sakurai, J. Biological activities and pore formation of Clostridium perfringens beta toxin in HL 60 cells. J. Biol. Chem. 2003, 278, 36934–36941. [Google Scholar] [CrossRef] [Green Version]
- Fennessey, C.M.; Sheng, J.; Rubin, D.H.; McClain, M.S. Oligomerization of Clostridium perfringens Epsilon Toxin Is Dependent upon Caveolins 1 and 2. PLoS ONE 2012, 7, e46866. [Google Scholar] [CrossRef]
- Nagahama, M.; Umezaki, M.; Oda, M.; Kobayashi, K.; Tone, S.; Suda, T.; Ishidoh, K.; Sakurai, J. Clostridium perfringens Iota-Toxin b Induces Rapid Cell Necrosis. Infect. Immun. 2011, 79, 4353–4360. [Google Scholar] [CrossRef] [Green Version]
- Gibert, M.; Jolivet-Renaud, C.; Popoff, M.R. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene 1997, 203, 65–73. [Google Scholar] [CrossRef]
- Klein, C.; Wehrend, A.; Weiss, R.; Bostedt, H. Putrid-ulcerative vestibulo-vaginitis and myometritis in gravid sheep, caused by Clostridium perfringens type A. Tierärztl Prax 2007, 35, 192–196. [Google Scholar] [CrossRef]
- Dunaiev, Y.K.; Hadzevych, O.V.; Dunaieva, O.V. Prevalence and Etiological Role of Clostridium Perfringens Bacteria in Dairy Farms. In Proceedings of the The world of science and innovation: Abstracts of I International Scientific and Practical Conference, London, UK, 19–21 August 2020; pp. 21–24. [Google Scholar]
- Jeon, S.J.; Lima, F.S.; Vieira-Neto, A.; Machado, V.S.; Lima, S.F.; Bicalho, R.C.; Santos, J.E.P.; Galvao, K.N. Shift of uterine microbiota associated with antibiotic treatment and cure of metritis in dairy cows. Vet. Microbiol. 2018, 214, 132–139. [Google Scholar] [CrossRef]
- Nak, Y.; Dagalp, S.B.; Cetin, C.; Nak, D.; Alkan, F.; Borum, E.; Tuna, B. Course and severity of postpartum metritis cases following antibiotic and PGF2alpha administration in postpartum metritis cows infected with bohv-4. Transbound. Emerg. Dis. 2011, 58, 31–36. [Google Scholar] [CrossRef]
- Edwards, R. Resistance to beta-lactam antibiotics in Bacteroides spp. J. Med. Microbiol. 1997, 46, 979–986. [Google Scholar] [CrossRef] [Green Version]
- Gkiourtzidis, K.; Frey, J.; Bourtzi-Hatzopoulou, E.; Iliadis, N.; Sarris, K. PCR detection and prevalence of α-, β-, β2-, ε-, ι- and enterotoxin genes in Clostridium perfringens isolated from lambs with clostridial dysentery. Vet. Microbiol. 2001, 82, 39–43. [Google Scholar] [CrossRef]
- Buogo, C.; Capaul, S.; Hani, H.; Frey, J.; Nicolet, J. Diagnosis of Clostridium perfringens type C enteritis in pigs using a DNA amplification technique (PCR). Zent. Vet. B 1995, 42, 51–58. [Google Scholar] [CrossRef]
- Braun, M.; Herholz, C.; Straub, R.; Choisat, B.; Frey, J.; Nicolet, J.; Kuhnert, P. Detection of the ADP-ribosyltransferase toxin gene (cdtA) and its activity in Clostridium difficile isolates from Equidae. FEMS Microbiol. Lett. 2000, 184, 29–33. [Google Scholar] [CrossRef]
- Herholz, C.; Miserez, R.; Nicolet, J.; Frey, J.; Popoff, M.; Gibert, M.; Gerber, H.; Straub, R. Prevalence of beta2-toxigenic Clostridium perfringens in horses with intestinal disorders. J. Clin. Microbiol. 1999, 37, 358–361. [Google Scholar] [CrossRef] [Green Version]
- Uzal, F.A.; Songer, J.G. Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. J. Vet. Diagn. Investig. 2008, 20, 253–265. [Google Scholar] [CrossRef] [Green Version]
- Osman, K.M.; E-EM, I.; Ezzeldeen, N.A.; Hussein, H.M.G. Mastitis in dairy buffalo and cattle in Egypt due to Clostridium perfringens: Prevalence, incidence, risk factors and costs. Rev. Sci. Tech. Off. Int. Epiz. 2009, 28, 975–986. [Google Scholar] [CrossRef]
- Dylewski, J.; Wiesenfeld, H.; Latour, A. Postpartum uterine infection with Clostridium perfringens. Rev. Infect. Dis. 1989, 11, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Halpin, T.F.; Molinari, J.A. Diagnosis and Management of Clostridium Perfringens Sepsis and Uterine Gas Gangrene. Obstet. Gynecol. Surv. 2001, 57, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Kremer, K.M.; McDonald, M.E.; Goodheart, M.J. Uterine Clostridium perfringens infection related to gynecologic malignancy. Gynecol. Oncol. Rep. 2017, 22, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Montavon, C.; Krause, E.; Holzgreve, W.; Hösli, I. Uterine Gas Gangrene through Clostridium Perfringens Sepsis after Uterus Rupture Postpartum. Z. Geburtsh. Neonatol. 2005, 209, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, C.; Liu, C.; Yang, Y.; Lu, W. Comparison of vaginal microbial community structure in healthy and endometritis dairy cows by PCR-DGGE and real-time PCR. Anaerobe 2016, 38, 1–6. [Google Scholar] [CrossRef]
- Williams, E.J.; Fischer, D.P.; Pfeiffer, D.U.; England, G.C.; Noakes, D.E.; Dobson, H.; Sheldon, I.M. Clinical evaluation of postpartum vaginal mucus reflects uterine bacterial infection and the immune response in cattle. Theriogenology 2005, 63, 102–117. [Google Scholar] [CrossRef]
- Hadimli, H.H.; Erganis, O.; Sayin, Z.; Aras, Z. Toxinotyping of Clostridium perfringens isolates by ELISA and PCR from lambs suspected of enterotoxemia. Turk. J. Vet. Anim. Sci. 2011, 36, 409–415. [Google Scholar] [CrossRef]
- Parreira, V.R.; Russell, K.; Athanasiadou, S.; Prescott, J.F. Comparative transcriptome analysis by RNAseq of necrotic enteritis Clostridium perfringens during in vivo colonization and in vitro conditions. BMC Microbiol. 2016, 16, 186. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Liu, D.; Zhang, B.; Li, Z.; Li, Y.; Ding, B.; Guo, Y. Two Lactobacillus Species Inhibit the Growth and alpha-Toxin Production of Clostridium perfringens and Induced Proinflammatory Factors in Chicken Intestinal Epithelial Cells in Vitro. Front. Microbiol. 2017, 8, 2081. [Google Scholar] [CrossRef]
- Giguére, S.; Prescott, J.F.; Dowling, P.M. Antimicrobial Therapy in Veterinary Medicine, 5th ed.; Giguére, S., Prescott, J.F., Dowling, P.M., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2013; p. 422. [Google Scholar]
- Osman, K.M.; Elhariri, M. Antibiotic resistance of Clostridium perfringens isolates from broiler chickens in Egypt. Rev. Sci. Tech. 2013, 32, 841–850. [Google Scholar] [CrossRef]
- Agyare, C.; Boamah, V.E.; Zumbi, C.N.; Osei, F.B. Antibiotic use in poultry production and its effects on bacterial resistance. In Antimicrobial Resistance: A global Threat; Kumar, Y., Ed.; BoD–Books on Demand: Nordstedt, Germany, 2018; pp. 33–51. [Google Scholar]
C. perfringens | Major Toxin | |||
---|---|---|---|---|
type | α | β | ε | ι |
A | + | − | − | − |
B | + | + | (+) | − |
C | + | + | − | − |
D | + | − | + | − |
E | + | − | − | + |
Toxin/Gene | Primer | Oligonucleotide Sequence | Reference |
---|---|---|---|
alpha/cpa | CPALPHATOX-L CPALPHATOX-R | 5′-AAGATTTGTAAGGCGCTT-3′ 5′-ATTTCCTGAAATCCACTC-3′ | Buogo et al. [20] |
beta/cpb1 | CPBETATOX-L CPBETATOX-R | 5′-AGGAGGTTTTTTTATGAAG-3′ 5′-TCTAAATAGCTGTTACTTTGTG-3′ | Buogo et al. [20] |
iota/iap | CPIOTA-L CPIOTA-R | 5′-AATGCCATATCAAAAAATAA-3′ 5′-TTAGCAAATGCACTCATATT-3′ | Braun et al. [21] |
beta2/cpb2 | P319BETA2 P320BETA2 | 5′-GAAAGGTAATGGAGAATTATCTTAATGC-3′ 5′-GCAGAATCAGGATTTTGACCATATACC-3′ | Herholz et al. [22] |
Diagnosis | % | n |
---|---|---|
Retained fetal membranes | 50.0 | 7 |
Puerperal metritis | 21.4 | 3 |
Grade 1 | 14.3 | 2 |
Grade 2 | 7.1 | 1 |
Clinical metritis | 92.9 | 13 |
Clinical endometritis | 85.7 | 12 |
Urovagina | 7.1 | 1 |
Cows with a Pathological Puerperium (of Total 46) | Isolates | ||
---|---|---|---|
% | n | n | |
58.7 | 27 | ||
C. perfringens-positive cows | 51.9 | 14 | 21 |
localization of C. perfringens | % | n | |
vagina | 14.3 | 2 | 8 |
uterus | 50.0 | 7 | 13 |
vagina and uterus | 35.7 | 5 | / a |
time of sampling | % | n | |
2 | 78.6 | 11 # * | 15 |
4 | 21.4 | 3 # | 3 # |
6 | 21.4 | 3 | 3 |
14 | 0 | 0 | 0 |
Antibiotics | MIC Range | MIC50 | MIC90 | CLSI-Breakpoints | Number of Resistant Isolates | Percentage of Resistant Isolates |
---|---|---|---|---|---|---|
Penicillins/Beta-lactamase inhibitor | ||||||
Penicillin G | 0.0625–8 | ≤0.0625 | 0.125 | S ≤ 0.5; R ≥ 2 | 2/21 | 9.5 |
Ampicillin | 0.0625–8 | ≤0.0625 | ≤0.0625 | S ≤ 0.5; R ≥ 2 | 1/21 | 4.8 |
Amoxicillin/Clavulanate | 0.5/0.25–64/32 | ≤0.5/0.25 | ≤0.5/0.25 | S ≤ 4/2; R ≥ 16/8 | 0/21 | 0 |
Piperacillin/Tazobactam | 1/4–64/4 | ≤1/4 | ≤1/4 | S ≤ 16/4; R ≥ 128/4 | 0/21 | 0 |
Carbapenems | ||||||
Meropenem | 0.5–64 | ≤0.5 | ≤0.5 | S ≤ 4; R ≥ 16 | 0/21 | 0 |
Imipenem | 0.5–64 | ≤0.5 | ≤0.5 | S ≤ 4; R ≥ 16 | 0/21 | 0 |
Ertapenem | 0.125–16 | ≤0.125 | ≤0.125 | S ≤ 4; R ≥ 16 | 0/21 | 0 |
Nitromidazole | ||||||
Metronidazole | 0.25–32 | 1 | 2 | S ≤ 8; R ≥ 32 | 1/21 | 4.8 |
Fluoroquinolones | ||||||
Moxifloxacine | 0.0625–8 | 0.5 | 0.5 | S ≤ 2; R ≥ 8 | 0/21 | 0 |
Lincosamides | ||||||
Clindamycine | 0.0625–8 | 0.5 | 2.0 | S ≤ 2; R ≥ 8 | 2/21 | 9.5 |
Tetracyclines | ||||||
Doxycycline | 0.125–16 | 1 | 2 | S ≤ 4; R ≥ 16 | 0/21 | 0 |
Tigecycline | 1–8 | ≤1 | ≤1 | S ≤ 4; R ≥ 16 | 0/21 | 0 |
Glycopeptides | ||||||
Vancomycin | 2.0–8.0 | ≤2.0 | ≤2.0 | S ≤ 2; R ≥ 4 * | 0/21 | 0 |
Antibiotics | Number of C. perfringens Isolates | |||
---|---|---|---|---|
1 a | 1 #, a | 1 b | 18 ##, c | |
Penicillin G | R | R | S | S |
Ampicillin | R | I | S | S |
Amoxicillin/Clavulanate | S | S | S | S |
Piperacillin/Tazobactam | S | S | S | S |
Meropenem | S | S | S | S |
Imipenem | S | S | S | S |
Ertapenem | S | S | S | S |
Metronidazole | S | S | R | S |
Moxifloxacine | S | S | S | S |
Clindamycine | R | R | S | S |
Doxycycline | S | S | S | S |
Tigecycline | S | S | S | S |
Vancomycin i | S | S | S | S |
Bacterial Concomitant Findings | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Escherichia coli | ||||||||||||
Trueperella pyogenes | ||||||||||||
Bacteroides spp. | ||||||||||||
Enterococcus spp. | ||||||||||||
Proteus spp. | ||||||||||||
Fusobacterium spp. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kronfeld, H.; Kemper, N.; Hölzel, C.S. Phenotypic and Genotypic Characterization of C. perfringens Isolates from Dairy Cows with a Pathological Puerperium. Vet. Sci. 2022, 9, 173. https://doi.org/10.3390/vetsci9040173
Kronfeld H, Kemper N, Hölzel CS. Phenotypic and Genotypic Characterization of C. perfringens Isolates from Dairy Cows with a Pathological Puerperium. Veterinary Sciences. 2022; 9(4):173. https://doi.org/10.3390/vetsci9040173
Chicago/Turabian StyleKronfeld, Hanna, Nicole Kemper, and Christina S. Hölzel. 2022. "Phenotypic and Genotypic Characterization of C. perfringens Isolates from Dairy Cows with a Pathological Puerperium" Veterinary Sciences 9, no. 4: 173. https://doi.org/10.3390/vetsci9040173