Interpolation of Point Prevalence Rate of the Highly Pathogenic Avian Influenza Subtype H5N8 Second Phase Epidemic in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inverse Distance Weighting (IDW)
2.2. Kriging
- A structural component with a fixed mean or pattern.
- A regionalized variable that is random yet geographically associated element.
- A noise or residual component that is random yet spatially uncorrelated.
3. Results
Descriptive Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, D.J. An overview of the epidemiology of avian influenza. Vaccine 2007, 25, 5637–5644. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, S.; Onuma, M.; Goka, K. Potential risk map for avian influenza A virus invading Japan. Divers. Distrib. 2012, 1, 78–85. [Google Scholar] [CrossRef]
- Lever, C. The Mandarin Duck; Bloomsbury Publishing: London, UK, 2013. [Google Scholar]
- Lee, D.-H.; Park, J.-K.; Youn, H.-N.; Lee, Y.-N.; Lim, T.-H.; Kim, M.-S.; Lee, J.-B.; Park, S.-Y.; Choi, I.-S.; Song, C.-S. Surveillance and Isolation of HPAI H5N1 from Wild Mandarin Ducks (Aix galericulata). J. Wildl. Dis. 2011, 47, 994–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, J.-H.; Lee, D.-H.; Swayne, D.; Noh, J.-Y.; Yuk, S.-S.; Erdene-Ochir, T.-O.; Hong, W.-T.; Jeong, J.-H.; Jeong, S.; Gwon, G.-B.; et al. Highly Pathogenic Avian Influenza A(H5N8) Viruses Reintroduced into South Korea by Migratory Waterfowl, 2014–2015. Emerg. Infect. Dis. 2016, 22, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-M.; Lee, E.-K.; Song, B.-M.; Heo, G.-B.; Jung, J.; Jang, I.; Bae, Y.-C.; Jung, S.C.; Lee, Y.-J. Experimental infection of mandarin duck with highly pathogenic avian influenza A (H5N8 and H5N1) viruses. Veter. Microbiol. 2017, 198, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.-H.; Noh, Y.K.; Lee, D.-H.; Yuk, S.-S.; Erdene-Ochir, T.-O.; Noh, J.-Y.; Hong, W.-T.; Jeong, J.-H.; Jeong, S.; Gwon, G.-B.; et al. Experimental infection with highly pathogenic H5N8 avian influenza viruses in the Mandarin duck (Aix galericulata) and domestic pigeon (Columba livia domestica). Veter. Microbiol. 2017, 203, 95–102. [Google Scholar] [CrossRef]
- Son, K.; Kim, Y.-K.; Oem, J.-K.; Jheong, W.-H.; Sleeman, J.M.; Jeong, J. Experimental infection of highly pathogenic avian influenza viruses, Clade 2.3.4.4 H5N6 and H5N8, in Mandarin ducks from South Korea. Transbound. Emerg. Dis. 2018, 65, 899–903. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Lee, D.-H.; Kwon, J.-H.; Kim, Y.-J.; Lee, S.-H.; Cho, A.Y.; Kim, T.-H.; Park, J.-E.; Lee, S.-I.; Song, C.-S. Highly Pathogenic Avian Influenza Clade 2.3.4.4b Subtype H5N8 Virus Isolated from Mandarin Duck in South Korea. Viruses 2020, 12, 1389. [Google Scholar] [CrossRef]
- Global Consortium for H5N8 and Related Influenza Viruses. Role for migratory wild birds in the global spread of avian influenza H5N8. Science 2016, 354, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.S.; Chen, L.H.; Chen, Y.P.; Liu, Y.P.; Li, W.C.; Lin, Y.L.; Lee, F. Highly pathogenic avian influenza viruses H5N2, H5N3, and H5N8 in Taiwan in Vet. Microbiology 2016, 187, 50–57. [Google Scholar]
- Baek, Y.-G.; Lee, Y.-N.; Lee, D.-H.; Shin, J.-I.; Lee, J.-H.; Chung, D.; Lee, E.-K.; Heo, G.-B.; Sagong, M.; Kye, S.-J.; et al. Multiple Reassortants of H5N8 Clade 2.3.4.4b Highly Pathogenic Avian Influenza Viruses Detected in South Korea during the Winter of 2020–2021. Viruses 2021, 13, 490. [Google Scholar] [CrossRef]
- Short, K.; Richard, M.; Verhagen, J.H.; van Riel, D.; Schrauwen, E.J.; Brand, J.M.V.D.; Mänz, B.; Bodewes, R.; Herfst, S. One health, multiple challenges: The inter-species transmission of influenza A virus. One Health 2015, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Song, B.-M.; Lee, E.-K.; Lee, Y.-N.; Heo, G.-B.; Lee, H.-S.; Lee, Y.-J. Phylogeographical characterization of H5N8 viruses isolated from poultry and wild birds during 2014–2016 in South Korea. J. Veter. Sci. 2017, 18, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.; Bahl, J.; Swayne, D.E.; Lee, Y.; Lee, Y.; Song, C.; Lee, D. Domestic ducks play a major role in the maintenance and spread of H5N8 highly pathogenic avian influenza viruses in South Korea. Transbound. Emerg. Dis. 2019, 67, 844–851. [Google Scholar] [CrossRef]
- Hill, S.C.; Lee, Y.-J.; Song, B.-M.; Kang, H.-M.; Lee, E.-K.; Hanna, A.; Gilbert, M.; Brown, I.H.; Pybus, O.G. Wild waterfowl migration and domestic duck density shape the epidemiology of highly pathogenic H5N8 influenza in the Republic of Korea. Infect. Genet. Evol. 2015, 34, 267–277. [Google Scholar] [CrossRef]
- Beerens, N.; Germeraad, E.A.; Venema, S.; Verheij, E.; Pritz-Verschuren, S.B.; Gonzales, J.L. Comparative pathogenicity and environmental transmission of recent highly pathogenic avian influenza H5 viruses. Emerg. Microbes Infect. 2021, 10, 97–108. [Google Scholar] [CrossRef]
- Kim, W.-H.; An, J.-U.; Kim, J.; Moon, O.-K.; Bae, S.H.; Bender, J.; Cho, S. Risk factors associated with highly pathogenic avian influenza subtype H5N8 outbreaks on broiler duck farms in South Korea. Transbound. Emerg. Dis. 2018, 65, 1329–1338. [Google Scholar] [CrossRef]
- Jeong, J.; Kang, H.-M.; Lee, E.-K.; Song, B.-M.; Kwon, Y.-K.; Kim, H.-R.; Choi, K.-S.; Kim, J.-Y.; Lee, H.-J.; Moon, O.-K.; et al. Highly pathogenic avian influenza virus (H5N8) in domestic poultry and its relationship with migratory birds in South Korea during 2014. Veter. Microbiol. 2014, 173, 249–257. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Kang, H.-M.; Lee, E.-K.; Song, B.-M.; Jeong, J.; Kwon, Y.-K.; Kim, H.-R.; Lee, K.-J.; Hong, M.-S.; Jang, I.; et al. Novel Reassortant Influenza A(H5N8) Viruses, South Korea. Emerg. Infect. Dis. 2014, 20, 1086–1089. [Google Scholar] [CrossRef]
- Tian, H.; Zhou, S.; Dong, L.; Van Boeckel, T.P.; Cui, Y.; Newman, S.H.; Takekawa, J.Y.; Prosser, D.J.; Xiao, X.; Wu, Y.; et al. Avian influenza H5N1 viral and bird migration networks in Asia. Proc. Natl. Acad. Sci. USA 2014, 112, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Palm, E.C.; Newman, S.H.; Prosser, D.J.; Xiao, X.; Ze, L.; Batbayar, N.; Balachandran, S.; Takekawa, J.Y. Mapping migratory flyways in Asia using dynamic Brownian bridge movement models. Mov. Ecol. 2015, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Newman, S.H.; Iverson, S.A.; Takekawa, J.Y.; Gilbert, M.; Prosser, D.J.; Batbayar, N.; Natsagdorj, T.; Douglas, D.C. Migration of Whooper Swans and Outbreaks of Highly Pathogenic Avian Influenza H5N1 Virus in Eastern Asia. PLoS ONE 2009, 4, e5729. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.-H.; Jeong, S.; Lee, D.-H.; Swayne, D.E.; Kim, Y.; Lee, S.; Noh, J.-Y.; Erdene-Ochir, T.-O.; Jeong, J.-H.; Song, C.-S. New Reassortant Clade 2.3.4.4b Avian Influenza A(H5N6) Virus in Wild Birds, South Korea, 2017–18. Emerg. Infect. Dis. 2018, 24, 1953–1955. [Google Scholar] [CrossRef] [Green Version]
- Yoo, D.-S.; Chun, B.; Min, K.-D.; Lim, J.-S.; Moon, O.-K.; Lee, K.-N. Elucidating the Local Transmission Dynamics of Highly Pathogenic Avian Influenza H5N6 in the Republic of Korea by Integrating Phylogenetic Information. Pathogens 2021, 10, 691. [Google Scholar] [CrossRef]
- Yoo, D.-S.; Chun, B.C.; Kim, Y.; Lee, K.-N.; Moon, O.-K. Dynamics of inter-farm transmission of highly pathogenic avian influenza H5N6 integrating vehicle movements and phylogenetic information. Sci. Rep. 2021, 11, 24163. [Google Scholar] [CrossRef]
- Burrough, P.A. Principles of geographical information systems for land resources assessment. Geocarto Int. 1986, 1, 54. [Google Scholar] [CrossRef]
- Achilleos, G. The Inverse Distance Weighted interpolation method and error propagation mechanism—Creating a DEM from an analogue topographical map. J. Spat. Sci. 2011, 56, 283–304. [Google Scholar] [CrossRef]
- Xu, T.; Liu, Y.; Tang, L.; Liu, C. Improvement of Kriging interpolation with learning kernel in environmental variables study. Int. J. Prod. Res. 2020, 1–14. [Google Scholar] [CrossRef]
- Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Cressie, N. The origins of kriging. Math. Geol. 1990, 22, 239–252. [Google Scholar] [CrossRef]
- Kim, W.-H.; Bae, S.; Cho, S. Spatiotemporal Dynamics of Highly Pathogenic Avian Influenza Subtype H5N8 in Poultry Farms, South Korea. Viruses 2021, 13, 274. [Google Scholar] [CrossRef] [PubMed]
- Gardener, M. Beginning R: The Statistical Programming Language; John Wiley & Sons: Hobocken, NJ, USA, 2012. [Google Scholar]
- Ikechukwu, M.N.; Ebinne, E.; Idorenyin, U.; Raphael, N.I. Accuracy Assessment and Comparative Analysis of IDW, Spline and Kriging in Spatial Interpolation of Landform (Topography): An Experimental Study. J. Geogr. Inf. Syst. 2017, 9, 354–371. [Google Scholar] [CrossRef] [Green Version]
- Watson, D.E. Contouring: A Guide to the Analysis and Display of Spatial Data; Elsevier Science, Inc.: Tarrytown, NY, USA; Pergamon Press: London, UK, 1992. [Google Scholar]
- Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. New Developments in Geographical Information Systems; Principles, Techniques, Management and Applications. In Geographical Information Systems: Principles, Techniques, Management and Applications, 2nd ed.; Longley, P., Goodchild, M., Maguire, D., Rhind, D., Eds.; John Wiley & Sons Inc.: Hobocken, NJ, USA, 2005; p. 404. [Google Scholar]
- Isaaks, E.; Srivastava, R. Applied Geostatistics; Oxford Univ. Press: New York, NY, USA, 1989. [Google Scholar]
- Webster, R.; Oliver, M. Geostatistics for Experimental Scientists; John Wiley and Sons ltd: Chichester, UK, 2001. [Google Scholar]
- Collins, J.; Bolstad, P.V. A comparison of spatial interpolation techniques in temperature estimation. Int. Conf. Workshop Integrat. GIS Environ. Model. 1996, 3, 38. [Google Scholar]
- Ripley, B.D. Mapped Point Patterns. Clin. Trials 1981, 144–190. [Google Scholar] [CrossRef]
- Brus, D.J.; De Gruijter, J.J.; Marsman, B.A.; Visschers, R.; Bregt, A.K.; Breeuwsma, A.; Bouma, J. The performance of spatial interpolation methods and choropleth maps to estimate properties at points: A soil survey case study. Environmetrics 1996, 7, 1–16. [Google Scholar] [CrossRef]
- Burrough, P.A.; Mcdonnell, R.A. Data Models and Axioms. Princ. Geogr. Inf. Syst. 1998, 75, 17–34. [Google Scholar] [CrossRef]
- R Core Development Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: http://cran.r-project.org (accessed on 1 August 2021).
- Baddeley, A.; Turner, R. Package ‘spatstat’. 2021. Available online: https://cran.r-project.org/web/packages/spatstat.data/spatstat.data.pdf (accessed on 25 January 2022).
- Hijmans, R.J.; Van Etten, J.; Cheng, J.; Mattiuzzi, M.; Sumner, M.; Greenberg, J.A.; Lamigueiro, O.P.; Bevan, A.; Racine, E.B.; Shortridge, A.; et al. Package ‘raster’. R package. 2015, 18, 734. Available online: https://mran.microsoft.com/snapshot/2015-03-02/web/packages/raster/raster.pdf (accessed on 25 January 2022).
- Pebesma, E.; Bivand, R.; Pebesma, M.E.; RColorBrewer, S.; Collate, A.A.A. Package ‘sp’. The Comprehensive R Archive Network. 2012. Available online: https://cran.r-project.org/ (accessed on 25 January 2022).
- Ribeiro, P.J., Jr.; Diggle, P.J.; Christensen, O.; Schlather, M.; Bivand, R.; Ripley, B. Package ‘geoR’. 2020. Available online: https://cran.r-project.org/web/packages/geoR/geoR.pdf (accessed on 25 January 2022).
- Warnes, G.R.; Bolker, B.; Lumley, T.; Warnes, M.G.R. Package ‘gtools’. R Package version, 3(1). 2015. Available online: https://cran.r-project.org/web/packages/gtools/index.html (accessed on 25 January 2022).
- Bates, D.; Martin, M.; Ben, B.; Steven, W.; Rune, H.B.C.; Henrik, S.; Dai, B.; Scheipl, F.; Grothendieck, G. Package ‘lme4’. Linear Mixed-Effects Models Using S4 Classes. R Package Version 1, no. 6. 2011. Available online: https://cran.r-project.org/web/packages/lme4/lme4.pdf (accessed on 25 January 2022).
- Joe, C.; Karambelkar, B.; Xie, Y.; Wickham, H.; Russell, K.; Johnson, K. Create Interactive Web Maps with the JavaScript ‘leaflet’Library. R Package Version 2.0. 4.1. 2021. Available online: https://cran.r-project.org/web/packages/leaflet/index.html (accessed on 25 January 2022).
- Whitcher, B.; Volker, S.; Andrew, T.; Karsten, T.; Jon, C. Package ‘oro. nifti’. 2013. Available online: http://www2.uaem.mx/r-mirror/web/packages/oro.nifti/oro.nifti.pdf (accessed on 25 January 2022).
- Anderson, W. Wes Anderson; Faber & Faber: London, UK, 2020. [Google Scholar]
- Sekulić, A.; Kilibarda, M.; Heuvelink, G.B.; Nikolić, M.; Bajat, B. Random Forest Spatial Interpolation. Remote Sens. 2020, 12, 1687. [Google Scholar] [CrossRef]
- Bivand, R.S.; Pebesma, E.; Gómez-Rubio, V. Applied Spatial Data Analysis with R. Vol. 747248717; Springer: Berlin, Germany, 2008. [Google Scholar]
- Yang, R.; Xing, B. A Comparison of the Performance of Different Interpolation Methods in Replicating Rainfall Magnitudes under Different Climatic Conditions in Chongqing Province (China). Atmosphere 2021, 12, 1318. [Google Scholar] [CrossRef]
- Arétouyap, Z.; Nouck, N.P.; Nouayou, R.; Méli’i, J.L.; Kemgang Ghomsi, F.E.; Piepi Toko, A.D.; Asfahani, J. Influence of the Variogram Model on an Interpolative Survey Using Kriging Technique. J. Earth Sci. Clim. Change 2015, 6, 2. [Google Scholar]
- Menezes, R.; Garcia-Soidän, P.; Febrero-Bande, M. A comparison of approaches for valid variogram achievement. Comput. Stat. 2005, 20, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Wild Waterfowl Migration and Domestic Duck Density Shape the Epidemiology of Highly Pathogenic H5N8 Influenza in the Republic of Korea—Scientific Figure on ResearchGate. Available online: https://www.researchgate.net/figure/Maps-showing-domestic-poultry-density-number-per-kilometer-colors-in-key-in-ROK_fig3_278412772 (accessed on 24 February 2022).
- Ajvazi, B.; Czimber, K. A Comparative analysis of different DEM interpolation methods in GIS: Case study of Rahovec, Kosovo. Geodesy Cartogr. 2019, 45, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Perello, S.; Simões, N. Ordinary kriging vs inverse distance weighting: Spatial interpolation of the sessile community of Madagascar reef, Gulf of Mexico. PeerJ 2017, 5, e4078. [Google Scholar] [CrossRef] [Green Version]
- Robinson, T.P.; Wint, G.R.W.; Conchedda, G.; Van Boeckel, T.P.; Ercoli, V.; Palamara, E.; Cinardi, G.; D’Aietti, L.; Hay, S.; Gilbert, M. Mapping the Global Distribution of Livestock. PLoS ONE 2014, 9, e96084. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, J.D.; Takekawa, J.Y.; Spragens, K.A.; Newman, S.H.; Xiao, X.; Leader, P.J.; Smith, B.; Prosser, D.J. Waterfowl Spring Migratory Behavior and Avian Influenza Transmission Risk in the Changing Landscape of the East Asian-Australasian Flyway. Front. Ecol. Evol. 2018, 6, 206. [Google Scholar] [CrossRef] [Green Version]
- Dinh, P.N.; Long, H.T.; Tien, N.T.K.; Mai, L.T.Q.; Phong, L.H.; Van Tuan, L.; Van Tan, H.; Nguyen, N.B.; Van Tu, P.; Phuong, N.T.M. Risk Factors for Human Infection with Avian Influenza A H5N1, Vietnam. Emerg. Infect. Dis. 2006, 12, 1841–1847. [Google Scholar] [CrossRef]
- Shimizu, Y.; Hayama, Y.; Yamamoto, T.; Murai, K.; Tsutsui, T. Matched case-control study of the influence of inland waters surrounding poultry farms on avian influenza outbreaks in Japan. Sci. Rep. 2018, 8, 3306. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, S.; Koh, K.-Y.; Lee, J.-i.; Suh, G.-H.; Lee, C.-M. Interpolation of Point Prevalence Rate of the Highly Pathogenic Avian Influenza Subtype H5N8 Second Phase Epidemic in South Korea. Vet. Sci. 2022, 9, 139. https://doi.org/10.3390/vetsci9030139
Ahmad S, Koh K-Y, Lee J-i, Suh G-H, Lee C-M. Interpolation of Point Prevalence Rate of the Highly Pathogenic Avian Influenza Subtype H5N8 Second Phase Epidemic in South Korea. Veterinary Sciences. 2022; 9(3):139. https://doi.org/10.3390/vetsci9030139
Chicago/Turabian StyleAhmad, Saleem, Kye-Young Koh, Jae-il Lee, Guk-Hyun Suh, and Chang-Min Lee. 2022. "Interpolation of Point Prevalence Rate of the Highly Pathogenic Avian Influenza Subtype H5N8 Second Phase Epidemic in South Korea" Veterinary Sciences 9, no. 3: 139. https://doi.org/10.3390/vetsci9030139
APA StyleAhmad, S., Koh, K. -Y., Lee, J. -i., Suh, G. -H., & Lee, C. -M. (2022). Interpolation of Point Prevalence Rate of the Highly Pathogenic Avian Influenza Subtype H5N8 Second Phase Epidemic in South Korea. Veterinary Sciences, 9(3), 139. https://doi.org/10.3390/vetsci9030139