Effectiveness of Intramammary Antibiotics, Internal Teat Sealants, or Both at Dry-Off in Dairy Cows: Milk Production and Somatic Cell Count Outcomes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Herd Selection
2.2. Cow Enrollment, Follow-Up, and Sample and Data Collection
2.3. Statistical Analyses
2.3.1. Modeling Milk Production during the First 150 DIM after Calving
Random Effects
Fixed-Effect Variables
2.3.2. Modeling Somatic Cell Count during 150 DIM after Calving
Random Effects
Fixed-Effect Variables
2.3.3. Selection of the Final Models
3. Results
3.1. Description of the Enrolled Herds
3.2. Milk Production
3.3. Somatic Cell Count
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romero, J.; Benavides, E.; Meza, C. Assessing Financial Impacts of Subclinical Mastitis on Colombian Dairy Farms. Front. Vet. Sci. 2018, 5, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gussmann, M.; Steeneveld, W.; Kirkeby, C.; Hogeveen, H.; Farre, M.; Halasa, T. Economic and epidemiological impact of different intervention strategies for subclinical and clinical mastitis. Prev. Vet. Med. 2019, 166, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Gussmann, M.; Steeneveld, W.; Kirkeby, C.; Hogeveen, H.; Nielen, M.; Farre, M.; Halasa, T. Economic and epidemiological impact of different intervention strategies for clinical contagious mastitis. J. Dairy Sci. 2019, 102, 1483–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagnestam-Nielsen, C.; Ostergaard, S. Economic impact of clinical mastitis in a dairy herd assessed by stochastic simulation using different methods to model yield losses. Animal 2009, 3, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Schukken, Y.H.; Bronzo, V.; Locatelli, C.; Pollera, C.; Rota, N.; Casula, A.; Testa, F.; Scaccabarozzi, L.; March, R.; Zalduendo, D.; et al. Efficacy of vaccination on Staphylococcus aureus and coagulase-negative staphylococci intramammary infection dynamics in 2 dairy herds. J. Dairy Sci. 2014, 97, 5250–5264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erskine, R.J. Vaccination strategies for mastitis. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 257–270. [Google Scholar] [CrossRef]
- USDA. A, VS, National Animal Health Monitoring System. Milk Quality, Milking Procedures, and Mastitis on U.S. Dairies 2014. 2016. Available online: https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy14/Dairy14_dr_Mastitis.pdf (accessed on 23 August 2022).
- Haltia, L.; Honkanen-Buzalski, T.; Spiridonova, I.; Olkonen, A.; Myllys, V. A study of bovine mastitis, milking procedures and management practices on 25 Estonian dairy herds. Acta Vet. Scand. 2006, 48, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingwill, R.G.; Neave, F.K.; Dodd, F.H.; Griffin, T.K.; Westgarth, D.R.; Wilson, C.D. The effect of a mastitis control system on levels of subclinical and clinical mastitis in two years. Vet. Rec. 1970, 87, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Natzke, R.P. Therapy: One component in a mastitis control system. J. Dairy Sci. 1971, 54, 1895–1901. [Google Scholar] [CrossRef]
- Hillerton, E.; Bryan, M.; Biggs, A.; Berry, E.; Edmondson, P. Time to standardise dry cow therapy terminology. Vet. Rec. 2017, 180, 301–302. [Google Scholar] [CrossRef]
- Hogan, J.S.; Smith, K.L.; Todhunter, D.A.; Schoenberger, P.S.; Dinsmore, R.P.; Canttell, M.B.; Gabel, C. Efficacy of dry cow therapy and a Propionibacterium acnes product in herds with low somatic cell count. J. Dairy Sci. 1994, 77, 3331–3337. [Google Scholar] [CrossRef]
- Schukken, Y.H.; Vanvliet, J.; Vandegeer, D.; Grommers, F.J. A randomized blind trial on dry cow antibiotic infusion in a low somatic cell count herd. J. Dairy Sci. 1993, 76, 2925–2930. [Google Scholar] [CrossRef]
- Scherpenzeel, C.G.M.; den Uijl, I.E.M.; van Schaik, G.; Riekerink, R.; Hogeveen, H.; Lam, T. Effect of different scenarios for selective dry-cow therapy on udder health, antimicrobial usage, and economics. J. Dairy Sci. 2016, 99, 3753–3764. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.; Godden, S.M.; Royster, E.E.; Timmerman, J.A.; Crooker, B.A.; McDonald, N. Pilot study: Impact of using a culture-guided selective dry cow therapy program targeting quarter-level treatment on udder health and antibiotic use. Bov. Pract. 2017, 51, 48–57. [Google Scholar]
- Vasquez, A.K.; Nydam, D.V.; Foditsch, C.; Wieland, M.; Lynch, R.; Eicker, S.; Virkler, P. Use of a culture-independent on-farm algorithm to guide the use of selective dry-cow antibiotic therapy. J. Dairy Sci. 2018, 101, 5345–5361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowe, S.M.; Godden, S.M.; Nydam, D.V.; Gorden, P.J.; Lago, A.; Vasquez, A.K.; Royster, E.; Timmerman, J.; Thomas, M. Randomized controlled non-inferiority trial investigating the effect of 2 selective dry-cow therapy protocols on antibiotic use at dry-off and dry period intramammary infection dynamics. J. Dairy Sci. 2020, 103, 6473–6492. [Google Scholar] [CrossRef] [PubMed]
- Rowe, S.M.; Godden, S.M.; Nydam, D.V.; Gorden, P.J.; Lago, A.; Vasquez, A.K.; Royster, E.; Timmerman, J.; Thomas, M. Randomized controlled trial investigating the effect of 2 selective dry-cow therapy protocols on udder health and performance in the subsequent lactation. J. Dairy Sci. 2020, 103, 6493–6503. [Google Scholar] [CrossRef]
- Cameron, M.; Keefe, G.P.; Roy, J.P.; Stryhn, H.; Dohoo, I.R.; McKenna, S.L. Evaluation of selective dry cow treatment following on-farm culture: Milk yield and somatic cell count in the subsequent lactation. J. Dairy Sci. 2015, 98, 2427–2436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, M.; McKenna, S.L.; MacDonald, K.A.; Dohoo, I.R.; Roy, J.P.; Keefe, G.P. Evaluation of selective dry cow treatment following on-farm culture: Risk of postcalving intramammary infection and clinical mastitis in the subsequent lactation. J. Dairy Sci. 2014, 97, 270–284. [Google Scholar] [CrossRef]
- CDC. Antibiotic Resistance Threats in the United States, 2013. 2013. Available online: https://stacks.cdc.gov/view/cdc/20705 (accessed on 23 August 2022).
- Schrag, N.F.D.; Godden, S.M.; Apley, M.D.; Singer, R.S.; Lubbers, B.V. Antimicrobial use quantification in adult dairy cows–Part 3—Use measured by standardized regimens and grams on 29 dairies in the United States. Zoonoses Public Health 2020, 67, 82–93. [Google Scholar] [CrossRef]
- Huxley, J.N.; Greent, M.J.; Green, L.E.; Bradley, A.J. Evaluation of the efficacy of an internal teat sealer during the dry period. J. Dairy Sci. 2002, 85, 551–561. [Google Scholar] [CrossRef]
- CDFA. California Agricultural Statistics Review, 2017–2018; CDFA, Ed.; CDFA: Sacramento, CA, USA, 2018; pp. 1–118.
- Aly, S.S.; Okello, E.; ElAshmawy, W.R.; Williams, D.R.; Anderson, R.J.; Rossitto, P.; Tonooka, K.; Glenn, K.; Karle, B.; Lehenbauer, T.W. Effectiveness of Intramammary Antibiotics, Internal Teat Sealants, or Both at Dry-Off in Dairy Cows: Clinical Mastitis and Culling Outcomes. Antibiotics 2022, 11, 954. [Google Scholar] [CrossRef] [PubMed]
- Sprecher, D.J.; Hostetler, D.E.; Kaneene, J.B. A lameness scoring system that uses posture and gait to predict dairy cattle reproductive performance. Theriogenology 1997, 47, 1179–1187. [Google Scholar] [CrossRef]
- Schreiner, D.A.; Ruegg, P.L. Effects of tail docking on milk quality and cow cleanliness. J. Dairy Sci. 2002, 85, 2503–2511. [Google Scholar] [CrossRef] [Green Version]
- Arruda, A.G.; Godden, S.; Rapnicki, P.; Gorden, P.; Timms, L.; Aly, S.S.; Lehenbauer, T.; Champagne, J. Randomized noninferiority clinical trial evaluating 3 commercial dry cow mastitis preparations: I. Quarter-level outcomes. J. Dairy Sci. 2013, 96, 4419–4435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandeel, S.A.; Morin, D.E.; Calloway, C.D.; Constable, P.D. Association of California Mastitis Test Scores with Intramammary Infection Status in Lactating Dairy Cows Admitted to a Veterinary Teaching Hospital. J Vet. Intern Med. 2018, 32, 497–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockcroft, P. Bovine Medicine; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Nielsen, S.S.; Krogh, M.A.; Enevoldsen, C. Time to the occurrence of a decline in milk production in cows with various paratuberculosis antibody profiles. J. Dairy Sci. 2009, 92, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Bennedsgaard, T.W.; Enevoldsen, C.; Thamsborg, S.M.; Vaarst, M. Effect of Mastitis Treatment and Somatic Cell Counts on Milk Yield in Danish Organic Dairy Cows. J. Dairy Sci. 2003, 86, 3174–3183. [Google Scholar] [CrossRef] [Green Version]
- Aly, S.S.; Anderson, R.J.; Adaska, J.M.; Jiang, J.; Gardner, I.A. Association between Mycobacterium avium subspecies paratuberculosis infection and milk production in two California dairies. J. Dairy Sci. 2010, 93, 1030–1040. [Google Scholar] [CrossRef] [Green Version]
- Valldecabres, A.; Silva-Del-Río, N. Association of low serum calcium concentration after calving with productive and reproductive performance in multiparous Jersey cows. J. Dairy Sci. 2021, 104, 11983–11994. [Google Scholar] [CrossRef] [PubMed]
- Wagenmakers, E.J.; Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 2004, 11, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Bhutto, A.L.; Murray, R.D.; Woldehiwet, Z. The effect of dry cow therapy and internal teat-sealant on intra-mammary infections during subsequent lactation. Res. Vet. Sci. 2011, 90, 316–320. [Google Scholar] [CrossRef]
- Rajala-Schultz, P.J.; Torres, A.H.; Degraves, F.J. Milk yield and somatic cell count during the following lactation after selective treatment of cows at dry-off. J. Dairy Res. 2011, 78, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Golder, H.M.; Hodge, A.; Lean, I.J. Effects of antibiotic dry-cow therapy and internal teat sealant on milk somatic cell counts and clinical and subclinical mastitis in early lactation. J. Dairy Sci. 2016, 99, 7370–7380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNab, W.B.; Meek, A.H. A benefit cost analysis of dry-cow mastitis therapy in Ontario dairy herds. Can. Vet. J. 1991, 32, 347–353. [Google Scholar] [PubMed]
- Osteras, O.; Sandvik, L. Effects of selective dry-cow therapy on culling rate, clinical mastitis, milk yield and cow somatic cell count. A randomized clinical field study in cows. Zent. Vet. B 1996, 43, 555–575. [Google Scholar]
- Mütze, K.; Wolter, W.; Failing, K.; Kloppert, B.; Bernhardt, H.; Zschöck, M. The effect of dry cow antibiotic with and without an internal teat sealant on udder health during the first 100 d of lactation: A field study with matched pairs. J. Dairy Res. 2012, 79, 477–484. [Google Scholar] [CrossRef] [Green Version]
- Berry, E.A.; Hillerton, J.E. Effect of an intramammary teat seal and dry cow antibiotic in relation to dry period length on postpartum mastitis. J. Dairy Sci. 2007, 90, 760–765. [Google Scholar] [CrossRef]
- Sewalem, A.; Miglior, F.; Kistemaker, G.J.; Van Doormaal, B.J. Analysis of the Relationship Between Somatic Cell Score and Functional Longevity in Canadian Dairy Cattle. J. Dairy Sci. 2006, 89, 3609–3614. [Google Scholar] [CrossRef] [Green Version]
- Prendiville, R.; Pierce, K.M.; Buckley, F. A comparison between Holstein-Friesian and Jersey dairy cows and their F1 cross with regard to milk yield, somatic cell score, mastitis, and milking characteristics under grazing conditions. J. Dairy Sci. 2010, 93, 2741–2750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Washburn, S.; White, S.; Green Jr, J.; Benson, G. Reproduction, mastitis, and body condition of seasonally calved Holstein and Jersey cows in confinement or pasture systems. J. Dairy Sci. 2002, 85, 105–111. [Google Scholar] [CrossRef]
- Ray, D.; Halbach, T.; Armstrong, D. Season and lactation number effects on milk production and reproduction of dairy cattle in Arizona. J. Dairy Sci. 1992, 75, 2976–2983. [Google Scholar] [CrossRef]
Parameter | Level | Treatment | p ** | ||||
---|---|---|---|---|---|---|---|
None | AB | TS | AB + TS | Total | |||
Number of cows | 252 | 244 | 228 | 248 | 972 | 0.365 | |
Breed | Holstein | 165 | 157 | 147 | 153 | 622 | 0.85 |
Jersey | 49 | 47 | 43 | 47 | 186 | ||
Cross | 38 | 40 | 38 | 48 | 164 | ||
Parity | 2 | 113 | 104 | 95 | 122 | 434 | 0.85 |
≥3 | 139 | 140 | 133 | 126 | 538 |
Treatment Group | Test-Day Milk (kg) | Test-Day SCC (1000 Cells/mL) | ||||
---|---|---|---|---|---|---|
Mean | SE | 95% CI | Mean | SE | 95% CI | |
None | 41.73 | 0.288 | (41.16–42.29) | 330.22 | 19.03 | (292.90–367.55) |
AB | 42.36 | 0.289 | (41.79–42.93) | 264.97 | 19.12 | (227.48–302.46) |
TS | 42.28 | 0.304 | (41.68–42.88) | 302.32 | 20.13 | (262.86–341.79) |
AB + TS | 43.30 | 0.287 | (42.74–43.87) | 245.75 | 19.00 | (208.49–283.01) |
Factor | Levels | Model A 2 (AIC; 39,811) | Model B 3 (AIC; 39,862) | ||||
---|---|---|---|---|---|---|---|
Coefficient (95% CI) | Standard Error | p | Coefficient (95% CI) | Standard Error | p | ||
Treatment | None | Referent | Referent | ||||
AB | 0.12 (−0.99, 1.23) | 0.570 | 0.83 | 0.17 (−0.95, 1.29) | 0.575 | 0.76 | |
TS | 0.67 (−0.46, 1.82) | 0.583 | 0.24 | 0.69 (−0.45, 1.85) | 0.588 | 0.23 | |
AB + TS | 1.84 (0.72, 2.95) | 0.569 | <0.01 | 1.96 (0.84, 3.08) | 0.573 | <0.01 | |
Breed | Holstein | Referent | Referent | ||||
Jersey | −8.90 (−10.38, −7.42) | 0.754 | <0.01 | −8.94 (−10.43, −7.46) | 0.758 | <0.01 | |
Cross | −4.58 (−5.89, −3.26) | 0.671 | <0.01 | −4.53 (−5.85, −3.21) | 0.673 | <0.01 | |
Parity | Second | Referent | Referent | ||||
≥3 | 2.28 (1.34, 3.22) | 0.480 | <0.01 | 2.15 (1.22, 3.08) | 0.475 | <0.01 | |
SCC at any DHIA test during enrollment lactation ≥200,000 cells/ml | No | Referent | |||||
Yes | −1.00 (−1.92, -0.07) | 0.471 | 0.03 | ||||
Cow has at least one quarter with CMT score ≥ 2 at enrollment | No | Referent | |||||
Yes | −1.03 (−2.04, −0.01) | 0.517 | 0.04 | ||||
Time between dry-off and last clinical mastitis | Days | 0.007 (0.001, 0.01) | 0.003 | 0.01 | |||
Season | Winter | Referent | Referent | ||||
Summer | −4.61 (−5.55, −3.67) | 0.479 | <0.01 | −4.51 (−5.44, −3.59) | 0.472 | <0.01 | |
Days dry | days | 0.03 (0.003, 0.06) | 0.015 | 0.03 | 0.03 (0.008, 0.06) | 0.015 | 0.01 |
Intercept and splines variables | |||||||
Days in milk pre-peak (Kg) | −0.81 (−3.30, 1.67) | 1.270 | 0.52 | −0.74 (−3.24, 1.74) | 1.270 | 0.55 | |
Days in milk post-peak (Kg) | −4.94 (−5.42, −4.45) | 0.247 | <0.01 | −4.95 (−5.44, −4.46) | 0.248 | <0.01 | |
Days in milk pre-peak (Kg) square | −13.97 (−16.97, −10.98) | 1.526 | <0.01 | −13.91 (−16.90, −10.92) | 1.526 | <0.01 | |
Days in milk post-peak (Kg) square | −0.30 (−0.44, −0.17) | 0.069 | <0.01 | −0.30 (−0.44, −0.17) | 0.069 | <0.01 | |
Intercept | 45.63 (42.29, 48.97) | 1.705 | <0.01 | 47.28 (44.61, 49.94) | 1.361 | <0.01 |
Factor | Level | Coefficient | Standard Error | p | 95% Confidence Limits | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Treatment | None | Referent | ||||
AB | −0.30 | 0.086 | <0.01 | −0.47 | −0.13 | |
TS | −0.19 | 0.088 | 0.03 | −0.36 | −0.01 | |
AB + TS | −0.41 | 0.087 | <0.01 | −0.58 | −0.24 | |
Breed | Holstein | Referent | ||||
Jersey | −0.30 | 0.111 | <0.01 | −0.52 | −0.08 | |
Cross | −0.17 | 0.104 | 0.08 | −0.38 | 0.02 | |
Parity | Second | Referent | ||||
≥3 | 0.21 | 0.074 | <0.01 | 0.07 | 0.36 | |
Teat-end score 4 at any teat after calving | No | Referent | ||||
Yes | 0.59 | 0.167 | <0.01 | 0.26 | 0.92 | |
CMT 3 at any quarter after calving | No | Referent | ||||
Yes | 0.79 | 0.138 | <0.01 | 0.52 | 1.06 | |
Mastitis at enrollment lactation | No | Referent | ||||
Yes | 0.30 | 0.142 | 0.03 | 0.02 | 0.58 | |
Mastitis at any lactation prior to enrollment lactation | No | Referent | ||||
Yes | 0.26 | 0.131 | 0.04 | 0.008 | 0.52 | |
Milk production at current lactation | (kg) | −0.01 | 0.001 | <0.01 | −0.018 | −0.01 |
Ln SCC of last test before enrollment | Natural log 1000 cells/mL | 0.17 | 0.028 | <0.01 | 0.11 | 0.23 |
Time between last test day and enrollment day | days | 0.009 | 0.003 | 0.01 | 0.002 | 0.01 |
Days in milk pre-Min | −3.69 | 0.194 | <0.01 | −4.08 | −3.31 | |
Days in milk post-Min | 4.28 | 0.155 | <0.01 | 3.97 | 4.58 | |
Days in milk pre-Min square | −2.25 | 0.224 | <0.01 | −2.69 | −1.81 | |
Factor | Level | Coefficient | Standard Error | p | 95% Confidence Limits | |
Lower | Upper | |||||
Days in milk post-Min square | −3.13 | 0.148 | <0.01 | −3.42 | −2.84 | |
Intercept | 10.05 | 0.207 | <0.01 | 9.65 | 10.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ElAshmawy, W.R.; Okello, E.; Williams, D.R.; Anderson, R.J.; Karle, B.; Lehenbauer, T.W.; Aly, S.S. Effectiveness of Intramammary Antibiotics, Internal Teat Sealants, or Both at Dry-Off in Dairy Cows: Milk Production and Somatic Cell Count Outcomes. Vet. Sci. 2022, 9, 559. https://doi.org/10.3390/vetsci9100559
ElAshmawy WR, Okello E, Williams DR, Anderson RJ, Karle B, Lehenbauer TW, Aly SS. Effectiveness of Intramammary Antibiotics, Internal Teat Sealants, or Both at Dry-Off in Dairy Cows: Milk Production and Somatic Cell Count Outcomes. Veterinary Sciences. 2022; 9(10):559. https://doi.org/10.3390/vetsci9100559
Chicago/Turabian StyleElAshmawy, Wagdy R., Emmanuel Okello, Deniece R. Williams, Randall J. Anderson, Betsy Karle, Terry W. Lehenbauer, and Sharif S. Aly. 2022. "Effectiveness of Intramammary Antibiotics, Internal Teat Sealants, or Both at Dry-Off in Dairy Cows: Milk Production and Somatic Cell Count Outcomes" Veterinary Sciences 9, no. 10: 559. https://doi.org/10.3390/vetsci9100559
APA StyleElAshmawy, W. R., Okello, E., Williams, D. R., Anderson, R. J., Karle, B., Lehenbauer, T. W., & Aly, S. S. (2022). Effectiveness of Intramammary Antibiotics, Internal Teat Sealants, or Both at Dry-Off in Dairy Cows: Milk Production and Somatic Cell Count Outcomes. Veterinary Sciences, 9(10), 559. https://doi.org/10.3390/vetsci9100559