Effect of Feed Supplementation with Tripotassium Citrate or Sodium Chloride on the Development of Urinary Calcium Oxalate Crystals in Fattening Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Farm
2.2. Experimental Design
2.3. Parameters of Comparison
2.3.1. Performance and Water Consumption
2.3.2. Blood Parameters
2.3.3. Urinalysis of Samples Taken at the Farm
2.3.4. Urinalysis of Samples Taken at the Slaughterhouse
2.4. Statistical Analysis
3. Results
3.1. Mineral Composition of Feed and Drinking Water Quality
3.2. Performance Parameters and Water Consumption
3.3. Blood Parameters
3.4. Macroscopic Examination of the Urine
3.5. Microscopic Examination of the Urine
3.6. Urinalysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drolet, R. Urinary system. In Diseases of Swine, 10th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; Volume 22, pp. 363–379. [Google Scholar]
- Maes, D.; Vrielinck, J.; Millet, S.; Janssens, G.P.; Deprez, P. Urolithiasis in finishing pigs. Vet. J. 2004, 168, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Vrielinck, J.; Sarrazin, S.; Schoos, A.; Janssens, G.P.; Maes, D. Prevalence and chemical composition of uroliths in fattening pigs in Belgium. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1828–1836. [Google Scholar] [CrossRef] [PubMed]
- Dogliotti, E.; Vezzoli, G.; Nouvenne, A.; Meschi, T.; Terranegra, A.; Mingione, A.; Brasacchino, C.; Raspini, B.; Cusi, D.; Soldati, L. Nutrition in calcium nephrolithiasis. J. Transl. Med. 2013, 11, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, E.N.; Curhan, G.C. Role of nutrition in the formation of calcium-containing kidney stones. Nephron Physiol. 2004, 98, 55–63. [Google Scholar] [CrossRef]
- Lorenzett, M.P.; Cruz, R.A.S.; Cecco, B.S.; Schwertz, C.I.; Hammerschmitt, M.E.; Schu, D.T.; Driemeier, D.; Pavarini, S.P. Obstructive urolithiasis in growing-finishing pigs. Pesqui. Vet. Bras. 2019, 39, 382–387. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, H.; Grass, L.; Vogl, R.; Rapoport, A.; Oreopoulos, D.G. Urine citrate and renal stone disease. Can. Med. Assoc. J. 1989, 141, 217–221. [Google Scholar]
- Rimer, J.D.; Sakhaee, K.; Maalouf, N.M. Citrate therapy for calcium phosphate stones. Curr. Opin. Nephrol. Hypertens. 2019, 28, 130–139. [Google Scholar] [CrossRef]
- Hamm, L.L.; Hering-Smith, K.S. Pathophysiology of hypocitraturic nephrolithiasis. Endocrinol. Metab. Clin. N. Am. 2022, 31, 885–893. [Google Scholar] [CrossRef]
- Chittavong, M.; Jansson, A.; Lindberg, J.E. Effects of high dietary sodium chloride content on performance and sodium and potassium balance in growing pigs. Trop. Anim. Health Prod. 2013, 45, 1477–1483. [Google Scholar] [CrossRef]
- Leshem, M. Does salt increase thirst? Appetite 2015, 85, 70–75. [Google Scholar] [CrossRef]
- Bankir, L.; Perucca, J.; Norsk, P.; Bouby, N.; Damgaard, M. Relationship between sodium intake and water intake: The false and the true. Ann. Nutr. Metab. 2017, 70, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Massey, L.K.; Whiting, S.J. Dietary salt, urinary calcium, and bone loss. J. Bone Miner. Res. 1996, 11, 731–736. [Google Scholar] [CrossRef]
- Massey, L.K.; Whiting, S.J. Dietary salt, urinary calcium, and kidney stone risk. Nutr. Rev. 1995, 53, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Hess, B. Acid—Base metabolism: Implications for kidney stone formation. Urol. Res. 2006, 34, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Theis, M. Bone markers—Their nature and clinical use. J. Med. Biochem. 2008, 27, 117–122. [Google Scholar] [CrossRef]
- Gerrits, M.I.; Lems, W.F.; Bijlsma, J.W.J.; Thijssen, J.H.H.; Van Rijn, H.J.M. Botmetabolisme: Een overzicht van de klinisch-chemische markers. Ned. Tijdschr. Klin. Chem. 1996, 21, 184–192. [Google Scholar]
- Geudeke, T.; Groenland, G.; Greijdanus, S.; Kroeske, K.; Counotte, G. Use of bone markers osteocalcin an C-telopeptide to diagnose metabolic bone disorders in pigs. In Proceedings of the 11th European Symposium of Porcine Health Management (ESPHM), Utrecht, The Netherlands, 22–24 May 2019. [Google Scholar]
- Marangella, M.; Di Stefano, M.; Casalis, S.; Berutti, S.; D’Amelio, P.; Isaia, G.C. Effects of potassium citrate supplementation on bone metabolism. Calcif. Tissue Int. 2004, 74, 330–335. [Google Scholar] [CrossRef]
- Honeyfield, D.C.; Froseth, J.A.; Barke, R.J. Dietary sodium and chloride levels for growing-finishing pigs. J. Anim. Sci. 1985, 60, 691–698. [Google Scholar] [CrossRef]
- Osborne, C.A.; Davies, L.S.; Sanna, J.; Unger, L.K.; Clinton, T.D.; Davenport, M.P. Identification and interpretation of crystalluria in domestic animals: A light and scanning electron microscopic study. J. Vet. Med. 1990, 85, 18–37. [Google Scholar]
- Albasan, H.; Lulich, J.P.; Osborne, C.A.; Lekcharoensuk, C.; Ulrich, L.K.; Carpenter, K.A. Effects of storage time and temperature on pH, specific gravity, and crystal formation in urine samples from dogs and cats. J. Am. Vet. Med. Assoc. 2003, 222, 176–179. [Google Scholar] [CrossRef]
- Brumm, M.C.; Dahlquist, J.M.; Heemstra, J.M. Impact of feeders and drinker devices on pig performance, water use, and manure volume. Swine Health Prod. 2000, 8, 51–57. [Google Scholar]
- NRC. Nutrient Requirements of Swine, 10th ed.; National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- Vermeer, H.M.; Kuijken, N.; Spoolder, H.A.M. Motivation for additional water use of growing-finishing pigs. Livest. Sci. 2009, 124, 112–118. [Google Scholar] [CrossRef]
- Rennke, H.G.; Denker, B.M. Regulation of Salt and Water Balance. Renal Pathophysiology: The Essentials, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; pp. 31–66. [Google Scholar]
- Kitada, K.; Daub, S.; Zhang, Y.; Klein, D.J.; Nakano, D.; Pedchenko, T.; Lantier, L.; LaRocque, L.M.; Marton, A.; Neubert, P.; et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J. Clin. Investig. 2017, 127, 1944–1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulding, A.; Campbell, D. Dietary NaCl loads promote calciuria and bone loss in adult oophorectomized rats consuming a low calcium diet. J. Nutr. 1983, 113, 1409–1414. [Google Scholar] [CrossRef] [PubMed]
- Muldowney, F.P.; Freaney, R.; Moloney, M.F. Importance of dietary sodium in the hypercalciuria syndrome. Kidney Int. 1982, 22, 292–296. [Google Scholar] [CrossRef] [Green Version]
- Ratalkar, V.N.; Kleinman, J.G. Mechanisms of Stone Formation. Clin. Rev. Bone Miner. Metab. 2011, 9, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Sellmeyer, D.; Schloetter, M.; Sebastian, A. Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet. J. Clin. Endocrinol. Metab. 2002, 87, 2008–2012. [Google Scholar] [CrossRef]
- Geudeke, M.J.; Verstappen, R.; Tielen, M.J.M.; Hunneman, W.; Paridaans, L.; de Greef, H.P.A.M. De bruikbaarheid van urine onderzoek voor het opsporen van macroscopische afwijkingen aan het urogenitaalapparaat van zeugen bij het slachten. Tijdschr. Diergeneeskd. 1991, 116, 59–69. [Google Scholar]
- Becerril-Herrera, M.; Alonso-Spilsbury, M.; Ortega, M.T.; Guerrero-Legarreta, I.; Ramirez-Necoechea, R.; Roldan-Santiago, P.; Pérez-Sato, M.; Soni-Guillermo, D.; Mota-Rojas, D. Changes in blood constituents of swine transported for 8 or 16 h to an Abattoir. Meat Sci. 2010, 86, 945–994. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Becerril-Herrera, M.; Roldan-Santiago, P.; Alonso-Spilsbury, M.; Flores-Peinado, S.; Ramírez-Necoechea, R.; Ramirez-Telles, J.A.; Mora-Medina, P.; Perez, M.; Molina, E.; et al. Effects of long distance transportation and CO2 stunning on critical blood values in pigs. Meat Sci. 2012, 90, 893–898. [Google Scholar] [CrossRef]
- Moor, M.B.; Bonny, O. Ways of calcium reabsorption in the kidney. Am. J. Physiol.-Renal Physiol. 2016, 310, 1337–1350. [Google Scholar] [CrossRef] [PubMed]
Compartment | Treatment Group | ||
---|---|---|---|
Control | TPC | NaCl | |
1 | n = 255 October 2019 | n = 259 June 2019 | n = 258 February 2020 |
2 | n = 260 January 2020 | n = 258 May 2020 | n = 258 August 2019 |
3 | n = 257 July 2019 | n = 256 November 2019 | n = 257 March 2020 |
Parameter | Unit | Treatment Group | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
Control (n = 3) | TPC (n = 3) | NaCl (n = 3) | |||||||
Mean | Median | Mean | Median | Mean | Median | ||||
Ca | mg/kg | 8647 | 8410 | 8140 | 7350 | 7160 | 7190 | 1404.71 | 0.430 |
Cu | 13 | 12 | 15 | 16 | 20 | 24 | 6.52 | 0.670 | |
Fe | 231 | 225 | 270 | 246 | 299 | 296 | 76.75 | 0.491 | |
K | 6363 | 6380 | 6777 | 6730 | 6207 | 6310 | 259.04 | 0.099 | |
Mg | 1760 | 1650 | 1690 | 1580 | 1830 | 1610 | 334.86 | 0.670 | |
Mn | 83 | 82 | 82 | 79 | 78 | 76 | 6.57 | 0.561 | |
Na | 2210 | 2190 | 1930 | 1830 | 2930 | 2870 | 403.73 | 0.099 | |
P | 3983 | 4050 | 3720 | 3650 | 4003 | 4040 | 177.73 | 0.193 | |
S | 563 | 531 | 582 | 510 | 615 | 549 | 153.57 | 0.733 | |
Zn | 97 | 95 | 82 | 82 | 86 | 86 | 5.77 | 0.099 | |
Cl | 4040 | 4200 | 4383 | 4530 | 5327 | 5210 | 482.86 | 0.061 | |
Na+K-Cl | meq/kg | 145 | 142 | 135 | 135 | 136 | 123 | 15.84 | 0.561 |
dEB b | 218 | 77 | 203 | 68 | 191 | 64 | 14.78 | 0.670 | |
Ca/P ratio | 2.17 | 2.19 | 2.19 | 2.03 | 1.79 | 1.78 | 0.39 | 0.288 |
Parameter | Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Control | TPC | NaCl | ||||||
Mean | Median | Mean | Median | Mean | Median | |||
Duration (d) | 114 | 115 | 117 | 3.95 | 0.670 | |||
Initial weight (kg) | 34.4 | 34.4 | 33.8 | 34.0 | 31.3 | 31.9 | 4.07 | 0.463 |
Final weight (kg) | 117.8 | 115.1 | 114.5 | 114.8 | 111.0 | 111.0 | 7.26 | 0.925 |
Average daily gain (g/d) | 720 | 717.3 | 697 | 719 | 685 | 676 | 59.04 | 0.957 |
Average daily feed intake (kg/d) | 2.18 | 2.21 | 2.07 | 2.04 | 2.11 | 2.13 | 0.21 | 0.733 |
Feed conversion ratio | 3.01 | 3.05 | 2.94 | 2.83 | 3.09 | 3.20 | 0.24 | 0.733 |
Feed conversion ratio (25–115 kg) | 2.62 | 2.78 | 2.58 | 2.59 | 2.78 | 2.80 | 0.29 | 0.491 |
Mortality (%) | 2.84 | 3.47 | 2.20 | 1.17 | 2.72 | 2.71 | 1.41 | 0.670 |
Water consumption (L/d/pig) | 4.41 | 4.52 | 4.44 | 4.65 | 4.44 | 4.41 | 0.19 | 0.995 |
Water: feed ratio | 2.02 | 2.04 | 2.14 | 2.28 | 2.10 | 2.07 |
Parameter A | Unit | Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
Control (n = 30) | TPC (n = 30) | NaCl (n = 30) | |||||||
Mean | Median | Mean | Median | Mean | Median | ||||
CTX | ng/mL | 0.17 | 0.15 | 0.19 | 0.19 | 0.21 | 0.20 | 0.03 | 0.130 |
OC | 73.60 | 72.85 | 79.16 | 84.25 | 74.19 | 75.65 | 4.78 | 0.431 | |
PTH | ng/L | 5.43 | 2.87 | 11.85 | 1.51 | 7.49 | 1.6 | 6.12 | 0.829 |
Ca | mmol/L | 2.30 | 2.42 | 2.27 | 2.53 | 2.03 | 1.94 | 0.12 | 0.063 |
K | 6.57 a | 6.17 | 5.10 b | 5.43 | 4.40 c | 4.22 | 0.48 | <0.001 | |
P | 3.40 | 2.84 | 2.48 | 2.53 | 2.23 | 1.96 | 0.68 | 0.132 | |
OC/CTX | 433 | 360 | 416 | 353 | 353 | 384 | 94.05 | 0.556 | |
OC x CTX | 12.51 | 14.30 | 15.04 | 15.20 | 15.57 | 14.51 | 2.19 | 0.842 |
Treatment | p-Value | |||
---|---|---|---|---|
Farm | Control (n = 15) | TPC (n = 24) | NaCl (n = 31) | |
Stones (%) | 0 | 0 | 0 | - |
Grit, cloudy urine (%) | 0 a | 8.3 a | 0 a | -d |
White flakes (%) | 0 | 0 | 0 | - |
Slaughterhouse | Control (n = 126) | TPC (n = 144) | NaCl (n = 115) | |
Stones (%) | 2.6 | 2.6 | 0.8 | 0.486 |
Grit, cloudy urine (%) | 0.9 a | 7.0 b | 2.3 a | 0.027 |
White flakes (%) | 1.7 | 0.9 | 1.6 | 0.839 |
Treatment | p-Value | |||
---|---|---|---|---|
Farm | Control (n = 15) | TPC (n = 24) | NaCl (n = 31) | |
Calcite (%) (score B) | 93 (1.16) | 91 (2.58) | 64 (1.26) | 0.092 |
COD (%) | 53 | 64 | 43 | 0.373 |
COM (%) | 0 | 0 | 0 | - |
Struvite (%) | 33 | 13 | 42 | 0.113 |
Amorphous (%) | 33 a | 4 b | 32 a | 0.025 |
Slaughterhouse | Control (n = 126) | TPC (n = 144) | NaCl (n = 115) | |
Calcite (%) | 1 a | 23 b | 3 a | <0.001 |
COD (%) | 31 a | 34 a | 51 b | <0.001 |
COM (%) | 0 | 0 | 0 | - |
Struvite (%) | 21 a | 16 a | 7 b | 0.015 |
Amorphous (%) | 4 | 4 | 5 | 0.775 |
Treatment | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Farm | Unit | Control (n = 15) | TPC (n = 24) | NaCl (n = 31) | |||||
Mean | Median | Mean | Median | Mean | Median | ||||
Ca | mmol/g creatinine | 1.8 | 1.7 | 6.16 | 3.11 | 2.36 | 1.32 | 2.59 | 0.088 |
P | 1.19 | 0.41 | 1.11 | 0.59 | 1.38 | 1.10 | 0.74 | 0.883 | |
Mg | 3.19 | 2.61 | 3.84 | 4.56 | 3.23 | 2.97 | 0.98 | 0.547 | |
Na | 18.01 | 13.14 | 35.51 | 37.26 | 36.55 | 30.93 | 12.21 | 0.182 | |
Cl | 29.21 | 22.62 | 33.68 | 31.47 | 39.69 | 43.72 | 9.53 | 0.055 | |
K | 35 a,b | 33 | 47 b | 51 | 18 a | 16 | 8.96 | <0.001 | |
Citrate | 0.18 | 0.16 | 0.64 | 0.43 | 0.62 | 0.58 | 0.28 | 0.131 | |
pH | 7.46 a | 7.50 | 8.06 b | 8.50 | 7.11 a | 7.00 | 0.27 | 0.001 | |
Specific gravity | 1.024 | 1.020 | 1.027 | 1.028 | 1.022 | 1.030 | 0.004 | 0.748 | |
Slaughterhouse | Control (n = 50) | TPC (n = 29) | NaCl (n = 30) | ||||||
Ca | mmol/g creatinine | 0.58 | 0.48 | 0.60 | 0.57 | 0.58 | 0.47 | 0.13 | 0.968 |
P | 7.80 a | 6.52 | 4.60 b | 4.88 | 5.54 b | 4.78 | 1.09 | <0.001 | |
Mg | 3.17 a | 3.17 | 2.74 a,b | 2.72 | 2.36 b | 2.02 | 0.38 | 0.013 | |
Na | 15.3 | 12.3 | 13.1 | 12.2 | 16.3 | 15.6 | 3.54 | 0.551 | |
Cl | 8.7 | 8.04 | 9.1 | 7.75 | 7.4 | 9.32 | 1.65 | 0.483 | |
K | 13.2 | 11.24 | 12.8 | 13.2 | 10 | 12.7 | 2.05 | 0.117 | |
Citrate | 0.13 | 0.09 | 0.12 | 0.08 | 0.15 | 0.13 | 0.04 | 0.772 | |
pH | 5.97 a | 6.0 | 6.46 b | 6.5 | 6.28 b | 6.5 | 0.12 | <0.001 | |
Specific gravity | 1.023 | 1.024 | 1.024 | 1.024 | 1.023 | 1.023 | 0.001 | 0.366 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrielinck, J.; Janssens, G.P.J.; Chantziaras, I.; Cools, A.; Maes, D. Effect of Feed Supplementation with Tripotassium Citrate or Sodium Chloride on the Development of Urinary Calcium Oxalate Crystals in Fattening Pigs. Vet. Sci. 2022, 9, 614. https://doi.org/10.3390/vetsci9110614
Vrielinck J, Janssens GPJ, Chantziaras I, Cools A, Maes D. Effect of Feed Supplementation with Tripotassium Citrate or Sodium Chloride on the Development of Urinary Calcium Oxalate Crystals in Fattening Pigs. Veterinary Sciences. 2022; 9(11):614. https://doi.org/10.3390/vetsci9110614
Chicago/Turabian StyleVrielinck, Joris, Geert P. J. Janssens, Ilias Chantziaras, An Cools, and Dominiek Maes. 2022. "Effect of Feed Supplementation with Tripotassium Citrate or Sodium Chloride on the Development of Urinary Calcium Oxalate Crystals in Fattening Pigs" Veterinary Sciences 9, no. 11: 614. https://doi.org/10.3390/vetsci9110614
APA StyleVrielinck, J., Janssens, G. P. J., Chantziaras, I., Cools, A., & Maes, D. (2022). Effect of Feed Supplementation with Tripotassium Citrate or Sodium Chloride on the Development of Urinary Calcium Oxalate Crystals in Fattening Pigs. Veterinary Sciences, 9(11), 614. https://doi.org/10.3390/vetsci9110614