Effect of In Ovo Vitamin C Injection against Mobile Phone Radiation on Post-Hatch Performance of Broiler Chicks
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Incubation
2.2. Radiation Application
2.3. In Ovo Injection
2.4. Experiment Unit
2.5. Performance and Carcass Characteristics
2.6. Blood Analyses
2.7. Statistical Analyses
3. Results
3.1. Body Weight
3.2. Post-Hatch Mortality and Production Efficiency Factor
3.3. Feed Intake
3.4. Feed–Conversion Ratio
3.5. Carcass and Internal Organs
3.6. Blood Metabolites
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, H. Genetic effects of non-ionizing electromagnetic fields. Electromagn. Biol. Med. 2021, 3, 264–273. [Google Scholar] [CrossRef] [PubMed]
- French, P.W.; Penny, R.; Laurence, J.A.; McKenzie, D.R. Mobile phones, heat shock proteins and cancer. Differentiation 2001, 67, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.B.; Sears, M.E.; Morgan, L.L.; Davis, D.L.; Hardell, L.; Oremus, M.; Soskolne, C.L. Risks to health and well-being from radio-frequency radiation emitted by cell phones and other wireless devices. Front. Public Health 2019, 7, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqi, N.; Heming, T.; Shalaby, A.; Al-Kindi, M.; Al-Ghafri, F.; Younas, R. Mobile phone electromagnetic waves causing fatty change in the hepatocytes of the developing chick embryo: Are smart phones too close for comfort? Biomed. Pharmacol. J. 2017, 10, 1139–1147. [Google Scholar] [CrossRef]
- Siddiqi, N.; John, C.M.; Norrish, M.; Heming, T. Growth radiation of chick embryo exposed to a low dose of electromagnetic waves. J. Ayub. Med. Coll. Abbottabad. 2016, 28, 224–228. [Google Scholar]
- Ye, W.; Wang, F.; Zhang, W.; Fang, N.; Zhao, W.; Wang, J. Effect of mobile phone radiation on cardiovascular development of chick embryo. Anat. Histol. Embryol. 2016, 45, 197–208. [Google Scholar] [CrossRef]
- Pawlak, K.; Nieckarz, Z.; Lis, M.; Bojarski, B.; Tombarkiewicz, B.; Swadźba, M.; Niedziółka, J. The effects of exposure to a 900 MHz electromagnetic field on the hatchability of domestic chicken embryos (Gallus gallus domesticus). Sci. Ann. Pol. Soc. Anim. Prod. 2016, 12, 73–81. [Google Scholar] [CrossRef]
- Al-Qudsi, F.; Azzouz, S. Effect of electromagnetic mobile radiation on chick embryo development. Life Sci. J. 2012, 9, 983–991. [Google Scholar]
- Kıvrak, E.G.; Yurt, K.K.; Kaplan, A.A.; Alkan, I.; Altun, G. Effects of electromagnetic fields exposure on the antioxidant defense system. J. Microsc. Ultrastruct. 2017, 5, 167–176. [Google Scholar] [CrossRef]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar]
- Altıntas, A. Vitamins. Available online: https://acikders.ankara.edu.tr/pluginfile.php/1009/mod_resource/content/1/13.%20Vitaminler.pdf (accessed on 14 May 2022).
- Bsoul, S.A.; Terezhalmy, G.T. Vitamin C in health and disease. J. Contemp. Dent. Pract. 2004, 5, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.; Gu, Q.; Ye, D.; Wang, Y.; Zou, X.; He, L.; Jin, Y.; Yao, Y. Effect of computer radiation on weight and oxidant-antioxidant status of mice. Nutr. Hosp. 2015, 31, 1183–1186. [Google Scholar]
- Bas, E.; Ucar, M.; Yıldırım Bas, F.; Yesilot, S.; Armagan, I.; Yalcın, A. Histopathological effects of 2.45 gigahertz electromagnetic radiation on the rat kidney, and protective effects of vitamin C. Suleyman Demirel Univ. J. Health Sci. 2018, 9, 1–5. [Google Scholar]
- Mista, D.; Króliczewska, B.; Pecka-Kiełb, E.; Kapuśniak, V.; Zawadzki, W.; Graczyk, S.; Kowalczyk, A.; Łukaszewicz, E.; Bednarczyk, M. Effect of in ovo ınjected prebiotics and synbiotics on the caecal fermentation and intestinal morphology of broiler chickens. Anim. Prod. Sci. 2016, 57, 1884–1892. [Google Scholar] [CrossRef]
- Abdulgader, A.F.B.; Olgun, O.; Yıldız, A.Ö. In ovo feeding. J. Anim. Prod. 2017, 58, 58–65. [Google Scholar]
- Zhu, Y.; Li, S.; Duan, Y.; Ren, Z.; Yang, X.; Yang, X. Effects of in ovo feeding of vitamin C on post-hatch performance, immune status and DNA methylation-related gene expression in broiler chickens. Br. J. Nutr. 2020, 124, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Uni, Z.; Ferket, P.R. Methods for early nutrition and their potential. World’s Poult. Sci. 2004, 60, 101–111. [Google Scholar] [CrossRef]
- Zhang, H.; Elliott, K.E.C.; Durojaye, O.A.; Fatemi, S.A.; Schilling, M.W.; Peebles, E.D. Effects of in ovo injection of L-ascorbic acid on growth performance, carcass composition, plasma antioxidant capacity, and meat quality in broiler chickens. Poult. Sci. 2019, 98, 3617–3625. [Google Scholar] [CrossRef]
- Ferket, P.R. Incubation and In Ovo Nutrition Affects Neonatal Development. In Proceedings of the 33rd Annual Carolina Poultry Nutrition Conference, Research Triangle Park, NC, USA, 26 September 2006. [Google Scholar]
- Gao, T.; Zhao, M.M.; Zhang, L.; Li, J.L.; Yu, L.L.; Lv, P.A.; Gao, F.; Zhou, G.H. Effect of in ovo feeding of L-Arginine on the development of lymphoid organs and small intestinal immune barrier function in posthatch broilers. Anim. Feed Sci. Technol. 2017, 225, 8–9. [Google Scholar] [CrossRef]
- Marcu, A.; Vacaru-Opris, I.; Dumitrescu, G.; Ciochina, L.P.; Marcu, A.; Nicula, M.; Pet, I.; Dronca, D.; Kelciov, B.; Mariş, C. The influence of genetics on economic efficiency of broiler chickens growth. Anim. Sci. Biotechnol. 2013, 46, 339–346. [Google Scholar]
- SAS (Statistical Analysis System). SAS/STAT® 9.2. In User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Pawlak, K.; Bojarski, B.; Nieckarz, Z.; Lis, M.; Wojnar, T. Effect of an 1800 MHz electromagnetic field emitted during embryogenesis on the blood picture of one-day-old domestic hen chicks (Gallus gallus domesticus). Acta Vet. Brno. 2018, 87, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.Y.; Cho, C.K.; Kim, S.G. Correlation of increased mortality with the suppression of radiation-inducible microsomal epoxide hydrolase and glutathione S-transferase gene expression by dexamethasone: Effects on vitamin C and E-induced radioprotection. Biochem. Pharmacol. 1998, 56, 1295–1304. [Google Scholar] [CrossRef]
- Selim, S.A.; Gaafar, K.M.; El-Ballal, S.S. Influence of in ovo administration with vitamin E and ascorbic acid on the performance of Muscovy ducks. Emir. J. Food Agric. 2012, 24, 264–271. [Google Scholar]
- Bhanja, S.K.; Mandal, A.B.; Agarwal, S.K.; Majumdar, S.; Bhattacharyya, A. Effect of in ovo injection of vitamins on the chick weight and post-hatch growth performance in broiler chickens. In Proceedings of the 16th European Symposium on Poultry Nutrition, Strasbourg, France, 26–30 August 2007. [Google Scholar]
- Altan, O.; Acıkgoz, Z.; Bayraktar, O.H.; Aydın Kose, F.; Seremet Tugalay, C.; Pourdolati, O. The effects of in ovo injection of vitamin C and E on growth performance and oxidative stability in broilers exposed to heat stress. Ege Univ. Ziraat Fak. Derg. 2017, 54, 259–266. [Google Scholar] [CrossRef]
- Zhang, H.; Elliott, K.E.C.; Durojaye, O.A.; Fatemi, S.A.; Peebles, E.D. Effects of in ovo administration of L-ascorbic acid on broiler hatchability and its influence on the effects of pre-placement holding time on broiler quality characteristics. Poult. Sci. 2018, 97, 1941–1947. [Google Scholar] [CrossRef] [PubMed]
- El-Kholy, M.S.; El-Gawad Ibrahim, Z.A.; El-Mekkawy, M.M.; Alagawany, M. Influence of in ovo administration of some water-soluble vitamins on hatchability traits, growth, carcass traits and blood chemistry of Japanese quails. Ann. Anim. Sci. 2019, 19, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Soltani, T.; Salarmoini, M.; Afsharmanesh, M.; Tasharrofi, S. The effects of in ovo injection of ascorbic acid on hatchability, growth performance, ıntestinal morphology, and tibia breaking strength in 36h post hatch fasted broiler chickens. Poult. Sci. J. 2019, 7, 43–49. [Google Scholar]
- Ghane, F.; Qotbi, A.A.; Slozhenkina, M.; Mosolov, A.A.; Gorlov, I.; Seidavi, A.; Colonna, M.A.; Laudadio, V.; Tufarelli, V. Effects of in ovo feeding of vitamin E or vitamin C on egg hatchability, performance, carcass traits and immunity in broiler chickens. Anim. Biotechnol. 2021, 19, 1–6. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, S.; Sun, Q.; Yng, X. Effect of in ovo feeding of vitamin C on antioxidation and immune function of broiler chickens. Animal 2019, 13, 1927–1933. [Google Scholar] [CrossRef]
- Dincgorur Yilmaz, C.; Celik, L. Effects in ovo administration of the Vitamin C and Vitamin E on hatching parameters and post hatch broiler growth performance. Cukurova Univ. J. Fac. Eng. 2020, 38, 85–94. [Google Scholar]
- Zhu, Y.; Wang, J.; Li, Z.; Ma, H.; Zhu, Y.; Yang, X.; Yang, X. In ovo feeding of vitamin C regulates splenic development through purine nucleotide metabolism and induction of apoptosis in broiler chickens. Br. J. Nutr. 2021, 126, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.D.; Abbas, W.; Muneer, M.A.; Hussain, I.; Hanif, A. Immunomodulatory effects of Flumequine and Enrofloxacin on Newcastle Disease Virus vaccinated broiler chicks. Pak. J. Life Soc. Sci. 2007, 5, 24–29. [Google Scholar]
- Kota, S.K.; Meher, L.K.; Kota, S.K.; Jammula, S.; Krishna, S.V.S.; Modi, K.D. Implications of serum paraoxonase activity in obesity, diabetes mellitus, and dyslipidemia. Indian J. Endocrinol. Metab. 2013, 17, 402–412. [Google Scholar] [CrossRef]
- Shunmoogam, N.; Naidoo, P.; Chilton, R. Paraoxonase (PON)-1: A brief overview on genetics, structure, polymorphisms and clinical relevance. Vasc Health Risk Manag. 2018, 18, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milaciu, M.V.; Vesa, Ș.C.; Bocșan, I.C.; Ciumărnean, L.; Sâmpelean, D.; Negrean, V.; Pop, R.M.; Matei, D.M.; Pașca, S.; Răchișan, A.L.; et al. Paraoxonase-1 Serum Concentration and PON1 Gene Polymorphisms: Relationship with Non-Alcoholic Fatty Liver Disease. J. Clin. Med. Res. 2019, 8, 2200. [Google Scholar] [CrossRef] [PubMed]
- Tiftik, A.M. Clinical Biochemistry; Mimoza Publications: Konya, Turkey, 1996; p. 413. [Google Scholar]
Ingredients % | Starter (1–3 Weeks) | Finisher (4–5 Weeks) |
---|---|---|
Maize | 52.16 | 58.58 |
Soybean meal (46% CP) | 9.84 | 5.62 |
Full fat soybean | 27.23 | 22.25 |
Wheat middlings | 3.00 | 5.00 |
Corn gluten meal (60% CP) | 2.29 | 2.00 |
Sunflower meal (34% CP) | 2.00 | 4.00 |
Dicalcium phosphate | 1.03 | 0.53 |
Limestone | 0.94 | 0.75 |
Lysine sulfate | 0.44 | 0.40 |
DL-methionine | 0.29 | 0.21 |
Salt | 0.25 | 0.23 |
Sodium sulfate | 0.13 | 0.10 |
Thereonine | 0.11 | 0.05 |
Mineral Premix 1 | 0.10 | 0.10 |
Vitamin Premix 2 | 0.10 | 0.10 |
Choline-60 | 0.05 | 0.05 |
Anticoccidial | 0.05 | 0.05 |
Calculated Analysis, % | ||
Dry matter | 87.97 | 88.43 |
Crude Protein | 23 | 18–19 |
Crude Fiber | 3–4 | 3–4 |
Crude Fat | 4–5 | 6–7 |
Crude Ash | 5–6 | 4–5 |
Starch | 33–34 | 38–39 |
Calcium | 0.88 | 0.67 |
Total P | 0.73 | 0.62 |
Sodium | 0.18 | 0.16 |
Weeks | In Ovo Injection | Sex | p | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | SEM | M | F | SEM | In Ovo | Sex | |
IBW | 40.2 b | 40.9 a | 39.9 c | 0.15 | 40.6 | 40.1 | 0.119 | <0.01 | 0.015 |
1 | 139.5 b | 125.9 c | 155.9 a | 3.69 | 142.4 | 138.4 | 2.44 | <0.01 | 0.295 |
2 | 388.7 b | 359.7 b | 421.5 a | 9.76 | 410.5 | 369.4 | 7.37 | <0.01 | <0.01 |
3 | 774.6 | 730.4 | 875.5 | 35.49 | 826.7 | 760.3 | 26.77 | 0.058 | 0.122 |
4 | 1324.2 | 1253.2 | 1390.5 | 48.16 | 1419.4 | 1225.9 | 36.34 | 0.291 | <0.01 |
5 | 1890.2 | 1828.1 | 2048.9 | 75.27 | 2077.7 | 1767.1 | 57.19 | 0.056 | <0.01 |
Parameters | In Ovo Injection | p | |||
---|---|---|---|---|---|
A | B | C | SEM | ||
Post-hatch mortality rate | 5.3 b | 14.3 a | 3.3 b | 1.98 | 0.019 |
Production Efficiency Factor | 312.9 a | 220.1 b | 369.0 a | 21.56 | <0.01 |
Weeks | In Ovo Injection | p | ||||
---|---|---|---|---|---|---|
A | B | C | SEM | |||
Group level feed intake | 1 | 3419.2 a | 2580.8 b | 3361.7 a | 146.46 | 0.012 |
2 | 14,036.5 | 11,720.6 | 14,085.2 | 687.93 | 0.084 | |
3 | 34,884.2 | 25,133.6 | 32,947.5 | 2391.73 | 0.060 | |
4 | 63,166.7 a | 43,241.6 b | 60,346.2 a | 4589.04 | 0.044 | |
5 | 95,066.5 a | 64,492.6 b | 93,445.7 a | 6666.44 | 0.030 | |
IFI | 2624.5 | 2329.6 | 2763.5 | 107.91 | 0.072 |
Weeks | In Ovo Injection | p | |||
---|---|---|---|---|---|
A | B | C | SEM | ||
1 | 0.9 | 0.8 | 0.9 | 0.03 | 0.266 |
2 | 1.1 b | 1.2 a | 1.1 b | 0.03 | 0.055 |
3 | 1.3 | 1.3 | 1.2 | 0.03 | 0.142 |
4 | 1.4 | 1.4 | 1.3 | 0.03 | 0.145 |
5 | 1.5 | 1.5 | 1.4 | 0.02 | 0.068 |
Parameters | In Ovo Injection | Sex | p | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | SEM | M | F | SEM | In Ovo | Sex | |
Hot carcass weight (g/bird) | 1443.9 b | 1392.8 b | 1548.7 a | 25.43 | 1546.1 | 1377.5 | 20.73 | 0.046 | <0.01 |
Cold carcass weight (g/bird) | 1428.4 b | 1378.6 b | 1531.9 a | 24.69 | 1528.9 | 1363.6 | 20.13 | <0.01 | <0.01 |
Pectoral muscle weight (g/bird) | 227.2 | 222.5 | 239.6 | 6.16 | 243.8 | 215.7 | 5.03 | 0.147 | <0.01 |
Heart weight (g/bird) | 12.0 | 11.5 | 12.3 | 0.35 | 13.0 | 10.9 | 0.28 | 0.267 | <0.01 |
Liver weight (g/bird) | 43.7 | 43.7 | 45.6 | 1.24 | 47.0 | 41.7 | 1.00 | 0.522 | <0.01 |
Spleen weight (g/bird) | 3.1 ab | 3.3 a | 2.8 b | 0.15 | 3.3 | 2.9 | 0.12 | 0.049 | 0.020 |
Abdominal fat weight (g/bird) | 19.9 b | 22.9 ab | 24.4 a | 1.36 | 23.1 | 21.7 | 1.11 | 0.052 | 0.354 |
Testicular weight (g/bird) | 0.4 | 0.4 | 0.4 | 0.03 | - | - | - | 0.599 | - |
Parameters | In Ovo Injection | Sex | p | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | SEM | M | F | SEM | In Ovo | Sex | |
PON-1(U/L) | 12.2 ab | 16.6 a | 10.2 b | 1.49 | 14.3 | 11.8 | 1.22 | 0.012 | 0.156 |
TTL(µmol/L) | 819.9 | 794.6 | 720.2 | 33.46 | 755.0 | 801.5 | 27.40 | 0.100 | 0.237 |
NTL(µmol/L) | 199.7 | 241.3 | 211.6 | 23.62 | 204.0 | 231.0 | 19.34 | 0.446 | 0.329 |
Disulfide | 310.1 | 276.7 | 254.3 | 18.87 | 275.5 | 285.2 | 15.46 | 0.119 | 0.660 |
MPO (U/L) | 70.5 | 48.3 | 49.3 | 11.90 | 58.0 | 54.0 | 8.74 | 0.336 | 0.773 |
AST (U/L) | 353.1 b | 358.7 b | 409.2 a | 17.23 | 369.3 | 378.0 | 14.10 | 0.047 | 0.666 |
ALT (U/L) | 10.6 | 9.6 | 9.3 | 0.95 | 9.1 | 10.6 | 0.78 | 0.619 | 0.181 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yenilmez, F. Effect of In Ovo Vitamin C Injection against Mobile Phone Radiation on Post-Hatch Performance of Broiler Chicks. Vet. Sci. 2022, 9, 613. https://doi.org/10.3390/vetsci9110613
Yenilmez F. Effect of In Ovo Vitamin C Injection against Mobile Phone Radiation on Post-Hatch Performance of Broiler Chicks. Veterinary Sciences. 2022; 9(11):613. https://doi.org/10.3390/vetsci9110613
Chicago/Turabian StyleYenilmez, Fatma. 2022. "Effect of In Ovo Vitamin C Injection against Mobile Phone Radiation on Post-Hatch Performance of Broiler Chicks" Veterinary Sciences 9, no. 11: 613. https://doi.org/10.3390/vetsci9110613
APA StyleYenilmez, F. (2022). Effect of In Ovo Vitamin C Injection against Mobile Phone Radiation on Post-Hatch Performance of Broiler Chicks. Veterinary Sciences, 9(11), 613. https://doi.org/10.3390/vetsci9110613