Risk Analysis of 24 Residual Antibiotics in Poultry Eggs in Shandong, China (2018–2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Antibiotic Residues Testing
2.2.1. Extraction of Antibiotics
2.2.2. Detection of Antibiotics
2.3. Risk Evaluation of Antibiotic Residues in Poultry Eggs
3. Analysis and Results
3.1. Residues of 24 Antibiotics in Poultry Eggs
3.2. Risk Evaluation of Poultry Eggs in Shandong
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Agriculture and Rural Affairs of the Peoples Republic of China. Report on the Use of Veterinary Antibiotics of China in 2018; Official Vet: Beijing, China, 2019. [Google Scholar]
- Pinghua, H.E.; Chengxing, M.A.O. Safety Risk Awareness and Illegal Use of Antibiotics: An Empirical Study from Livestock and Poultry Farmers in Shandong Province. J. Huazhong Agric. Univ. 2018, 4, 20–29. [Google Scholar]
- Baran, W.; Adamek, E.; Ziemiańska, J.; Sobczak, A. Effects of the presence of sulfonamides in the environment and their influence on human health. J. Hazard. Mater. 2011, 196, 1–15. [Google Scholar] [CrossRef]
- Dost, K.; Jones, D.C.; Davidson, G. Determination of sulfonamides by packed column supercritical fluid chromatography with atmospheric pressure chemical ionisation mass spectrometric detection. Analyst 2000, 125, 1243–1247. [Google Scholar] [CrossRef]
- Rana, M.S.; Lee, S.Y.; Kang, H.J.; Hur, S.J. Reducing veterinary drug residues in animal products: A review. Food Sci. Anim. Resour. 2019, 39, 687. [Google Scholar] [CrossRef]
- Agyare, C.; Boamah, V.E.; Zumbi, C.N.; Osei, F.B. Antibiotic use in poultry production and its effects on bacterial resistance. In Antimicrob Resist—A Global Threat; InTech Open: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef] [Green Version]
- Cerniglia, C.E.; Kotarski, S. Evaluation of Veterinary Drug Residues in Food for Their Potential to Affect Human Intestinal Microflora. Regul. Toxicol. Pharmacol. 1999, 29, 238–261. [Google Scholar] [CrossRef]
- Wenfeng, S.; Juan, Z.; Yongjian, G.; Hui, D.; Liangwei, Q. Application of Probiotics in Pig Industry as a Substitute of Antibiotics. Anim. Husb. Feed Sci. 2015, 7, 15–17. [Google Scholar]
- Beyene, T. Veterinary drug residues in food-animal products: Its risk factors and potential effects on public health. J. Vet. Sci. Technol. 2016, 7, 1–7. [Google Scholar] [CrossRef]
- Ishak, M.A.; Ali, H.M.; Kheder, S.I. Prevalence and knowledge of antibiotics misuse and resistance in poultry and livestock in Khartoum State-Sudan. Sudan Med. Monit. 2017, 12, 45–50. [Google Scholar]
- Food and Drug Administration. CFR-Code of Federal Regulations Title 21; US Food and Drug Administration: Washington, DC, USA, 2018. [Google Scholar]
- The European Medicines Agency. Commission Regulation(EU) No. 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin; The European Medicines Agency: Amsterdam, The Netherlands, 2010. [Google Scholar]
- State Administration for Market Regulation; National Health Commission; Ministry of Agriculture and Rural Affairs. The National Food Safety Standard-Maximum Residue Limits for Veterinary Drugs in Food; State Administration for Market Regulation: Beijing, China, 2019. [Google Scholar]
- Nisha, A.R. Antibiotic residues-a global health hazard. Vet. World 2008, 1, 375. [Google Scholar] [CrossRef]
- Cornejo, J.; Pokrant, E.; Figueroa, F.; Riquelme, R.; Galdames, P.; Di Pillo, F.; Jimenez-Bluhm, P.; Hamilton-West, C. Assessing antibiotic residues in poultry eggs from backyard production systems in Chile, first approach to a non-addressed issue in farm animals. Animals 2020, 10, 1056. [Google Scholar] [CrossRef]
- Moudgil, P.; Bedi, J.S.; Moudgil, A.D.; Gill, J.P.; Aulakh, R.S. Emerging issue of antibiotic resistance from food producing animals in India: Perspective and legal framework. Food Rev. Int. 2018, 34, 447–462. [Google Scholar] [CrossRef]
- Galadima, H.B.; Geidam, Y.A.; Shamaki, B.U.; Abdulrahman, H.I.; Ibrahim, B.; Gulani, I.A. Screening of Antimicrobial Residue in Commercial Eggs in Maiduguri Metropolis, Borno State. Annu. Res. Rev. Biol. 2018, 25, 1–6. [Google Scholar] [CrossRef]
- Ververis, E.; Ackerl, R.; Azzollini, D.; Colombo, P.A.; de Sesmaisons, A.; Dumas, C.; Fernandez-Dumont, A.; da Costa, L.F.; Germini, A.; Goumperis, T.; et al. Novel foods in the European Union: Scientific requirements and challenges of the risk assessment process by the European Food Safety Authority. Food Res. Int. 2020, 137, 109515. [Google Scholar] [CrossRef] [PubMed]
- Schulze, H.; Albersmeier, F.; Gawron, J.C.; Spiller, A.; Theuvsen, L. Heterogeneity in the evaluation of quality assurance systems: The International Food Standard (IFS) in European agribusiness. Int. Food Agribus. Manag. Rev. 2008, 11, 99–138. [Google Scholar]
- Cháfer-Pericás, C.; Maquieira, Á.; Puchades, R.; Miralles, J.; Moreno, A. Multiresidue determination of antibiotics in feed and fish samples for food safety evaluation. Comparison of immunoassay vs LC-MS-MS. Food Control. 2011, 22, 993–999. [Google Scholar] [CrossRef]
- Chinese Nutrition Society. Dietary Guidelines for Chinese Residents; People’s Medical Publishing House: Beijing, China, 2019. [Google Scholar]
- Lili, L.; Shaodong, L. Analysis on detection results of 6 veterinary drug residues in poultry eggs in Beihai city from 2019 to 2020. China Food Saf. Mag. 2021, 19, 86–88. [Google Scholar]
- Teglia, C.M.; Guiñez, M.; Culzoni, M.J.; Cerutti, S. Determination of residual enrofloxacin in eggs due to long term administration to laying hens. Analysis of the consumer exposure assessment to egg derivatives. Food Chem. 2021, 351, 129279. [Google Scholar] [CrossRef]
- Kang, J.; Hossain, M.; Park, H.C.; Park, S.W.; Her, M. Cross-Contamination of Enrofloxacin in Veterinary Medicinal and Nutritional Products in Korea. Antibiotics 2021, 10, 128. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, T.; Cui, L.; Shi, Y.; Sha, Y. Discussion on the Bacteriostatic Mechanism of Sulfanilamide Compounds via Transition State Theory. Sci. Sin. Vitae 2013, 43, 778–787. [Google Scholar]
- Del Prete, S.; Vullo, D.; De Luca, V.; Carginale, V.; Osman, S.M.; AlOthman, Z.; Supuran, C.T.; Capasso, C. Cloning, expression, purification and sulfonamide inhibition profile of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum. Bioorg. Med. Chem. Lett. 2016, 26, 4184–4190. [Google Scholar] [CrossRef]
- Krungkrai, J.; Supuran, C.T. The alpha-carbonic anhydrase from the malaria parasite and its inhibition. Curr. Pharm. Des. 2008, 14, 631–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhiheng, W.; Yiliang, Z.; Mei, T.; Nan, C.; Bing, L.; Caiyun, Z. Research on the metabolic cycle of antibiotics in eggs. Chin. Livest. Poult. Breed. 2021, 10, 53–56. [Google Scholar]
- Bilandžić, N.; Božić, Đ.; Kolanović, B.S.; Varenina, I.; Cvetnić, L.; Cvetnić, Ž. Distribution of sulfamonomethoxine and trimethoprim in egg yolk and white. Food Chem. 2015, 178, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Meng, F.; Cui, Y.; Yin, M.; Ning, H.; Yin, Z.; Chen, L.; Ge, Y.; Liu, S. Growth and cardiovascular development are repressed by florfenicol exposure in early chicken embryos. Poult. Sci. 2020, 99, 2736–2745. [Google Scholar] [CrossRef] [PubMed]
Antibiotcs | Limit of Detection (μg/kg) |
---|---|
Enrofloxacin | 0.1 |
Sarafloxacin | 0.5 |
Darfloxacin | 0.1 |
Norfloxacin | 0.5 |
Lomefloxacin | 0.02 |
Sulfamonomethoxine | 0.02 |
Sulfadimidine | 0.02 |
Sulfamethoxazole | 0.1 |
Sulfadimethoxine | 0.02 |
Sulfaquinoxaline | 0.2 |
Sulfachloropyrazine sodium | 0.2 |
Sulfaclodazine sodium | 0.02 |
Amantadine | 0.5 |
Rimantadine | 0.5 |
Tylosin | 0.2 |
Tilmicosin | 0.5 |
Erythromycin | 0.02 |
Azithromycin | 0.5 |
Oxytetracycline | 0.02 |
Tetracycline | 0.02 |
Doxycycline | 0.02 |
Aureomycin | 0.2 |
Lincomycin | 0.02 |
Florfenicol | 0.02 |
Years | Detection Rate % | Average Detection Rate % |
---|---|---|
2018 | 8.98 (45/501) | 8.59% (104/1211) |
2019 | 10.86 (38/350) | |
2020 | 5.83 (21/360) |
Antibiotics | Detectable Numbers | Detectable Rate % | Average Detectable Numbers | Average Detectable Rate % | Residual Concentration (μg/kg) | |||
---|---|---|---|---|---|---|---|---|
Min | Max | Average | ||||||
Fluoroquin-olones | Enrofloxacin | 1 | 0.20 | 1 | 0.20 | ND | 81.58 | 0.2631 |
Sarafloxacin | ND | ND | ND | ND | ND | |||
Darfloxacin | ND | ND | ND | ND | ND | |||
Pefloxacin | ND | ND | ND | ND | ND | |||
Lomefloxacin | ND | ND | ND | ND | ND | |||
Sulfonamid-es | Sulfamonometho-xine | 4 | 0.80 | 19 | 3.40 | ND | 1.18 | 0.0254 |
Sulfadimidine | 2 | 0.40 | ND | 5.89 | 0.0285 | |||
Sulfamethoxazole | 4 | 0.80 | ND | 91.26 | 0.3035 | |||
Sulfadimethoxine | ND | ND | ND | ND | ND | |||
Sulfaquinoxaline | 6 | 1.20 | ND | 13.11 | 0.2460 | |||
Sulfachloropyrazi-ne sodium | 3 | 0.60 | ND | 224 | 0.5625 | |||
Sulfaclodazine sodium | ND | ND | ND | ND | ND | |||
Antivirals | Amantadine | ND | ND | ND | ND | ND | ND | ND |
Rimantadine | ND | ND | ND | ND | ND | |||
Macrolides | Tylosin | ND | ND | 4 | 0.80 | ND | ND | ND |
Tilmicosin | 4 | 0.80 | ND | 24.21 | 0.5739 | |||
Erythromycin | ND | ND | ND | ND | ND | |||
Azithromycin | ND | ND | ND | ND | ND | |||
Tetracyclin-es | Oxytetracycline | ND | ND | 5 | 1.00 | ND | ND | ND |
Tetracycline | ND | ND | ND | ND | ND | |||
Doxycycline | 5 | 1.00 | ND | 22.31 | 0.0539 | |||
Aureomycin | ND | ND | ND | ND | ND | |||
Other | Lincomycin | 1 | 0.20 | 1 | 0.20 | ND | 8.05 | 0.0360 |
Florfenicol | 15 | 3.00 | 15 | 3.00 | ND | 106.8 | 2.2990 |
Antibiotics | Detectable Numbers | Detectable Rate % | Average Detectable Numbers | Average Detectable Rate % | Residual Concentration (μg/kg) | |||
---|---|---|---|---|---|---|---|---|
Min | Max | Average | ||||||
Fluoroquino-lones | Enrofloxacin | 4 | 1.14 | 4 | 1.14 | ND | 1.94 | 0.1143 |
Sarafloxacin | ND | ND | ND | ND | ND | |||
Darfloxacin | ND | ND | ND | ND | ND | |||
Pefloxacin | ND | ND | ND | ND | ND | |||
Lomefloxacin | ND | ND | ND | ND | ND | |||
Sulfonamid-es | Sulfamonometho-xine | 5 | 1.43 | 11 | 3.14 | ND | 99.07 | 0.5601 |
Sulfadimidine | 1 | 0.29 | ND | 7.44 | 0.0412 | |||
Sulfamethoxazole | 2 | 0.57 | ND | 7.30 | 0.1116 | |||
Sulfadimethoxine | ND | ND | ND | ND | ND | |||
Sulfaquinoxaline | 3 | 0.86 | ND | 4.20 | 0.2240 | |||
Sulfachloropyraz-ine sodium | ND | ND | ND | ND | ND | |||
Sulfaclodazine sodium | ND | ND | ND | ND | ND | |||
Antivirals | Amantadine | ND | ND | ND | ND | ND | ND | ND |
Rimantadine | ND | ND | ND | ND | ND | |||
Macrolides | Tylosin | ND | ND | ND | ND | ND | ND | ND |
Tilmicosin | ND | ND | ND | ND | ND | |||
Erythromycin | ND | ND | ND | ND | ND | |||
Azithromycin | ND | ND | ND | ND | ND | |||
Tetracyclines | Oxytetracycline | ND | ND | ND | ND | ND | ND | ND |
Tetracycline | ND | ND | ND | ND | ND | |||
Doxycycline | ND | ND | ND | ND | ND | |||
Aureomycin | ND | ND | ND | ND | ND | |||
Other | Lincomycin | ND | ND | ND | ND | ND | ND | ND |
Florfenicol | 26 | 7.43 | 26 | 7.43 | ND | 290.79 | 1.011 |
Antibiotics | Detectable Numbers | Detectable Rate % | Average Detectable Numbers | Average Detectable Rate % | Residual Concentration (μg/kg) | |||
---|---|---|---|---|---|---|---|---|
Min | Max | Average | ||||||
Fluoroquino-lones | Enrofloxacin | 3 | 0.83 | 6 | 1.67 | ND | 193.08 | 0.7169 |
Sarafloxacin | 2 | 0.56 | ND | 12.51 | 0.5333 | |||
Darfloxacin | 1 | 0.28 | ND | 2.13 | 0.1056 | |||
Pefloxacin | ND | ND | ND | ND | ND | |||
Lomefloxacin | ND | ND | ND | ND | ND | |||
Sulfonamid-es | Sulfamonometho-xine | 3 | 0.83 | 9 | 2.5 | ND | 350.88 | 0.5194 |
Sulfadimidine | ND | ND | ND | ND | ND | |||
Sulfamethoxazole | ND | ND | ND | ND | ND | |||
Sulfadimethoxine | ND | ND | ND | ND | ND | |||
Sulfaquinoxaline | 2 | 0.56 | ND | 2.24 | 0.2049 | |||
Sulfachloropyraz-ine sodium | 4 | 1.11 | ND | 6.23 | 0.2278 | |||
Sulfaclodazine sodium | ND | ND | ND | ND | ND | |||
Antivirals | Amantadine | ND | ND | ND | ND | ND | ND | ND |
Rimantadine | ND | ND | ND | ND | ||||
Macrolides | Tylosin | ND | ND | ND | ND | ND | ND | ND |
Tilmicosin | ND | ND | ND | ND | ND | |||
Erythromycin | ND | ND | ND | ND | ND | |||
Azithromycin | ND | ND | ND | ND | ND | |||
Tetracyclines | Oxytetracycline | ND | ND | 2 | 0.56 | ND | ND | ND |
Tetracycline | ND | ND | ND | ND | ND | |||
Doxycycline | 2 | 0.56 | ND | 24.29 | 0.1194 | |||
Aureomycin | ND | ND | ND | ND | ND | |||
Other | Lincomycin | 3 | 0.83 | 3 | 0.83 | ND | 12.21 | 0.0766 |
Florfenicol | 7 | 1.94 | 7 | 1.94 | ND | 360.69 | 0.9957 |
Antibiotics | Concentration (μg/kg) | 2018 | 2019 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | |||
Fluoroquinolones | Enrofloxacin | Min | 5.79 × 10−5 | 6.83 × 10−6 | 5.79 × 10−6 | 6.83 × 10−6 | 5.79 × 10−6 | 6.83 × 10−6 |
Max | 4.73 × 10−3 | 5.58 × 10−3 | 1.12 × 10−5 | 1.33 × 10−4 | 1.12 × 10−2 | 1.32 × 10−2 | ||
Average | 1.52 × 10−5 | 1.80 × 10−5 | 6.62 × 10−6 | 7.81 × 10−6 | 4.15 × 10−5 | 4.90 × 10−5 | ||
Ciprofloxacin | Min | ND | ND | ND | ND | 5.99 × 10−5 | 7.06 × 10−5 | |
Max | ND | ND | ND | ND | 1.50 × 10−3 | 1.77 × 10−3 | ||
Average | ND | ND | ND | ND | 6.39 × 10−5 | 7.53 × 10−4 | ||
Norfloxacin | Min | ND | ND | ND | ND | 1.80 × 10−6 | 2.12 × 10−6 | |
Max | ND | ND | ND | ND | 3.83 × 10−5 | 4.51 × 10−5 | ||
Average | ND | ND | ND | ND | 1.90 × 10−6 | 2.24 × 10−6 | ||
Sulfonamides | Sarafloxacin | Min | 1.44 × 10−7 | 1.69 × 10−7 | 1.44 × 10−7 | 1.69 × 10−7 | 1.44 × 10−7 | 1.69 × 10−7 |
Max | 8.48 × 10−6 | 1.00 × 10−5 | 7.12 × 10−4 | 8.40 × 10−4 | 2.52 × 10−3 | 2.97 × 10−3 | ||
Average | 1.82 × 10−7 | 2.15 × 10−7 | 4.02 × 10−6 | 4.75 × 10−6 | 3.73 × 10−6 | 4.40 × 10−6 | ||
Difluoroxacin | Min | 1.44 × 10−7 | 1.69 × 10−7 | 1.44 × 10−7 | 1.69 × 10−7 | ND | ND | |
Max | 4.23 × 10−6 | 4.99 × 10−5 | 5.34 × 10−5 | 6.31 × 10−5 | ND | ND | ||
Average | 2.05 × 10−7 | 2.42 × 10−7 | 2.96 × 10−7 | 3.49 × 10−7 | ND | ND | ||
Ofloxacin | Min | 7.18 × 10−7 | 8.47 × 10−7 | 7.18 × 10−7 | 8.47 × 10−7 | ND | ND | |
Max | 6.56 × 10−4 | 7.73 × 10−4 | 5.24 × 10−5 | 6.19 × 10−5 | ND | ND | ||
Average | 2.18 × 10−6 | 2.57 × 10−6 | 8.02 × 10−7 | 9.46 × 10−7 | ND | ND | ||
Sulfamonomethoxine | Min | 1.44 × 10−6 | 1.69 × 10−6 | 1.44 × 10−6 | 1.69 × 10−6 | 1.44 × 10−6 | 1.69 × 10−6 | |
Max | 9.42 × 10−5 | 1.11 × 10−4 | 3.02 × 10−5 | 3.56 × 10−5 | 1.61 × 10−5 | 1.90 × 10−5 | ||
Average | 1.77 × 10−6 | 2.08 × 10−6 | 1.61 × 10−6 | 1.90 × 10−6 | 1.47 × 10−6 | 1.73 × 10−6 | ||
Sulfadimidine | Min | 1.44 × 10−6 | 1.69 × 10−6 | ND | ND | 1.44 × 10−6 | 1.69 × 10−6 | |
Max | 1.61 × 10−3 | 1.90 × 10−3 | ND | ND | 4.48 × 10−5 | 5.28 × 10−5 | ||
Average | 4.04 × 10−6 | 4.77 × 10−6 | ND | ND | 1.63 × 10−6 | 1.93 × 10−6 | ||
Macrolides | Sulfamethoxazole | Min | 4.49 × 10−6 | 5.30 × 10−6 | ND | ND | ND | ND |
Max | 2.17 × 10−4 | 2.56 × 10−4 | ND | ND | ND | ND | ||
Average | 5.15 × 10−6 | 6.08 × 10−6 | ND | ND | ND | ND | ||
Tetracyclines | Sulfaquinoxaline | Min | 2.39 × 10−6 | 2.82 × 10−6 | ND | ND | 2.39 × 10−6 | 2.82 × 10−6 |
Max | 2.67 × 10−3 | 3.15 × 10−3 | ND | ND | 2.91 × 10−3 | 3.43 × 10−3 | ||
Average | 6.45 × 10−6 | 7.61 × 10−6 | ND | ND | 1.43 × 10−5 | 1.69 × 10−5 | ||
Other | Sulfachloropyrazine sodium | Min | 2.39 × 10−7 | 2.83 × 10−7 | ND | ND | 2.39 × 10−7 | 2.82 × 10−7 |
Max | 9.64 × 10−5 | 1.14 × 10−4 | ND | ND | 1.46 × 10−4 | 1.72 × 10−4 | ||
Average | 4.31 × 10−7 | 5.08 × 10−7 | ND | ND | 9.17 × 10−7 | 1.08 × 10−6 | ||
Tilmicosin | Min | 2.39 × 10−6 | 2.82 × 10−6 | 2.39 × 10−6 | 2.82 × 10−6 | 2.39 × 10−6 | 2.82 × 10−6 | |
Max | 1.28 × 10−2 | 1.51 × 10−2 | 3.48 × 10−2 | 4.11 × 10−2 | 4.32 × 10−2 | 5.09 × 10−2 | ||
Average | 2.75 × 10−4 | 3.25 × 10−4 | 1.21 × 10−4 | 1.43 × 10−4 | 1.19 × 10−4 | 1.41 × 10−4 |
Antibiotics | Concentration (μg/kg) | 2018 | 2019 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | |||
Fluoroquinolones | Enrofloxacin | Min | 1.16 × 10−5 | 1.37 × 10−5 | 1.16 × 10−5 | 1.37 × 10−5 | 1.16 × 10−5 | 1.37 × 10−5 |
Max | 9.45 × 10−3 | 1.12 × 10−2 | 2.25 × 10−4 | 2.65 × 10−4 | 2.24 × 10−2 | 2.64 × 10−2 | ||
Average | 3.05 × 10−5 | 3.60 × 10−5 | 1.32 × 10−5 | 1.56 × 10−5 | 8.31 × 10−6 | 9.80 × 10−5 | ||
Ciprofloxacin | Min | ND | ND | ND | ND | 1.20 × 10−4 | 1.41 × 10−4 | |
Max | ND | ND | ND | ND | 3.00 × 10−3 | 3.53 × 10−3 | ||
Average | ND | ND | ND | ND | 1.28 × 10−4 | 1.51 × 10−4 | ||
Norfloxacin | Min | ND | ND | ND | ND | 3.59 × 10−6 | 4.24 × 10−6 | |
Max | ND | ND | ND | ND | 7.65 × 10−5 | 9.03 × 10−5 | ||
Average | ND | ND | ND | ND | 3.79 × 10−6 | 4.47 × 10−6 | ||
Sulfonamides | Sarafloxacin | Min | 1.44 × 10−7 | 1.69 × 10−7 | 2.87 × 10−7 | 3.39 × 10−7 | 2.87 × 10−7 | 3.39 × 10−7 |
Max | 1.70 × 10−5 | 2.00 × 10−5 | 1.42 × 10−3 | 1.68 × 10−3 | 5.04 × 10−3 | 5.95 × 10−3 | ||
Average | 3.65 × 10−7 | 4.31 × 10−7 | 8.05 × 10−6 | 9.49 × 10−6 | 7.46 × 10−6 | 8.80 × 10−6 | ||
Difluoroxacin | Min | 1.44 × 10−7 | 1.69 × 10−7 | 2.87 × 10−7 | 3.39 × 10−7 | ND | ND | |
Max | 8.46 × 10−5 | 9.98 × 10−5 | 1.07 × 10−4 | 1.26 × 10−4 | ND | ND | ||
Average | 4.09 × 10−7 | 4.83 × 10−7 | 5.92 × 10−7 | 6.98 × 10−7 | ND | ND | ||
Ofloxacin | Min | 7.18 × 10−7 | 8.47 × 10−7 | 1.44 × 10−6 | 1.69 × 10−6 | ND | ND | |
Max | 1.31 × 10−3 | 1.55 × 10−3 | 1.05 × 10−4 | 1.24 × 10−4 | ND | ND | ||
Average | 4.36 × 10−6 | 5.14 × 10−6 | 1.60 × 10−6 | 1.89 × 10−6 | ND | ND | ||
Sulfamonomethoxine | Min | 1.44 × 10−6 | 1.69 × 10−6 | 2.87 × 10−6 | 3.39 × 10−6 | 2.87 × 10−6 | 3.39 × 10−6 | |
Max | 1.88 × 10−4 | 2.22 × 10−4 | 6.03 × 10−5 | 7.12 × 10−5 | 3.21 × 10−5 | 3.80 × 10−5 | ||
Average | 3.53 × 10−6 | 4.17 × 10−6 | 3.22 × 10−6 | 3.80 × 10−6 | 2.94 × 10−6 | 3.47 × 10−6 | ||
Sulfadimidine | Min | 1.44 × 10−6 | 1.69 × 10−6 | ND | ND | 2.87 × 10−6 | 3.39 × 10−6 | |
Max | 3.22 × 10−3 | 3.80 × 10−3 | ND | ND | 8.95 × 10−5 | 1.06 × 10−4 | ||
Average | 8.08 × 10−6 | 9.53 × 10−6 | ND | ND | 3.27 × 10−6 | 3.86 × 10−6 | ||
Macrolides | Sulfamethoxazole | Min | 4.49 × 10−6 | 5.30 × 10−6 | ND | ND | ND | ND |
Max | 4.35 × 10−4 | 5.13 × 10−4 | ND | ND | ND | ND | ||
Average | 1.03 × 10−5 | 1.22 × 10−5 | ND | ND | ND | ND | ||
Tetracyclines | Sulfaquinoxaline | Min | 2.39 × 10−6 | 2.82 × 10−6 | ND | ND | 4.79 × 10−6 | 5.65 × 10−6 |
Max | 5.34 × 10−3 | 6.30 × 10−3 | ND | ND | 5.82 × 10−3 | 6.86 × 10−3 | ||
Average | 1.29 × 10−5 | 1.52 × 10−5 | ND | ND | 2.86 × 10−5 | 3.37 × 10−5 | ||
Other | Sulfachloropyrazine sodium | Min | 2.39 × 10−7 | 2.83 × 10−7 | ND | ND | 4.79 × 10−7 | 5.65 × 10−7 |
Max | 1.93 × 10−4 | 2.27 × 10−4 | ND | ND | 2.92 × 10−4 | 3.45 × 10−4 | ||
Average | 8.62 × 10−7 | 1.02 × 10−6 | ND | ND | 1.83 × 10−6 | 2.15 × 10−6 | ||
Tilmicosin | Min | 2.39 × 10−6 | 2.82 × 10−6 | 4.79 × 10−6 | 5.65 × 10−6 | 4.79 × 10−6 | 5.65 × 10−6 | |
Max | 2.56 × 10−2 | 3.02 × 10−2 | 6.96 × 10−2 | 8.21 × 10−2 | 8.64 × 10−2 | 0.102 | ||
Average | 5.51 × 10−4 | 6.49 × 10−4 | 2.42 × 10−4 | 2.86 × 10−4 | 2.38 × 10−4 | 2.81 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Chen, L.; Yin, L.; Li, Y.; Yang, X.; Yang, Z.; Li, G.; Shan, H. Risk Analysis of 24 Residual Antibiotics in Poultry Eggs in Shandong, China (2018–2020). Vet. Sci. 2022, 9, 126. https://doi.org/10.3390/vetsci9030126
Ma X, Chen L, Yin L, Li Y, Yang X, Yang Z, Li G, Shan H. Risk Analysis of 24 Residual Antibiotics in Poultry Eggs in Shandong, China (2018–2020). Veterinary Sciences. 2022; 9(3):126. https://doi.org/10.3390/vetsci9030126
Chicago/Turabian StyleMa, Xiaoyu, Ling Chen, Lingling Yin, Youzhi Li, Xiuzhen Yang, Zhiguo Yang, Guihua Li, and Hu Shan. 2022. "Risk Analysis of 24 Residual Antibiotics in Poultry Eggs in Shandong, China (2018–2020)" Veterinary Sciences 9, no. 3: 126. https://doi.org/10.3390/vetsci9030126
APA StyleMa, X., Chen, L., Yin, L., Li, Y., Yang, X., Yang, Z., Li, G., & Shan, H. (2022). Risk Analysis of 24 Residual Antibiotics in Poultry Eggs in Shandong, China (2018–2020). Veterinary Sciences, 9(3), 126. https://doi.org/10.3390/vetsci9030126