Local Community Composition Drives Avian Borrelia burgdorferi Infection and Tick Infestation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection
2.2. Host Surveillance: Birds, Small Mammals, Lizards, and Medium to Large Mammals
2.3. Vecotor Surveillance: Bird-Attached and Questing Ticks
2.4. Pathogen Surveillance: Borrelia burgdorferi Sensu Lato Testing
2.5. Statistical Analyses: Probability of Avian Tick Infestation and Borrelia burgdorferi Sensu Lato Infection
3. Results
3.1. Host Community Composition: Birds, Small Mammals, and Medium to Large Mammals
3.2. Vector Suveillance: Bird-Attached and Questing Ticks
3.3. Pathogen Surveillance: Borrelia burgdorferi Sensu Lato Prevalence
3.4. Statistical Analysis: Probability of Avian Tick Burden
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilpatrick, A.M.; Randolph, S.E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 2012, 380, 1946–1955. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, R.; Lindsey, N.P.; Fischer, M.; Gregory, C.J.; Hinckley, A.F.; Mead, P.S.; Paz-Bailey, G.; Waterman, S.H.; Drexler, N.A.; Kersh, G.J.; et al. Vital signs: Trends in reported vectorborne disease cases—United States and Territories, 2004–2016. Morb. Mortal. Wkly. Rep. 2018, 67, 496. [Google Scholar] [CrossRef] [Green Version]
- Khodayari-Zarnaq, R.; Alizadeh, G.; Alizadeh, G. Emerging and Re-emerging Diseases: Policies and Strategies for Future. Evid. Based Health Policy Manag. Econ. 2020, 4, 154–158. [Google Scholar] [CrossRef]
- Madison-Antenucci, S.; Kramer, L.D.; Gebhardt, L.L.; Kauffman, E. Emerging Tick-Borne Diseases. Clin. Microbiol. Rev. 2020, 33, e00083-18. [Google Scholar] [CrossRef]
- CDC. Reported Cases of Lyme Disease—United States, 2018. 2018. Available online: https://www.cdc.gov/lyme/datasurveillance/maps-recent.html (accessed on 29 April 2021).
- Johnson, R.C.; Schmid, G.P.; Hyde, F.W.; Steigerwalt, A.G.; Brenner, D.J. Borrelia burgdorferi sp. nov.: Etiologic agent of Lyme disease. Int. J. Syst. Evol. Microbiol. 1984, 34, 496–497. [Google Scholar] [CrossRef] [Green Version]
- Burgdorfer, W.; Barbour, A.G.; Hayes, S.F.; Benach, J.L.; Grunwaldt, E.; Davis, J.P. Lyme disease-a tick-borne spirochetosis? Science 1982, 216, 1317–1319. [Google Scholar] [CrossRef] [Green Version]
- Burgdorfer, W.; Lane, R.S.; Barbour, A.G.; Gresbrink, R.A.; Anderson, J.R. The western black-legged tick, Ixodes pacificus: A vector of Borrelia burgdorferi. Am. J. Trop. Med. Hyg. 1985, 34, 925–930. [Google Scholar] [CrossRef]
- Rudenko, N.; Golovchenko, M.; Grubhoffer, L.; Oliver, J.H. Updates on Borrelia Burgdorferi Sensu Lato Complex with Respect to Public Health. Ticks Tick-Borne Dis. 2011, 2, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Leydet, B.F.; Liang, F.T. Unexpected Failure of Ixodes Scapularis Nymphs to Transmit a North American Borrelia Bissettiae Strain. Curr. Res. Parasitol. Vector-Borne Dis. 2021, 1, 100039. [Google Scholar] [CrossRef]
- Rudenko, N.; Golovchenko, M.; Růzõek, D.; Piskunova, N.; Mallátová, N.; Grubhoffer, L. Molecular Detection of Borrelia bissettii DNA in Serum Samples from Patients in the Czech Republic with Suspected Borreliosis. FEMS Microbiol. Lett. 2009, 292, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Girard, Y.A.; Fedorova, N.; Lane, R.S. Genetic Diversity of Borrelia Burgdorferi and Detection of B. bissettii-Like DNA in Serum of North-Coastal California Residents. J. Clin. Microbiol. 2011, 49, 945–954. [Google Scholar] [CrossRef] [Green Version]
- Castro, M.B.; Wright, S.A. Vertebrate Hosts of Ixodes Pacificus (Acari: Ixodidae) in California. J. Vector Ecol. 2007, 32, 140–149. [Google Scholar] [CrossRef]
- Lane, R.S.; Mun, J.; Eisen, R.J.; Eisen, L. Western Gray Squirrel (Rodentia: Sciuridae): A Primary Reservoir Host of Borrelia Burgdorferi in Californian Oak Woodlands? J. Med. Entomol. 2005, 42, 9. [Google Scholar] [CrossRef] [Green Version]
- Newman, E.A.; Eisen, L.; Eisen, R.J.; Fedorova, N.; Hasty, J.M.; Vaughn, C.; Lane, R.S. Borrelia Burgdorferi Sensu Lato Spirochetes in Wild Birds in Northwestern California: Associations with Ecological Factors, Bird Behavior and Tick Infestation. PLoS ONE 2015, 10, e0118146. [Google Scholar] [CrossRef]
- Donahue, J.G.; Piesman, J.; Spielman, A. Reservoir Competence of White-Footed Mice for Lyme Disease Spirochetes. Am. J. Trop. Med. Hyg. 1987, 36, 92–96. [Google Scholar] [CrossRef]
- Swei, A.; Briggs, C.J.; Lane, R.S.; Ostfeld, R.S. Impacts of an Introduced Forest Pathogen on the Risk of Lyme Disease in California. Vector-Borne Zoonotic Dis. 2012, 12, 623–632. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.N.; Lane, R.S. Reservoir Competence of Four Chaparral-Dwelling Rodents for Borrelia Burgdorferi in California. Am. J. Trop. Med. Hyg. 1996, 54, 84–91. [Google Scholar] [CrossRef]
- Eisen, L.; Eisen, R.J.; Lane, R.S. The roles of birds, lizards, and rodents as hosts for the western black-legged tick Ixodes pacificus. J. Vector Ecol. J. Soc. Vector Ecol. 2004, 29, 295–308. [Google Scholar]
- Salkeld, D.J.; Leonhard, S.; Girard, Y.A.; Hahn, N.; Mun, J.; Padgett, K.A.; Lane, R.S. Identifying the reservoir hosts of the Lyme disease spirochete Borrelia burgdorferi in California: The role of the western gray squirrel (Sciurus griseus). Am. J. Trop. Med. Hyg. 2008, 79, 535–540. [Google Scholar] [CrossRef]
- Anderson, J.F.; Magnarelli, L.A. Avian and Mammalian Hosts for Spirochete-Infected Ticks and Insects in a Lyme Disease Focus in Connecticut. Yale J. Biol. Med. 1984, 57, 627–641. [Google Scholar]
- Brinkerhoff, R.J.; Folsom-O’Keefe, C.M.; Tsao, K.; Diuk-Wasser, M.A. Do Birds Affect Lyme Disease Risk? Range Expansion of the Vector-borne Pathogen Borrelia Burgdorferi. Front. Ecol. Environ. 2011, 9, 103–110. [Google Scholar] [CrossRef]
- Olsen, B.; Gylfe, Å.; Bergström, S. Canary Finches (Serinus canaria) as an Avian Infection Model for Lyme Borreliosis. Microb. Pathog. 1996, 20, 319–324. [Google Scholar] [CrossRef]
- Ginsberg, H.S.; Buckley, P.A.; Balmforth, M.G.; Zhioua, E.; Mitra, S.; Buckley, F.G. Reservoir Competence of Native North American Birds for the Lyme Disease Spirochete, Borrelia Burgdorferi. J. Med. Entomol. 2005, 42, 5. [Google Scholar] [CrossRef] [Green Version]
- Vuong, H.B.; Canham, C.D.; Fonseca, D.M.; Brisson, D.; Morin, P.J.; Smouse, P.E.; Ostfeld, R.S. Occurrence and Transmission Efficiencies of Borrelia Burgdorferi OspC Types in Avian and Mammalian Wildlife. Infect. Genet. Evol. 2014, 27, 594–600. [Google Scholar] [CrossRef] [Green Version]
- Heylen, D.J.A. Ecological interactions between songbirds, ticks, and Borrelia burgdorferi s.l. in Europe. In Ecology and Control of Vector-Borne Diseases; Braks, M.A.H., van Wieren, S.E., Takken, W., Sprong, H., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; Volume 4, pp. 91–101. ISBN 978-90-8686-293-1. [Google Scholar]
- Humair, P.-F.; Postic, D.; Wallich, R.; Gern, L. An Avian Reservoir (Turdus merula) of the Lyme Borreliosis Spirochetes. Zent. Für Bakteriol. 1998, 287, 521–538. [Google Scholar] [CrossRef]
- Norte, A.C.; Lopes de Carvalho, I.; Núncio, M.S.; Araújo, P.M.; Matthysen, E.; Albino Ramos, J.; Sprong, H.; Heylen, D. Getting under the Birds’ Skin: Tissue Tropism of Borrelia burgdorferi s.l. in Naturally and Experimentally Infected Avian Hosts. Microb. Ecol. 2020, 79, 756–769. [Google Scholar] [CrossRef]
- Comstedt, P.; Bergström, S.; Olsen, B.; Garpmo, U.; Marjavaara, L.; Mejlon, H.; Barbour, A.G.; Bunikis, J. Migratory Passerine Birds as Reservoirs of Lyme Borreliosis in Europe. Emerg. Infect. Dis. 2006, 12, 1087–1095. [Google Scholar] [CrossRef]
- Richter, D.; Spielman, A.; Komar, N.; Matuschka, F. Competence of American Robins as Reservoir Hosts for Lyme Disease Spirochetes. Emerg. Infect. Dis. 2000, 6, 133–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, N.H.; Lindsay, L.R.; Hanincová, K.; Barker, I.K.; Bigras-Poulin, M.; Charron, D.F.; Heagy, A.; Francis, C.M.; O’Callaghan, C.J.; Schwartz, I.; et al. Role of Migratory Birds in Introduction and Range Expansion of Ixodes Scapularis Ticks and of Borrelia Burgdorferi and Anaplasma Phagocytophilum in Canada. Appl. Environ. Microbiol. 2008, 74, 1780–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrican, L.A. Absence of Lyme Disease Spirochetes in Larval Progeny of Naturally Infected Ixodes Scapularis (Acari: Ixodidae) Fed on Dogs. J. Med. Entomol. 1997, 34, 52–55. [Google Scholar] [CrossRef] [PubMed]
- LoGiudice, K.; Ostfeld, R.S.; Schmidt, K.A.; Keesing, F. The Ecology of Infectious Disease: Effects of Host Diversity and Community Composition on Lyme Disease Risk. Proc. Natl. Acad. Sci. USA 2003, 100, 567–571. [Google Scholar] [CrossRef] [Green Version]
- Diuk-Wasser, M.A.; Hoen, A.G.; Cislo, P.; Brinkerhoff, R.; Hamer, S.A.; Rowland, M.; Cortinas, R.; Vourćh, G.; Melton, F.; Hickling, G.J.; et al. Human Risk of Infection with Borrelia burgdorferi, the Lyme Disease Agent, in Eastern United States. Am. J. Trop. Med. Hyg. 2012, 86, 320–327. [Google Scholar] [CrossRef]
- Falco, R.C.; McKenna, D.F.; Daniels, T.J.; Nadelman, R.B.; Nowakowski, J.; Fish, D.; Wormser, G.P. Temporal Relation between Ixodes Scapularis Abundance and Risk for Lyme Disease Associated with Erythema Migrans. Am. J. Epidemiol. 1999, 149, 771–776. [Google Scholar] [CrossRef]
- Norte, A.C.; de Carvalho, I.L.; Ramos, J.A.; Gonçalves, M.; Gern, L.; Núncio, M.S. Diversity and Seasonal Patterns of Ticks Parasitizing Wild Birds in Western Portugal. Exp. Appl. Acarol. 2012, 58, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Ogrzewalska, M.; Uezu, A.; Jenkins, C.N.; Labruna, M.B. Effect of Forest Fragmentation on Tick Infestations of Birds and Tick Infection Rates by Rickettsia in the Atlantic Forest of Brazil. EcoHealth 2011, 8, 320–331. [Google Scholar] [CrossRef]
- Lawrence, A.; O’Connor, K.; Haroutounian, V.; Swei, A. Patterns of Diversity along a Habitat Size Gradient in a Biodiversity Hotspot. Ecosphere 2018, 9, e02183. [Google Scholar] [CrossRef]
- Padgett, K.A.; Lane, R.S. Life Cycle of Ixodes Pacificus (Acari: Ixodidae): Timing of Developmental Processes under Field and Laboratory Conditions. J. Med. Entomol. 2001, 38, 684–693. [Google Scholar] [CrossRef]
- Dunn, E.H.; Ralph, C.J. The use of mist nets as a tool for bird population monitoring. Stud. Avian Biol. 2004, 29, 1–6. [Google Scholar]
- Sibley, D. The North American Bird Guide; A. & C. Black: Cambridge UK, 2000. [Google Scholar]
- Pyle, P.; Howell, S.; Yunick, R.; Desante, D. Identification Guide to North American Birds; Slate Creek Press: Point Reyes Station, CA, USA, 1997. [Google Scholar]
- Sehgal, R.N.M.; Jones, H.I.; Smith, T.B. Host Specificity and Incidence of Trypanosoma in Some African Rainforest Birds: A Molecular Approach. Mol. Ecol. 2001, 10, 2319–2327. [Google Scholar] [CrossRef]
- Tchoumbou, M.A.; Mayi, M.P.A.; Malange, E.N.F.; Foncha, F.D.; Kowo, C.; Fru-cho, J.; Tchuinkam, T.; Awah-Ndukum, J.; Dorazio, R.; Nota Anong, D.; et al. Effect of Deforestation on Prevalence of Avian Haemosporidian Parasites and Mosquito Abundance in a Tropical Rainforest of Cameroon. Int. J. Parasitol. 2020, 50, 63–73. [Google Scholar] [CrossRef]
- Marsden, J.E.; May, B. Feather Pulp: A Non-Destructive Sampling Technique for Electrophoretic Studies of Birds. Auk 1984, 101, 173–175. [Google Scholar] [CrossRef]
- Salomon, J.; Lawrence, A.; Crews, A.; Sambado, S.; Swei, A. Host Infection and Community Composition Predict Vector Burden. Oecologia 2021, 196, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Swei, A.; Ostfeld, R.S.; Lane, R.S.; Briggs, C.J. Impact of the Experimental Removal of Lizards on Lyme Disease Risk. Proc. R. Soc. B 2011, 278, 2970–2978. [Google Scholar] [CrossRef]
- Arizaga, J.; Deán, J.I.; Vilches, A.; Alonso, D.; Mendiburu, A. Monitoring Communities of Small Birds: A Comparison between Mist-Netting and Counting. Bird Study 2011, 58, 291–301. [Google Scholar] [CrossRef]
- Baillargeon, S.; Rivest, L.-P. The Rcapture package: Loglinear models for capture-recapture in R. J. Stat. Softw. 2007, 19, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package, R package version 2.5-6; CRAN, 2019; Available online: https://CRAN.R-project.org/package=vegan (accessed on 24 January 2022).
- Fracasso, G.; Matthysen, E.; Dhondt, A.A.; Heylen, D. Experimental Study of Micro-Habitat Selection by Ixodid Ticks Feeding on Avian Hosts. Int. J. Parasitol. 2019, 49, 1005–1014. [Google Scholar] [CrossRef]
- Furman, D.P.; Loomis, E.C. The ticks of California (Acari: Ixodida). Bull. Calif. Insect Surv. 1984, 25, 1–239. [Google Scholar]
- Kleinjan, J.E.; Lane, R.S. Larval Keys to the Genera of Ixodidae (Acari) and Species of Ixodes (Latreille) Ticks Established in California. Pan-Pac. Entomol. 2008, 84, 121–142. [Google Scholar] [CrossRef] [Green Version]
- Salomon, J.; Hamer, S.A.; Swei, A. A Beginner’s Guide to Collecting Questing Hard Ticks (Acari: Ixodidae): A Standardized Tick Dragging Protocol. J. Insect Sci. 2020, 20, 11. [Google Scholar] [CrossRef]
- Lane, R.S.; Steinlein, D.B.; Mun, J. Human Behaviors Elevating Exposure to Ixodes Pacificus (Acari: Ixodidae) Nymphs and Their Associated Bacterial Zoonotic Agents in a Hardwood Forest. J. Med. Entomol. 2004, 41, 239–248. [Google Scholar] [CrossRef] [Green Version]
- González-Salazar, C.; Martínez-Meyer, E.; López-Santiago, G. A Hierarchical Classification of Trophic Guilds for North American Birds and Mammals. Rev. Mex. De Biodivers. 2014, 85, 931–941. [Google Scholar] [CrossRef]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef] [Green Version]
- Ogden, N.H.; Lindsay, L.R.; Leighton, P.A. Predicting the Rate of Invasion of the Agent of Lyme Disease Borrelia burgdorferi. J. Appl. Ecol. 2013, 50, 510–518. [Google Scholar] [CrossRef]
- California Department of Fish and Wildlife. Life History and Range; California Department of Fish and Wildlife: Sacramento, CA, USA, 2021. Available online: https://wildlife.ca.gov/ (accessed on 10 October 2021).
- Loss, S.R.; Noden, B.H.; Hamer, G.L.; Hamer, S.A. A Quantitative Synthesis of the Role of Birds in Carrying Ticks and Tick-Borne Pathogens in North America. Oecologia 2016, 182, 947–959. [Google Scholar] [CrossRef]
- Cumbie, A.N.; Heller, E.L.; Bement, Z.J.; Phan, A.; Walters, E.L.; Hynes, W.L.; Gaff, H.D. Passerine Birds as Hosts for Ixodes Ticks Infected with Borrelia Burgdorferi Sensu Stricto in Southeastern Virginia. Ticks Tick-Borne Dis. 2021, 12, 101650. [Google Scholar] [CrossRef]
- Brinkerhoff, R.J.; Dang, L.; Streby, H.M.; Gimpel, M. Life History Characteristics of Birds Influence Patterns of Tick Parasitism. Infect. Ecol. Epidemiol. 2019, 9, 1547096. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.S.; Laundré, J.W.; Gurung, M. The Ecology of Fear: Optimal Foraging, Game Theory, and Trophic Interactions. J. Mammal. 1999, 80, 385–399. [Google Scholar] [CrossRef]
- Becker, D.J.; Han, B.A. The Macroecology and Evolution of Avian Competence for Borrelia burgdorferi. bioRxiv 2021, 30, 710–724. [Google Scholar] [CrossRef]
- Diuk-Wasser, M.A.; Gatewood, A.G.; Cortinas, M.R.; Yaremych-Hamer, S.; Tsao, J.; Kitron, U.; Hickling, G.; Brownstein, J.S.; Walker, E.; Piesman, J.; et al. Spatiotemporal Patterns of Host-Seeking Ixodes Scapularis Nymphs (Acari: Ixodidae) in the United States. J. Med. Entomol. 2006, 43, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Arsnoe, I.; Tsao, J.I.; Hickling, G.J. Nymphal Ixodes scapularis Questing Behavior Explains Geographic Variation in Lyme Borreliosis Risk in the Eastern United States. Ticks Tick-Borne Dis. 2019, 10, 553–563. [Google Scholar] [CrossRef]
- Dubie, T.R.; Turner, J.; Noden, B.H. Questing Behavior and Analysis of Tick-Borne Bacteria in Ixodes Scapularis (Acari: Ixodidae) in Oklahoma. J. Med. Entomol. 2018, 55, 1569–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomkins, J.L.; Aungier, J.; Hazel, W.; Gilbert, L. Towards an Evolutionary Understanding of Questing Behaviour in the Tick Ixodes Ricinus. PLoS ONE 2014, 9, e110028. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.D.; Temple, S.A. Effects of Predation-Risk on Habitat Use by Himalayan Snowcocks. Oecologia 1990, 82, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Caro, T. Antipredator Defenses in Birds and Mammals; University of Chicago Press: Chicago, IL, USA, 2005. [Google Scholar]
- Blumstein, D.T.; Bitton, A.; Da Veiga, J. How Does the Presence of Predators Influence the Persistence of Antipredator Behavior? J. Biol. 2006, 239, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Orrock, J.L.; Danielson, B.J.; Brinkerhoff, R.J. Rodent Foraging Is Affected by Indirect, but Not by Direct, Cues of Predation Risk. Behav. Ecol. 2004, 15, 433–437. [Google Scholar] [CrossRef] [Green Version]
- Lilly, M.V.; Lucore, E.C.; Tarvin, K.A. Eavesdropping Grey Squirrels Infer Safety from Bird Chatter. PLoS ONE 2019, 14, e0221279. [Google Scholar] [CrossRef] [Green Version]
- Clermont, J.; Grenier-Potvin, A.; Duchesne, É.; Couchoux, C.; Dulude-de Broin, F.; Beardsell, A.; Bêty, J.; Berteaux, D. The Predator Activity Landscape Predicts the Anti-predator Behavior and Distribution of Prey in a Tundra Community. Ecosphere 2021, 12. [Google Scholar] [CrossRef]
- Reed, K.D.; Meece, J.K.; Henkel, J.S.; Shukla, S.K. Birds, Migration and Emerging Zoonoses: West Nile Virus, Lyme Disease, Influenza A and Enteropathogens. Clin. Med. Res. 2003, 1, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Sellers, J. Tick Infestations and Their Consequences for Migratory Songbirds during Spring Stopover. Master’s Thesis, University of Southern Mississippi, Hattiesburg, MS, USA, December 2011. [Google Scholar]
- Sorci, G. Immunity, Resistance and Tolerance in Bird-Parasite Interactions. Parasite Immunol. 2013, 35, 350–361. [Google Scholar] [CrossRef]
- Staley, M.; Bonneaud, C. Immune Responses of Wild Birds to Emerging Infectious Diseases. Parasite Immunol. 2015, 37, 242–254. [Google Scholar] [CrossRef] [Green Version]
- Burgan, S.C.; Gervasi, S.S.; Martin, L.B. Parasite Tolerance and Host Competence in Avian Host Defense to West Nile Virus. EcoHealth 2018, 15, 360–371. [Google Scholar] [CrossRef]
- Oakgrove, K.S.; Harrigan, R.J.; Loiseau, C.; Guers, S.; Seppi, B.; Sehgal, R.N.M. Distribution, Diversity and Drivers of Blood-Borne Parasite Co-Infections in Alaskan Bird Populations. Int. J. Parasitol. 2014, 44, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Sakai, H.F.; Noon, B.R. Between-Habitat Movement of Dusky-Footed Woodrats and Vulnerability to Predation. J. Wildl. Manag. 1997, 61, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Gylfe, A.; Bergström, S.; Lundström, J.; Olsen, B. Reactivation of Borrelia Infection in Birds. Nature 2000, 403, 724–725. [Google Scholar] [CrossRef]
- Brisson, D.; Dykhuizen, D.E. OspC Diversity in Borrelia Burgdorferi. Genetics 2004, 168, 713–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtenbach, K.; Peacey, M.; Rijpkema, S.G.T.; Hoodless, A.N.; Nuttall, P.A.; Randolph, S.E. Differential Transmission of the Genospecies of Borrelia Burgdorferi Sensu Lato by Game Birds and Small Rodents in England. Appl. Environ. Microbiol. 1998, 64, 1169–1174. [Google Scholar] [CrossRef] [Green Version]
- Hamer, S.A.; Hickling, G.J.; Sidge, J.L.; Rosen, M.E.; Walker, E.D.; Tsao, J.I. Diverse Borrelia Burgdorferi Strains in a Bird-Tick Cryptic Cycle. Appl. Environ. Microbiol. 2011, 77, 1999–2007. [Google Scholar] [CrossRef] [Green Version]
- Tittler, R.; Villard, M.-A.; Fahrig, L. How Far Do Songbirds Disperse? Ecography 2009, 32, 1051–1061. [Google Scholar] [CrossRef] [Green Version]
- Gottfried, B.M.; Franks, E.C. Habitat Use and Flock Activity of Dark-Eyed Juncos in Winter. Wilson Bull. 1975, 87, 374–383. [Google Scholar]
- DeLuca, W.V.; Meehan, T.; Seavy, N.; Jones, A.; Pitt, J.; Deppe, J.L.; Wilsey, C.B. The Colorado River Delta and California’s Central Valley Are Critical Regions for Many Migrating North American Landbirds. Ornithol. Appl. 2021, 123, duaa064. [Google Scholar] [CrossRef]
- Reichard, D.G.; Ketterson, E.D. Estimation of Female Home-Range Size during the Nestling Period of Dark-Eyed Juncos. Wilson J. Ornithol. 2012, 124, 614–620. [Google Scholar] [CrossRef]
- Hasle, G. Transport of Ixodid Ticks and Tick-Borne Pathogens by Migratory Birds. Front. Cell. Infect. Microbiol. 2013, 3, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, R.L.; Forsman, J.T.; Mönkkönen, M. Positive Interactions between Migrant and Resident Birds: Testing the Heterospecific Attraction Hypothesis. Oecologia 2003, 134, 431–438. [Google Scholar] [CrossRef] [PubMed]
Species | N Tested for B. burgdorferi s.l. | N B. burgdorferi s.l. Infected (%) | Average Tick Burden | Foraging Substrate | Nesting Substrate |
---|---|---|---|---|---|
Bewick’s Wren | 16 (11) | 2 (18) | 0 | Aboveground | Aboveground |
Dark-eyed Junco | 67 (65) | 14 (21.5) | 0.28 | Ground | Ground |
Lesser Goldfinch | 6 (5) | 2 (40) | 0 | Aboveground | Aboveground |
Oak Titmouse | 11 (7) | 1 (14) | 0.55 | Aboveground | Aboveground |
Pacific Slope Flycatcher | 6 (5) | 2 (40) | 0 | Aboveground | Aboveground |
Spotted Towhee | 12 (8) | 2 (25) | 0.08 | Ground | Ground |
Totals | 118 (101) | 23 (22.8) | 0.22 |
Response Variable | Model Component | Estimate | Standard Error | Z-Value | p-Value |
---|---|---|---|---|---|
Avian tick burden | (Intercept) | −0.15 | 0.99 | −0.15 | 0.88 |
Predator abundance | −10.55 | 3.28 | −3.22 | 0.001 ** | |
Bird abundance | 0.04 | 0.03 | 1.11 | 0.26 | |
N. fuscipes abundance | −0.06 | 0.06 | −1.05 | 0.29 | |
S. occidentalis abundance | 0.02 | 0.01 | 0.77 | 0.05 * |
Model Number | Response Variable | Model Component: | Estimate | Standard Error | Z-Value | p-Value |
---|---|---|---|---|---|---|
Model 1 | Avian B. burgdorferi s.l. infection | (Intercept) | −1.81 | 0.94 | −1.91 | 0.06 |
Bird species: | ||||||
J. hyemalis | 0.16 | 1 | 0.16 | 0.87 | ||
S. psaltria | −0.73 | 1.48 | −0.49 | 0.62 | ||
B. inornatus | −1.62 | 1.59 | −1.02 | 0.3 | ||
E. difficilis | 1.23 | 1.58 | 0.78 | 0.43 | ||
P. maculatus | 0.95 | 1.45 | 0.66 | 0.51 | ||
Sex: | ||||||
Male | 0.26 | 0.82 | 0.32 | 0.75 | ||
Unknown | 0.16 | 0.7 | 0.23 | 0.82 | ||
Mass | 0.01 | 0.02 | 0.36 | 0.72 | ||
Foraging and nesting substrate: | ||||||
Aboveground | −0.4 | 0.67 | −0.6 | 0.54 | ||
Tick burden | 0.32 | 0.59 | 0.55 | 0.58 | ||
Model 2 | Avian B. burgdorferi s.l. infection | (Intercept) | −4.28 | 1.3 | −3.3 | <0.001 *** |
Avian richness | 0.009 | 0.1 | 0.1 | 0.92 | ||
Rodent richness | 1.3 | 0.33 | 3.91 | <0.001 *** | ||
Predator richness | −0.26 | 0.39 | −0.65 | 0.52 | ||
Model 3 | Avian B. burgdorferi s.l. infection | (Intercept) | −3.25 | 0.59 | −5.47 | <0.001 *** |
Nymphal infection prevalence 2018 | 11.13 | 2.79 | 3.95 | <0.001 *** | ||
N. fuscipesB. burgdorferis.l. infection prevalence 2019 | 2.45 | 1.02 | 2.38 | 0.016 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lilly, M.; Amaya-Mejia, W.; Pavan, L.; Peng, C.; Crews, A.; Tran, N.; Sehgal, R.; Swei, A. Local Community Composition Drives Avian Borrelia burgdorferi Infection and Tick Infestation. Vet. Sci. 2022, 9, 55. https://doi.org/10.3390/vetsci9020055
Lilly M, Amaya-Mejia W, Pavan L, Peng C, Crews A, Tran N, Sehgal R, Swei A. Local Community Composition Drives Avian Borrelia burgdorferi Infection and Tick Infestation. Veterinary Sciences. 2022; 9(2):55. https://doi.org/10.3390/vetsci9020055
Chicago/Turabian StyleLilly, Marie, Wilmer Amaya-Mejia, Lucas Pavan, Ceili Peng, Arielle Crews, Nghia Tran, Ravinder Sehgal, and Andrea Swei. 2022. "Local Community Composition Drives Avian Borrelia burgdorferi Infection and Tick Infestation" Veterinary Sciences 9, no. 2: 55. https://doi.org/10.3390/vetsci9020055
APA StyleLilly, M., Amaya-Mejia, W., Pavan, L., Peng, C., Crews, A., Tran, N., Sehgal, R., & Swei, A. (2022). Local Community Composition Drives Avian Borrelia burgdorferi Infection and Tick Infestation. Veterinary Sciences, 9(2), 55. https://doi.org/10.3390/vetsci9020055