Efficiency of Feed Utilization, Ruminal Traits, and Blood Parameters of Goats Given a Total Mixed Diet Ration Containing Extracted Oil Palm Meal
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Extracted Oil Palm Meal (EOPM)
2.2. Goats, Experimental Diets, and Feeding Procedures
2.3. Sample Collection and Laboratory Assay
2.4. Statistical Analysis
3. Result and Discussion
3.1. Voluntary Feed Intake and Nutrient Intake
3.2. Digestibility and Intake of Nutrient Digestibility
3.3. Ruminal Fermentation and Blood Urea Nitrogen
3.4. Blood Metabolites
3.5. Volatile Fatty Acid Profile Concentration in the Rumen
3.6. Rumen Microorganism Populations
3.7. Nitrogen Balance and Nitrogen Utilization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chanjula, P.; Supapong, C.; Hamchara, P.; Cherdthong, A. Blood metabolites and feed utilization efficiency in thai-native-anglo-nubian goats fed a concentrate diet including yeast fermented palm kernel cake instead of soybean meal. Vet. Sci. 2022, 9, 235. [Google Scholar] [CrossRef] [PubMed]
- Lunsin, R. Effect of oil palm meal on nutrient utilization and milk production in lactating dairy cows fed with urea-treated rice straw. Agric. Nat. Res. 2018, 52, 285–289. [Google Scholar] [CrossRef]
- Wan-Zahari, M.; Wong, H. Optimizing utilization of locally available feed resources for the development of cost-effective aquaculture feeds in Malaysia. Malays. J. Vet. Res. 2014, 20, 154. [Google Scholar]
- Fetuga, B.L.; Babatunde, G.M.; Oyenuga, V.A. The value of palm kernel meal in finishing diets for pigs: 1. The effect of varying the proportion of protein contribution from blood meal and palm kernel meal on the performance and carcass quality of finishing pigs. J. Agric. Sci. 1977, 88, 655–661. [Google Scholar] [CrossRef]
- Santos, R.F.; Fornasari, C.H.; Bassegio, D.; de Souza, S.N.M.; Secco, D. Optimization of oil extraction from high energetic potential plants performed through drying and solvent extraction methods. Afr. J. Biotechnol. 2013, 12, 6761–6765. [Google Scholar]
- Zakaria, R.; Harvey, A.P. Direct production of biodiesel from rapeseed by reactive extraction/in situ transesterification. Fuel Process. Technol. 2012, 102, 53–60. [Google Scholar] [CrossRef]
- Somnuk, K.; Thawornprasert, J.; Chanjula, P.; Prateepchaikul, G. Response surface methodology optimization of oil extraction from oil palm meal (OPM) with hydrous ethanol and its pilot-scale application with recirculation of extraction solvent. Austral. J. Crop Sci. 2019, 13, 954–965. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Goats: Angora, Dairy and Meat Goats in Temperate and Tropical Countries; National Academy Press: Washington, DC, USA, 1981. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; AOAC: Arlington, VA, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fibre, neutral detergent fire and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3579–3583. [Google Scholar] [CrossRef]
- Kearl, L.C. Nutrient Requirements of Ruminants in Developing Countries; International Feedstuffs Institute: Logan, UT, USA, 1982. [Google Scholar]
- Bremner, J.M.; Keeney, D.R. Steam distillation methods of determination of ammonium nitrate and nitrite. Anal. Chem. Acta 1965, 32, 485–493. [Google Scholar] [CrossRef]
- Samuel, M.; Sagathewan, S.; Thomas, J.; Mathen, G. An HPLC method for estimation of volatile fatty acids of ruminal fluid. Indian J. Anim. Sci. 1997, 67, 805–807. [Google Scholar]
- Galyean, M. Laboratory Procedure in Animal Nutrition Research; New Mexico State University: Las Cruces, NM, USA, 1989. [Google Scholar]
- Perry, T.W. Breeding Herd Nutrition and Management. In Beef Cattle Feeding and Nutrition, 2nd ed.; Perry, T.W., Cecava, M.J., Eds.; A Division of Harcourt Brace & Company: San Diego, CA, USA; pp. 92101–94495. Academic Press, Inc.: Cambridge, MA, USA, 1995; pp. 169–197. [Google Scholar]
- Castro, D.P.V.; Pimentel, P.R.S.; Júnior, J.M.S.; Júnior, G.F.V.; Andrade, E.A.; Barbosa, A.M.; Pereira, E.S.; Ribeiro, C.V.D.M.; Bezerra, L.R.; Oliveira, R.L. Effects of increasing levels of palm kernel oil in the feed of finishing lambs. Animals 2022, 12, 427. [Google Scholar] [CrossRef] [PubMed]
- Anantasook, N.; Wanapat, M.; Cherdthong, A.; Gunun, P. Effect of plants containing secondary compounds with palm oil on feed intake, digestibility, microbial protein synthesis and microbial population in dairy cows. Asian-Australas. J. Anim. Sci. 2013, 26, 820–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thao, N.T.; Wanapat, M.; Cherdthong, A.; Kang, S. Effects of eucalyptus crude oils supplementation on rumen fermentation, microorganism and nutrient digestibility in swamp buffaloes. Asian-Australas. J. Anim. Sci. 2014, 27, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.S. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J. Dairy Sci. 2000, 83, 1598–1624. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Jenkins, T.C. Fat in lactation rations: Review. J. Dairy Sci. 1980, 63, 1–14. [Google Scholar] [CrossRef]
- Thao, N.T.; Wanapat, M.; Kang, S.; Cherdthong, A. effects of supplementation of eucalyptus (E. camaldulensis) leaf meal on feed intake and rumen fermentation efficiency in swamp buffaloes. Asian-Australas. J. Anim. Sci. 2015, 28, 951–957. [Google Scholar] [CrossRef] [Green Version]
- da Conceição dos Santos, R.; Alves, K.S.; Mezzomo, R.; Oliveira, L.R.S.; Cutrim, D.O.; Gomes, D.I.; Leite, G.P.; Araújo, M.Y.D.S. Performance of feedlot lambs fed palm kernel cake-based diets. Trop. Anim. Health Prod. 2016, 48, 367–372. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Monteiro, H.F.; Agustinho, B.C.; Vinyard, J.R.; Harden, T.; Bennett, S.L.; Arce-Cordero, J.A.; Sarmikasoglou, E.; Ravelo, A.D.; Bahman, A.; So, S.; et al. Megasphaera elsdenii and Saccharomyces Cerevisiae as direct fed microbials during an in vitro acute ruminal acidosis challenge. Sci. Rep. 2022, 12, 7978. [Google Scholar]
- Seankamsorn, A.; Cherdthong, A.; So, S.; Wanapat, M. Using glycerin with chitosan extracted from shrimp residue to enhance rumen fermentation and feed use in native Thai bulls. Vet. World 2021, 14, 1158. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M. Manipulation of in vitro ruminal fermentation and digestibility by dried rumen digesta. Livest. Sci. 2013, 153, 94–100. [Google Scholar] [CrossRef]
- Wachirapakorn, C.; Pilachai, K.; Wanapat, M.; Pakdee, P.; Cherdthong, A. Effect of ground corn cobs as a fiber source in total mixed ration on feed intake, milk yield and milk composition in tropical lactating crossbred Holstein cows. Anim. Nutr. 2016, 2, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Cherdthong, A.; Khonkhaeng, B.; Seankamsorn, A.; Supapong, C.; Wanapat, M.; Gunun, N.; Gunun, P.; Chanjula, P.; Polyorach, S. Effects of feeding fresh cassava root with high-sulfur feed block on feed utilization, rumen fermentation and blood metabolites in Thai native cattle. Trop. Anim. Health Prod. 2018, 50, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D. Blood urea concentration in relation to protein utilization in the ruminant. J. Agric. Sci. 1975, 48, 438–446. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Huber, J.T. Performance of high producing cows in early lactation fed protein of varying amounts, sources, and degradability. J. Dairy Sci. 1983, 66, 227–234. [Google Scholar] [PubMed]
- Kaneko, J.J. Appendixes. In Clinical Biochemistry of Domestic Animals, 3rd ed.; Kaneko, J.J., Ed.; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Chanjula, P.; Cherdthong, A. Effects of spent mushroom Cordyceps militaris supplementation on apparent digestibility, rumen fermentation, and blood metabolite parameters of goats. J. Anim. Sci. 2018, 96, 1150–1158. [Google Scholar] [CrossRef] [Green Version]
- Jain, N.C. Essential of Veterinary Hematology; Lea & Febiger: Philadelphia, PA, USA, 1993. [Google Scholar]
- Botham, K.M.; Mayes, P. Cholesterol Synthesis, Transport, & Excretion. In Harper’s Illustrated Biochemistry; Rodwell, V.W., Bender, D.A., Botham, K.M., Kennelly, P.J., Weil, P., Eds.; McGraw Hill: New York, NY, USA, 2016. [Google Scholar]
- Nocek, J.E.; Russell, J.B. Protein and energy as an integrated system, Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J. Dairy Sci. 1988, 71, 2070–2107. [Google Scholar] [CrossRef]
- Heldt, J.S.; Cochran, R.C.; Mathis, C.P.; Woods, B.C.; Olson, K.C.; Titgemeyer, E.C.; Nagaraja, T.G.; Vanzant, E.S.; Johnson, D.E. Effects of level and source of carbohydrates and level of degradable intake protein on intake and digestion of low-quality tallgrass-prairie hay by beef steers. J. Anim. Sci. 1999, 77, 2846–2854. [Google Scholar] [CrossRef]
- Sarwar, M.; Firkins, J.L.; Eastridge, M.L. Effect of varying forage or concentrate carbohydrate on nutrient digestibilities and milk production by dairy cows. J. Dairy Sci. 1992, 75, 1533–1542. [Google Scholar] [CrossRef]
- Sutton, J.D.; Morant, S.V.; Bines, J.A.; Napper, D.J.; Givens, D.I. Effect of altering the starch: Fibre ratio in the concentrates on hay intake and milk production by Friesian cows. J. Agric. Sci. 1993, 120, 379–390. [Google Scholar] [CrossRef]
- Wanapat, M. Rumen manipulation to increase the efficient use of local feed resources and productivity of ruminants in the tropics. Australia. Asian-Australas. J. Anim. Sci. 2000, 13, 59–67. [Google Scholar]
- Chanjula, P.; Ngampongsai, W.; Wanapat, M. Effect of levels of urea and cassava chip in concentrate on dry matter intake, ruminal ecology and blood metabolites in growing goats. Songklanakarin J. Sci. Technol. 2007, 29, 37–48. [Google Scholar]
- Forbes, J.M.; France, J. Quantitative Aspects of Ruminant Digestion and Metabolism; The University Press: Cambridge, UK, 1993. [Google Scholar]
- Sutton, J.D. Digestion and absorption of energy substrates in the lactating cow. J. Dairy Sci. 1985, 68, 3376–3393. [Google Scholar] [CrossRef]
- Wanapat, M.; Wachirapakorn, C. Utilization of roughage and concentrate by feedlot swamp buffaloes (Bubalus Bubalis). Asian-Australas. J. Anim. Sci. 1990, 3, 195–203. [Google Scholar] [CrossRef]
- Chanjula, P.; Ngampongsai, W.; Wanapat, M. Effects of replacing ground corn with cassava chip in concentrate on feed intake, nutrient utilization, rumen fermentation characteristics and microbial populations in goats. Asian-Australas. J. Anim. Sci. 2007, 20, 1557–1566. [Google Scholar] [CrossRef]
- Hungate, R.E. The Rumen and Its Microbe; Acadimic Press: New York, NY, USA, 1966; p. 533. [Google Scholar]
- Khampa, S.; Wanapat, M.; Wachirapakorn, C.; Nontaso, N.; Wattiaux, M.A.; Rowlinson, P. Effect of levels of sodium DL-malate supplementation on ruminal fermentation efficiency of concentrates containing high levels of cassava chip in dairy steers. Asian-Australas. J. Anim. Sci. 2006, 19, 368–375. [Google Scholar] [CrossRef]
- Jouany, J.P.; Ushida, K. The role of protozoa in feed digestion. Asian-Australas. J. Anim. Sci. 1999, 12, 113–126. [Google Scholar] [CrossRef]
- Russell, J.B. Rumen Microbiology and Its Role in Ruminant Nutrition; Cornell University: Ithaca, NY, USA, 2002; p. 120. [Google Scholar]
- Russell, J.B.; Wilson, D.B. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci. 1996, 79, 1503–1509. [Google Scholar]
- McAllister, T.A.; Phillippe, R.C.; Rode, L.M.; Cheng, K.L. Effect of the protein matrix on the digestion of cereal grains by ruminal microorganisms. J. Anim. Sci. 1993, 71, 205–212. [Google Scholar] [CrossRef]
- Song, M.K.; Kennelly, J.J. Ruminal fermentation pattern, bacterial population and ruminal degradation of feed ingredients as influenced by ruminal ammonia concentration. J. Anim. Sci. 1990, 68, 1110–1120. [Google Scholar] [CrossRef] [Green Version]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on ruminal microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Kang-Meznarich, J.H.; Broderick, G.A. Effects of incremental urea supplementation on ruminal ammonia concentration and bacterial protein formation. J. Anim. Sci. 1981, 51, 422–431. [Google Scholar] [CrossRef]
Item | Dietary Treatments | EOPM | |||
---|---|---|---|---|---|
EOPM(0) | EOPM(10) | EOPM(20) | EOPM(30) | ||
Ingredients, % DM | |||||
Low-fat oil palm meal | 0.00 | 10.00 | 20.00 | 30.00 | |
Ground corn | 44.50 | 35.00 | 25.43 | 15.78 | |
Soybean meal, (44% CP) | 20.5 | 20.00 | 19.57 | 19.22 | |
Fish meal, 55% CP | 0.50 | 0.50 | 0.50 | 0.50 | |
Leucaena leaves meal | 5.00 | 5.00 | 5.00 | 5.00 | |
Oil palm fronds | 25.00 | 25.00 | 25.00 | 25.00 | |
Molasses | 3.00 | 3.00 | 3.00 | 3.00 | |
Salt | 0.50 | 0.50 | 0.50 | 0.50 | |
Dicalcium phosphate | 0.50 | 0.50 | 0.50 | 0.50 | |
Premix | 0.50 | 0.50 | 0.50 | 0.50 | |
Total | 100.0 | 100.0 | 100.0 | 100.0 | |
Chemical composition | |||||
DM, % | 89.50 | 90.40 | 91.20 | 92.10 | 95.86 |
OM, %DM | 95.36 | 95.19 | 95.02 | 94.84 | 95.10 |
CP, %DM | 15.27 | 15.26 | 15.27 | 15.31 | 10.62 |
EE, %DM | 3.12 | 3.07 | 3.01 | 2.95 | 3.63 |
NDF, %DM | 28.17 | 34.13 | 40.09 | 46.06 | 68.89 |
ADF, %DM | 18.12 | 22.76 | 27.42 | 32.08 | 49.84 |
GE (kcal/kg DM) | 4.61 | 4.53 | 4.32 | 3.57 | 4.95 |
Items | Dietary Treatments | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
EOPM(0) | EOPM(10) | EOPM(20) | EOPM(30) | L | Q | ||
Total DMI, kg/d | 0.820 b | 0.867 ab | 0.890 a | 0.887 a | 0.02 | 0.01 | 0.14 |
DMI, %BW | 2.56 b | 2.69 a | 2.73 a | 2.70 a | 0.03 | 0.01 | 0.03 |
DMI, g/kg W0.75 | 60.90 b | 64.14 a | 65.14 a | 64.44 b | 0.73 | 0.01 | 0.04 |
OMI, kg/d | 0.78 b | 0.83 a | 0.84 a | 0.84 a | 0.02 | 0.02 | 0.07 |
CPI, kg/d | 0.13 | 0.13 | 0.14 | 0.14 | 0.004 | 0.08 | 0.76 |
EEI, kg/d | 0.03 | 0.03 | 0.03 | 0.03 | 0.002 | 0.41 | 0.53 |
NDFI, kg/d | 0.23 b | 0.30 a | 0.34 a | 0.41 a | 0.008 | 0.001 | 0.08 |
ADFI, kg/d | 0.15 b | 0.20 a | 0.24 a | 0.28 a | 0.005 | 0.001 | 0.30 |
Item | Dietary Treatments | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
EOPM(0) | EOPM(10) | EOPM(20) | EOPM(30) | L | Q | ||
Apparent total tract digestibility, % | |||||||
DM | 57.66 | 58.69 | 59.15 | 59.36 | 0.59 | 0.08 | 0.51 |
OM | 59.75 | 60.87 | 61.29 | 61.21 | 0.63 | 0.14 | 0.37 |
CP | 66.69 | 68.79 | 69.21 | 69.50 | 1.25 | 0.16 | 0.49 |
EE | 86.57 | 86.78 | 86.07 | 85.63 | 1.12 | 0.50 | 0.78 |
NDF | 38.20 c | 40.61 bc | 45.35 a | 44.11 ab | 1.10 | 0.003 | 0.14 |
ADF | 24.49 c | 28.43 b | 29.29 ab | 30.59 a | 0.55 | 0.001 | 0.05 |
Digestible nutrient intake, kg/d | |||||||
DOM | 0.45 b | 0.48 ab | 0.50 a | 0.49 ab | 0.01 | 0.01 | 0.06 |
DCP | 0.08 b | 0.09 a | 0.10 a | 0.10 a | 0.001 | 0.002 | 0.09 |
DEE | 0.03 | 0.03 | 0.03 | 0.03 | 0.002 | 0.50 | 0.62 |
DNDF | 0.15 c | 0.17 b | 0.21 a | 0.20 a | 0.006 | 0.001 | 0.03 |
DADF | 0.06 c | 0.08 b | 0.08 ab | 0.09 a | 0.003 | 0.001 | 0.12 |
Estimated energy intake † | |||||||
ME Mcal/d | 1.72 b | 1.85 a | 1.90 a | 1.88 a | 0.04 | 0.01 | 0.07 |
ME Mcal/kg DM | 2.10 | 2.13 | 2.14 | 2.12 | 0.02 | 0.37 | 0.30 |
Item | Dietary Treatments | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
EOPM(0) | EOPM(10) | EOPM(20) | EOPM(30) | L | Q | ||
Temperature, °C | |||||||
0 h post-feeding | 39.20 | 39.30 | 39.00 | 39.10 | 0.15 | 0.62 | 0.67 |
4 h post-feeding | 39.50 | 39.40 | 39.20 | 39.40 | 0.24 | 0.53 | 0.29 |
Mean | 39.35 | 39.30 | 39.10 | 39.25 | 0.16 | 0.83 | 0.23 |
Ruminal pH | |||||||
0 h post-feeding | 6.57 | 6.66 | 6.59 | 6.74 | 0.07 | 0.18 | 0.67 |
4 h post-feeding | 6.26 | 6.35 | 6.37 | 6.31 | 0.06 | 0.53 | 0.27 |
Mean | 6.42 | 6.50 | 6.49 | 6.53 | 0.05 | 0.27 | 0.72 |
NH3-N, mg/dL | |||||||
0 h post-feeding | 19.64 | 20.00 | 18.57 | 19.29 | 2.05 | 0.79 | 0.93 |
4 h post-feeding | 22.86 | 23.57 | 22.50 | 23.57 | 2.17 | 0.91 | 0.93 |
Mean | 21.25 | 21.79 | 20.53 | 21.43 | 1.96 | 0.93 | 0.93 |
BUN, mg/dL | |||||||
0 h post-feeding | 23.88 | 24.63 | 23.71 | 22.85 | 1.17 | 0.37 | 0.30 |
4 h post-feeding | 23.94 | 24.46 | 25.03 | 23.20 | 0.86 | 0.52 | 0.09 |
Mean | 23.91 | 24.55 | 24.37 | 23.03 | 0.99 | 0.42 | 0.18 |
Item | Dietary Treatments | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
EOPM(0) | EOPM(10) | EOPM(20) | EOPM(30) | L | Q | ||
Glucose, mg/dL | |||||||
0 h post-feeding | 58.75 b | 63.00 a | 64.00 a | 62.25 ab | 1.05 | 0.08 | 0.02 |
4 h post-feeding | 67.00 | 64.25 | 64.00 | 63.75 | 1.15 | 0.11 | 0.32 |
Mean | 62.87 | 63.62 | 64.00 | 63.00 | 0.84 | 1.00 | 0.34 |
PCV, % | |||||||
0 h post-feeding | 31.75 | 31.50 | 30.00 | 31.00 | 0.62 | 0.22 | 0.35 |
4 h post-feeding | 29.25 | 29.75 | 28.75 | 29.25 | 0.73 | 0.77 | 1.00 |
Mean | 30.50 | 30.62 | 29.37 | 30.12 | 0.60 | 0.41 | 0.62 |
Cholesterol, mg% | |||||||
0 h post-feeding | 129.50 | 126.50 | 126.00 | 116.00 | 4.73 | 0.14 | 0.21 |
4 h post-feeding | 121.25 | 119.25 | 119.25 | 108.25 | 4.36 | 0.12 | 0.18 |
Mean | 125.37 | 122.87 | 122.62 | 112.12 | 4.46 | 0.13 | 0.19 |
Triglyceride, mg% | |||||||
0 h post-feeding | 52.75 a | 36.25 b | 35.50 b | 40.75 b | 2.96 | 0.03 | 0.01 |
4 h post-feeding | 39.00 | 34.25 | 27.25 | 33.75 | 4.88 | 0.33 | 0.29 |
Mean | 45.87 a | 35.25 b | 31.37 b | 37.25 ab | 2.91 | 0.06 | 0.03 |
Albumin, g% | |||||||
0 h post-feeding | 4.11 | 3.90 | 3.96 | 4.05 | 0.07 | 0.74 | 0.09 |
4 h post-feeding | 3.87 | 3.79 | 3.81 | 3.82 | 0.08 | 0.74 | 0.59 |
Mean | 3.99 | 3.85 | 3.89 | 3.94 | 0.07 | 0.71 | 0.20 |
Globulin, g% | |||||||
0 h post-feeding | 2.04 | 2.16 | 2.06 | 2.06 | 0.05 | 0.82 | 0.27 |
4 h post-feeding | 2.04 b | 2.02 b | 2.04 b | 2.54 a | 0.06 | 0.001 | 0.01 |
Mean | 2.04 b | 2.09 b | 2.05 b | 2.30 a | 0.03 | 0.01 | 0.02 |
WBC, 103/µL | |||||||
0 h post-feeding | 11.24 | 10.10 | 10.29 | 10.28 | 0.70 | 0.42 | 0.44 |
4 h post-feeding | 11.48 | 11.12 | 10.90 | 11.08 | 0.76 | 0.68 | 0.73 |
Mean | 11.37 | 10.62 | 10.60 | 10.68 | 0.69 | 0.53 | 0.57 |
RBC, 106/µL | |||||||
0 h post-feeding | 3.99 | 3.93 | 3.71 | 3.57 | 0.14 | 0.08 | 0.77 |
4 h post-feeding | 3.61 | 3.67 | 3.43 | 3.50 | 0.13 | 0.35 | 0.95 |
Mean | 3.80 | 3.80 | 3.57 | 3.54 | 0.11 | 0.08 | 0.89 |
HGB, g/dL | |||||||
0 h post-feeding | 11.80 | 11.57 | 11.12 | 11.40 | 0.22 | 0.11 | 0.26 |
4 h post-feeding | 10.87 | 10.75 | 10.50 | 10.62 | 0.26 | 0.43 | 0.65 |
Mean | 11.33 | 11.16 | 10.81 | 11.01 | 0.19 | 0.18 | 0.38 |
MCV, fL | |||||||
0 h post-feeding | 29.70 bc | 29.55 c | 30.22 a | 30.12 ab | 0.14 | 0.02 | 0.86 |
4 h post-feeding | 30.15 | 30.12 | 30.90 | 30.42 | 0.26 | 0.22 | 0.42 |
Mean | 29.92 b | 29.83 b | 30.56 a | 30.27 ab | 0.15 | 0.03 | 0.53 |
MCHC, g/dL | |||||||
0 h post-feeding | 37.20 | 36.77 | 37.12 | 36.75 | 0.50 | 0.67 | 0.96 |
4 h post-feeding | 37.15 | 37.12 | 36.57 | 36.32 | 0.64 | 0.33 | 0.86 |
Mean | 37.17 | 36.95 | 36.85 | 36.53 | 0.38 | 0.28 | 0.91 |
Item | Dietary Treatments | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
EOPM(0) | EOPM(10) | EOPM(20) | EOPM(30) | L | Q | ||
Total VFA, mmol/L | |||||||
0 h post-feeding | 57.90 | 58.48 | 59.59 | 57.98 | 0.98 | 0.78 | 0.81 |
4 h post-feeding | 87.37 b | 92.69 ab | 95.11 a | 87.58 b | 1.69 | 0.05 | 0.32 |
Mean | 71.62 b | 75.58 a | 77.35 a | 72.78 b | 1.03 | 0.03 | 0.31 |
Proportion of individual VFA, % | |||||||
Acetate (C2) | |||||||
0 h post-feeding | 71.16 | 70.66 | 69.38 | 71.21 | 0.65 | 0.29 | 0.51 |
4 h post-feeding | 72.15 | 71.95 | 71.04 | 72.15 | 0.79 | 0.48 | 0.81 |
Mean | 71.65 | 71.30 | 70.21 | 71.68 | 0.62 | 0.24 | 0.56 |
Propionate (C3) | |||||||
0 h post-feeding | 19.61 | 19.26 | 20.21 | 19.61 | 0.51 | 0.83 | 0.76 |
4 h post-feeding | 20.75 | 20.19 | 21.50 | 20.75 | 0.58 | 0.67 | 0.31 |
Mean | 20.17 | 19.73 | 20.85 | 20.17 | 0.47 | 0.69 | 0.42 |
Butyrate (C4) | |||||||
0 h post-feeding | 6.06 b | 7.24 a | 7.51 a | 6.06 b | 0.34 | 0.16 | 0.62 |
4 h post-feeding | 5.22 | 6.01 | 5.63 | 5.22 | 0.54 | 0.35 | 0.87 |
Mean | 5.64 | 6.63 | 6.57 | 5.63 | 0.37 | 0.16 | 0.72 |
Other VFA⸹ | |||||||
0 h post-feeding | 3.22 | 2.83 | 2.84 | 3.21 | 0.07 | 0.28 | 0.94 |
4 h post-feeding | 1.88 | 1.83 | 1.82 | 1.88 | 0.11 | 0.09 | 0.29 |
Mean | 2.54 | 2.33 | 2.33 | 2.54 | 0.09 | 0.10 | 0.65 |
Acetate: propionate ratio | |||||||
0 h post-feeding | 1.74 | 1.57 | 1.76 | 1.63 | 0.08 | 0.72 | 0.84 |
4 h post-feeding | 1.82 | 1.91 | 1.77 | 1.63 | 0.11 | 0.20 | 0.36 |
Mean | 1.78 | 1.73 | 1.77 | 1.63 | 0.08 | 0.31 | 0.62 |
Acetate, butyrate: propionate ratio | |||||||
0 h post-feeding | 2.25 | 1.97 | 2.21 | 2.03 | 0.15 | 0.57 | 0.74 |
4 h post-feeding | 2.28 | 2.39 | 2.25 | 2.09 | 0.16 | 0.37 | 0.42 |
Mean | 2.26 | 2.18 | 2.23 | 2.06 | 0.12 | 0.35 | 0.72 |
CH4, mol % | |||||||
0 h post-feeding | 22.28 | 20.34 | 22.12 | 21.00 | 1.02 | 0.66 | 0.70 |
4 h post-feeding | 22.67 | 23.39 | 22.22 | 21.27 | 1.01 | 0.28 | 0.43 |
Mean | 22.48 | 21.87 | 22.17 | 21.13 | 0.84 | 0.36 | 0.80 |
Item | Dietary Treatments | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
EOPM(0) | EOPM(10) | EOPM(20) | EOPM(30) | L | Q | ||
Total direct count | |||||||
Bacteria (×1010 cell/mL) | |||||||
0 h post-feeding | 1.45 | 1.45 | 1.60 | 1.35 | 1.35 | 0.50 | 0.67 |
4 h post-feeding | 1.56 | 1.67 | 1.90 | 1.63 | 2.01 | 0.67 | 0.80 |
Mean | 1.51 | 1.56 | 1.75 | 1.49 | 1.65 | 0.43 | 0.89 |
Fungal zoospores (×106 cell/mL) | |||||||
0 h post-feeding | 1.53 | 1.61 | 1.91 | 1.67 | 0.27 | 0.07 | 0.51 |
4 h post-feeding | 1.52 | 1.51 | 2.67 | 2.15 | 0.37 | 0.11 | 0.72 |
Mean | 1.52 | 1.56 | 2.29 | 1.91 | 0.28 | 0.06 | 0.97 |
Total Protozoa (×106 cell/mL) | |||||||
0 h post-feeding | 2.29 | 2.47 | 2.21 | 2.51 | 0.26 | 0.09 | 0.50 |
4 h post-feeding | 2.61 | 3.15 | 2.63 | 3.47 | 0.32 | 0.10 | 0.56 |
Mean | 2.46 | 2.81 | 2.41 | 2.99 | 0.26 | 0.06 | 0.95 |
Item | Dietary Treatments | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
EOPM(0) | EOPM(10) | EOPM(20) | EOPM(30) | L | Q | ||
N balance, g/d | |||||||
Total N intake | 21.54 c | 21.97 bc | 23.16 ab | 23.49 a | 0.47 | 0.01 | 0.89 |
N excretion, g/d | |||||||
Fecal N | 7.05 | 7.24 | 7.25 | 7.47 | 0.48 | 0.57 | 0.98 |
Urinary N | 4.12 | 3.42 | 3.50 | 4.08 | 0.74 | 0.99 | 0.42 |
Total N excretion | 11.17 | 10.66 | 10.76 | 11.55 | 1.12 | 0.81 | 0.58 |
Absorbed N | 14.48 | 14.73 | 15.90 | 16.02 | 0.51 | 0.10 | 0.87 |
Retained N | 10.36 | 11.31 | 12.40 | 11.93 | 0.98 | 0.23 | 0.50 |
N output (% of N intake) | |||||||
Absorbed | 67.42 | 66.99 | 68.92 | 68.81 | 1.90 | 0.50 | 0.93 |
Retained | 48.35 | 51.08 | 53.78 | 52.54 | 4.73 | 0.49 | 0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanjula, P.; So, S.; Suntara, C.; Prachumchai, R.; Cherdthong, A. Efficiency of Feed Utilization, Ruminal Traits, and Blood Parameters of Goats Given a Total Mixed Diet Ration Containing Extracted Oil Palm Meal. Vet. Sci. 2022, 9, 612. https://doi.org/10.3390/vetsci9110612
Chanjula P, So S, Suntara C, Prachumchai R, Cherdthong A. Efficiency of Feed Utilization, Ruminal Traits, and Blood Parameters of Goats Given a Total Mixed Diet Ration Containing Extracted Oil Palm Meal. Veterinary Sciences. 2022; 9(11):612. https://doi.org/10.3390/vetsci9110612
Chicago/Turabian StyleChanjula, Pin, Sarong So, Chanon Suntara, Rittikeard Prachumchai, and Anusorn Cherdthong. 2022. "Efficiency of Feed Utilization, Ruminal Traits, and Blood Parameters of Goats Given a Total Mixed Diet Ration Containing Extracted Oil Palm Meal" Veterinary Sciences 9, no. 11: 612. https://doi.org/10.3390/vetsci9110612
APA StyleChanjula, P., So, S., Suntara, C., Prachumchai, R., & Cherdthong, A. (2022). Efficiency of Feed Utilization, Ruminal Traits, and Blood Parameters of Goats Given a Total Mixed Diet Ration Containing Extracted Oil Palm Meal. Veterinary Sciences, 9(11), 612. https://doi.org/10.3390/vetsci9110612