Avian Pathogenic Escherichia coli through Pfs Affects the Tran-Scription of Membrane Proteins to Resist β-Lactam Antibiotics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Disc Diffusion
2.3. Determination of MIC
2.4. Differential Expression Analysis
2.5. Outer Membrane Permeabilization Assays
2.6. Detection of Transcription Level by Quantitative Real-Time PCR
2.7. Statistical Analysis
3. Results
3.1. Disc Diffusion
3.2. MIC Result
3.3. Determination of Differentially Expressed Genes and Pathway Analysis
3.4. Permeabilization of the Outer Membrane
3.5. Gene Transcription Levels Associated with β-Lactam Antibiotic Resistance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nhung, N.T.; Chansiripornchai, N.; Carrique-Mas, J.J. Antimicrobial resistance in bacterial poultry pathogens: A review. Front. Vet. Sci. 2017, 4, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovanardi, D.; Campagnari, E.; Ruffoni, L.S.; Pesente, P.; Ortali, G.; Furlattini, V. Avian pathogenic escherichia coli transmission from broiler breeders to their progeny in an integrated poultry production chain. Avian Pathol. 2005, 34, 313–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dho-Moulin, M.; Fairbrother, J.M. Avian pathogenic escherichia coli (apec). Vet. Res. 1999, 30, 299–316. [Google Scholar] [PubMed]
- Dou, X.; Gong, J.; Han, X.; Xu, M.; Shen, H.; Zhang, D.; Zhuang, L.; Liu, J.; Zou, J. Characterization of avian pathogenic escherichia coli isolated in eastern china. Gene 2016, 576, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Pilatti, L.; Boldrin de Paiva, J.; Rojas, T.C.; Leite, J.L.; Conceicao, R.A.; Nakazato, G.; Dias da Silveira, W. The virulence factor ycho has a pleiotropic action in an avian pathogenic escherichia coli (apec) strain. BMC Microbiol. 2016, 16, 35. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, X.; Xu, X.; Yang, D.; Wang, D.; Han, X.; Shi, Y.; Tian, M.; Ding, C.; Peng, D.; et al. Escherichia coli type iii secretion system 2 atpase eivc is involved in the motility and virulence of avian pathogenic escherichia coli. Front. Microbiol. 2016, 7, 1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.; Bai, H.; Liu, L.; Dong, H.; Liu, R.; Song, J.; Ding, C.; Qi, K.; Liu, H.; Yu, S. The luxs gene functions in the pathogenesis of avian pathogenic escherichia coli. Microb. Pathog. 2013, 55, 21–27. [Google Scholar] [CrossRef]
- Pereira, C.S.; de Regt, A.K.; Brito, P.H.; Miller, S.T.; Xavier, K.B. Identification of functional lsrb-like autoinducer-2 receptors. J. Bacteriol. 2009, 191, 6975–6987. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Lu, C. Biological activity and identification of a peptide inhibitor of luxs from streptococcus suis serotype 2. FEMS Microbiol. Lett. 2009, 294, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Surette, M.G.; Miller, M.B.; Bassler, B.L. Quorum sensing in escherichia coli, salmonella typhimurium, and vibrio harveyi: A new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA 1999, 96, 1639–1644. [Google Scholar] [CrossRef] [Green Version]
- Fontecave, M.; Atta, M.; Mulliez, E. S-adenosylmethionine: Nothing goes to waste. Trends Biochem. Sci. 2004, 29, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lew, C.M.; Gralla, J.D. Escherichia coli pfs transcription: Regulation and proposed roles in autoinducer-2 synthesis and purine excretion. J. Bacteriol. 2006, 188, 7457–7463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beeston, A.L.; Surette, M.G. Pfs-dependent regulation of autoinducer 2 production in salmonella enterica serovar typhimurium. J. Bacteriol. 2002, 184, 3450–3456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornell, K.A.; Winter, R.W.; Tower, P.A.; Riscoe, M.K. Affinity purification of 5-methylthioribose kinase and 5-methylthioadenosine/s-adenosylhomocysteine nucleosidase from klebsiella pneumoniae [corrected]. Biochem. J. 1996, 317 Pt 1, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Cadieux, N.; Bradbeer, C.; Reeger-Schneider, E.; Köster, W.; Mohanty, A.K.; Wiener, M.C.; Kadner, R.J. Identification of the periplasmic cobalamin-binding protein btuf of escherichia coli. J. Bacteriol. 2002, 184, 706–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schauder, S.; Shokat, K.; Surette, M.G.; Bassler, B.L. The luxs family of bacterial autoinducers: Biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 2001, 41, 463–476. [Google Scholar] [CrossRef]
- Ahmed, N.A.A.M.; Petersen, F.C.; Scheie, A.A. Ai-2 quorum sensing affects antibiotic susceptibility in streptococcus anginosus. J. Antimicrob. Chemother. 2007, 60, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Attila, C.; Wang, L.; Wood, T.K.; Valdes, J.J.; Bentley, W.E. Quorum sensing in escherichia coli is signaled by ai-2/lsrr: Effects on small rna and biofilm architecture. J. Bacteriol. 2007, 189, 6011–6020. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Li, W.; Zhang, M.; Cui, Y.; Chen, X.; Ni, J.; Yu, L.; Shang, F.; Xue, T. Imidazole decreases the ampicillin resistance of an escherichia coli strain isolated from a cow with mastitis by inhibiting the function of autoinducer 2. J. Dairy Sci. 2018, 101, 3356–3362. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Zhang, X.; Jiang, Q.; Xue, T.; Sun, B. Pfs promotes autolysis-dependent release of edna and biofilm formation in staphylococcus aureus. Med. Microbiol. Immunol. 2015, 204, 215–226. [Google Scholar] [CrossRef]
- Xu, D.; Zuo, J.; Chen, Z.; Lv, X.; Hu, J.; Wu, X.; Qi, K.; Mi, R.; Huang, Y.; Miao, J.; et al. Different activated methyl cycle pathways affect the pathogenicity of avian pathogenic escherichia coli. Vet. Microbiol. 2017, 211, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.M.S.; Baraúna, R.A.; Marcon, D.J.; Lago, L.A.B.; Silva, A.; Lusio, J.; Tavares, R.D.S.; Tacão, M.; Henriques, I.; Schneider, M.P.C. Occurrence, antibiotic-resistance and virulence of e. Coli strains isolated from mangrove oysters (crassostrea gasar) farmed in estuaries of amazonia. Mar. Pollut. Bull. 2020, 157, 111302. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.; Bobenchik, A.M.; Hindler, J.A.; Schuetz, A.N. Overview of Changes to the Clinical and Laboratory Standards Institute M100, 31st Edition. J. Clin. Microbiol. 2021, 59, e0021321. [Google Scholar] [CrossRef] [PubMed]
- Lagha, R.; Ben Abdallah, F.; Al-Sarhan, B.O.; Al-Sodany, Y. Antibacterial and biofilm inhibitory activity of medicinal plant essential oils against isolated from uti patients. Molecules 2019, 24, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, J.; Yin, H.; Hu, J.; Miao, J.; Chen, Z.; Qi, K.; Wang, Z.; Gong, J.; Phouthapane, V.; Jiang, W.; et al. Lsr operon is associated with ai-2 transfer and pathogenicity in avian pathogenic escherichia coli. Vet. Res. 2019, 50, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Du, Y.; Wang, X.; Sun, L. Chitosan kills bacteria through cell membrane damage. Int. J. Food Microbiol. 2004, 95, 147–155. [Google Scholar] [CrossRef]
- Bellini, D.; Koekemoer, L.; Newman, H.; Dowson, C.G. Novel and improved crystal structures of h. Influenzae, e. Coli and p. Aeruginosa penicillin-binding protein 3 (pbp3) and n. Gonorrhoeae pbp2: Toward a better understanding of β-lactam target-mediated resistance. J. Mol. Biol. 2019, 431, 3501–3519. [Google Scholar] [CrossRef]
- Babic, M.; Hujer, A.M.; Bonomo, R.A. What’s new in antibiotic resistance? Focus on beta-lactamases. Drug Resist. Updates 2006, 9, 142–156. [Google Scholar] [CrossRef]
- Goffin, C.; Ghuysen, J.M. Multimodular penicillin-binding proteins: An enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. MMBR 1998, 62, 1079–1093. [Google Scholar] [CrossRef] [Green Version]
- Meberg, B.M.; Sailer, F.C.; Nelson, D.E.; Young, K.D. Reconstruction of escherichia coli mrca (pbp 1a) mutants lacking multiple combinations of penicillin binding proteins. J. Bacteriol. 2001, 183, 6148–6149. [Google Scholar] [CrossRef] [Green Version]
- Curtis, N.A.; Orr, D.; Ross, G.W.; Boulton, M.G. Competition of beta-lactam antibiotics for the penicillin-binding proteins of pseudomonas aeruginosa, enterobacter cloacae, klebsiella aerogenes, proteus rettgeri, and escherichia coli: Comparison with antibacterial activity and effects upon bacterial morphology. Antimicrob. Agents Chemother. 1979, 16, 325–328. [Google Scholar] [PubMed] [Green Version]
- Georgopapadakou, N.H. Penicillin-binding proteins and bacterial resistance to beta-lactams. Antimicrob. Agents Chemother. 1993, 37, 2045–2053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavío, M.M.; Aquili, V.D.; Poveda, J.B.; Antunes, N.T.; Sánchez-Céspedes, J.; Vila, J. Quorum-sensing regulator sdia and mara overexpression is involved in in vitro-selected multidrug resistance of escherichia coli. J. Antimicrob. Chemother. 2010, 65, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016, 4, 482–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, R.E. The bacterial outer membrane as a drug barrier. Trends Microbiol. 1997, 5, 37–42. [Google Scholar] [CrossRef]
- Nikaido, H. Porins and specific diffusion channels in bacterial outer membranes. J. Biol. Chem. 1994, 269, 3905–3908. [Google Scholar] [CrossRef]
- Nikaido, H. Prevention of drug access to bacterial targets: Permeability barriers and active efflux. Science 1994, 264, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Simonet, V.; Malléa, M.; Pagès, J.M. Substitutions in the eyelet region disrupt cefepime diffusion through the escherichia coli ompf channel. Antimicrob. Agents Chemother. 2000, 44, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Nikaido, H.; Normark, S. Sensitivity of escherichia coli to various beta-lactams is determined by the interplay of outer membrane permeability and degradation by periplasmic beta-lactamases: A quantitative predictive treatment. Mol. Microbiol. 1987, 1, 29–36. [Google Scholar] [CrossRef]
- Eswaran, J.; Hughes, C.; Koronakis, V. Locking tolc entrance helices to prevent protein translocation by the bacterial type i export apparatus. J. Mol. Biol. 2003, 327, 309–315. [Google Scholar] [CrossRef]
- Nishino, K.; Yamada, J.; Hirakawa, H.; Hirata, T.; Yamaguchi, A. Roles of tolc-dependent multidrug transporters of escherichia coli in resistance to beta-lactams. Antimicrob. Agents Chemother. 2003, 47, 3030–3033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Yao, Q.; Pan, X.-C.; Wang, N.; Zhang, R.; Li, J.; Ding, G.; Liu, X.; Wu, C.; Ran, D.; et al. Artesunate enhances the antibacterial effect of {beta}-lactam antibiotics against escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump system acrab-tolc. J. Antimicrob. Chemother. 2011, 66, 769–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Primer Name | Sequence (5′–3′) | Description | Product Size (bp) | Source |
---|---|---|---|---|
tolC-RT-F | CTGAAAGAAGCCGAAAAACG | Partial DNA sequence of TolC | 207 | This study |
tolC-RT-R | CTGGCCCATATTGCTATCGT | This study | ||
ompC-RT-F | ACGCAGAGCTTTACGACCAT | Partial DNA sequence of OmpC | 178 | This study |
ompC-RT-R | CTTTATGCAGCAGCGTGGTA | This study | ||
ompD-RT-F | GTCCTGATCACCCCAAACAC | Partial DNA sequence of OmpD | 184 | This study |
ompD-RT-R | CATCTATCTGGCCACCACCT | This study | ||
ompF-RT-F | TATTTAAGACCCGCGAATGC | Partial DNA sequence of OmpF | 161 | This study |
ompF-RT-R | GACATGACCTATGCCCGTCT | This study | ||
fstI-RT-F | TGTGCGTAAAGACCGCTATG | Partial DNA sequence of FstI | 183 | This study |
fstI-RT-R | GTGTTGACATCCACCAGCAC | This study | ||
mcrA-RT-F | ACCACGTTTTTCGACTGACC | Partial DNA sequence of McrA | 197 | This study |
mcrA-RT-R | GTGGGTTCCAACATCAAACC | This study | ||
dnaE-RT-F | TGGCCTACGCGTTAAAAATC | Partial DNA sequence of the internal control DnaE | 157 | This study |
dnaE-RT-R | TACATGTCCGCTACGTGCTC | This study |
Antibiotic | Antimicrobial MIC | ||
---|---|---|---|
DE17 | DE17Δpfs | c-pfs | |
Ampicillin | 12.707 | 12.707 | 12.707 |
Ampicillin + 1 mM/L DPD | 12.707 | 12.707 | 12.707 |
Ampicillin + 5 mM/L DPD | 12.707 | 12.707 | 12.707 |
Ampicillin + 10 mM/L DPD | 12.707 | 12.707 | 12.707 |
Amoxicillin | 7.813 | 3.906 | 7.813 |
Amoxicillin + 1 mM/L DPD | 7.813 | 3.906 | 7.813 |
Amoxicillin + 5 mM/L DPD | 7.813 | 3.906 | 7.813 |
Amoxicillin + 10 mM/L DPD | 7.813 | 3.906 | 7.813 |
Cefuroxime | 3.906 | 1.953 | 3.906 |
Cefuroxime + 1 mM/L DPD | 3.906 | 1.953 | 3.906 |
Cefuroxime + 5 mM/L DPD | 3.906 | 1.953 | 3.906 |
Cefuroxime + 10 mM/L DPD | 3.906 | 1.953 | 3.906 |
Ceftazidime | 5.859 | 2.930 | 5.859 |
Ceftazidime + 1 mM/L DPD | 5.859 | 2.930 | 5.859 |
Ceftazidime + 5 mM/L DPD | 5.859 | 2.930 | 5.859 |
Ceftazidime + 10 mM/L DPD | 5.859 | 2.930 | 5.859 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Che, C.; Jiang, W.; Chen, Z.; Tu, J.; Han, X.; Qi, K. Avian Pathogenic Escherichia coli through Pfs Affects the Tran-Scription of Membrane Proteins to Resist β-Lactam Antibiotics. Vet. Sci. 2022, 9, 98. https://doi.org/10.3390/vetsci9030098
Hu J, Che C, Jiang W, Chen Z, Tu J, Han X, Qi K. Avian Pathogenic Escherichia coli through Pfs Affects the Tran-Scription of Membrane Proteins to Resist β-Lactam Antibiotics. Veterinary Sciences. 2022; 9(3):98. https://doi.org/10.3390/vetsci9030098
Chicago/Turabian StyleHu, Jiangang, Chuanyan Che, Wei Jiang, Zhaoguo Chen, Jian Tu, Xiangan Han, and Kezong Qi. 2022. "Avian Pathogenic Escherichia coli through Pfs Affects the Tran-Scription of Membrane Proteins to Resist β-Lactam Antibiotics" Veterinary Sciences 9, no. 3: 98. https://doi.org/10.3390/vetsci9030098