Comparison of Certain Intrarectal versus Intramuscular Pharmacodynamic Effects of Ketamine, Dexmedetomidine and Midazolam in Cats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karas, A.Z. Sedation and Chemical Restraint in the Dog and Cat. Clin. Tech. Small Anim. Pract. 1999, 14, 15–26. [Google Scholar] [CrossRef]
- van Haaften, K.A.; Forsythe, L.R.E.; Stelow, E.A.; Bain, M.J. Effects of a Single Preappointment Dose of Gabapentin on Signs of Stress in Cats during Transportation and Veterinary Examination. J. Am. Vet. Med. Assoc. 2017, 251, 1175–1181. [Google Scholar] [CrossRef]
- Lam, S.H.F.; Li, D.R.; Hong, C.E.; Vilke, G.M. Systematic Review: Rectal Administration of Medications for Pediatric Procedural Sedation. J. Emerg. Med. 2018, 55, 51–63. [Google Scholar] [CrossRef]
- Cupitt, J.M.; Kasipandian, V. Pain and Intramuscular Injections. Anaesthesia 2004, 59, 93. [Google Scholar] [CrossRef]
- Jannin, V.; Lemagnen, G.; Gueroult, P.; Larrouture, D.; Tuleu, C. Rectal Route in the 21st Century to Treat Children. Adv. Drug Deliv. Rev. 2014, 73, 34–49. [Google Scholar] [CrossRef]
- Purohit, T.J.; Hanning, S.M.; Wu, Z. Advances in Rectal Drug Delivery Systems. Pharm. Dev. Technol. 2018, 23, 942–952. [Google Scholar] [CrossRef]
- Hua, S. Physiological and Pharmaceutical Considerations for Rectal Drug Formulations. Front. Pharmacol. 2019, 10, 1196. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, B.; Nilsson, A.; Sjöberg, F.; Nilsson, L. Rectal Ketamine during Paediatric Burn Wound Dressing Procedures: A Randomised Dose-Finding Study. Burn. J. Int. Soc. Burn Inj. 2019, 45, 1081–1088. [Google Scholar] [CrossRef]
- de Boer, A.G.; Moolenaar, F.; de Leede, L.G.; Breimer, D.D. Rectal Drug Administration: Clinical Pharmacokinetic Considerations. Clin. Pharmacokinet. 1982, 7, 285–311. [Google Scholar] [CrossRef]
- Schwartz, M.; Muñana, K.R.; Nettifee-Osborne, J.A.; Messenger, K.M.; Papich, M.G. The Pharmacokinetics of Midazolam after Intravenous, Intramuscular, and Rectal Administration in Healthy Dogs. J. Vet. Pharmacol. Ther. 2013, 36, 471–477. [Google Scholar] [CrossRef]
- Charalambous, M.; Bhatti, S.F.M.; Van Ham, L.; Platt, S.; Jeffery, N.D.; Tipold, A.; Siedenburg, J.; Volk, H.A.; Hasegawa, D.; Gallucci, A.; et al. Intranasal Midazolam versus Rectal Diazepam for the Management of Canine Status Epilepticus: A Multicenter Randomized Parallel-Group Clinical Trial. J. Vet. Intern. Med. 2017, 31, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Hanna, R.M.; Borchard, R.E.; Schmidt, S.L. Pharmacokinetics of Ketamine HCl and Metabolite I in the Cat: A Comparison of i.v., i.m., and Rectal Administration. J. Vet. Pharmacol. Ther. 1988, 11, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Schroers, M.; Meyer-Lindenberg, A.; Reese, S.; Dobenecker, B.; Pieper, K. Pharmacokinetics of Low-Dose and High-Dose Buprenorphine in Cats after Rectal Administration of Different Formulations. J. Feline Med. Surg. 2019, 21, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Committee on Drugs. Alternative Routes of Drug Administration—Advantages and Disadvantages (Subject Review). Pediatrics 1997, 100, 143–152. [Google Scholar] [CrossRef]
- Santos, L.C.P.; Ludders, J.W.; Erb, H.N.; Basher, K.L.; Kirch, P.; Gleed, R.D. Sedative and Cardiorespiratory Effects of Dexmedetomidine and Buprenorphine Administered to Cats via Oral Transmucosal or Intramuscular Routes. Vet. Anaesth. Analg. 2010, 37, 417–424. [Google Scholar] [CrossRef]
- Portier, K.; Ida, K.K. The ASA Physical Status Classification: What Is the Evidence for Recommending Its Use in Veterinary Anesthesia?—A Systematic Review. Front. Vet. Sci. 2018, 5, 204. [Google Scholar] [CrossRef]
- Cagnotti, G.; Odore, R.; Bertone, I.; Corona, C.; Dappiano, E.; Gardini, G.; Iulini, B.; Bellino, C.; D’Angelo, A. Open-Label Clinical Trial of Rectally Administered Levetiracetam as Supplemental Treatment in Dogs with Cluster Seizures. J. Vet. Intern. Med. 2019, 33, 1714–1718. [Google Scholar] [CrossRef]
- Eagleson, J.S.; Platt, S.R.; Strong, D.L.E.; Kent, M.; Freeman, A.C.; Nghiem, P.P.; Zheng, B.; White, C.A. Bioavailability of a Novel Midazolam Gel after Intranasal Administration in Dogs. Am. J. Vet. Res. 2012, 73, 539–545. [Google Scholar] [CrossRef]
- Court, M.H.; Greenblatt, D.J. Pharmacokinetics and Preliminary Observations of Behavioral Changes Following Administration of Midazolam to Dogs. J. Vet. Pharmacol. Ther. 1992, 15, 343–350. [Google Scholar] [CrossRef]
- Hermanson, J.W.; Evans, H.E.; Lahunta, A. de The Digestive Apparatus and Abdomen. In Miller and Evans’ Anatomy of the Dog—E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018; Volume 7, p. 765. ISBN 978-0-323-54602-7. [Google Scholar]
- Bloor, B.C.; Frankland, M.; Alper, G.; Raybould, D.; Weitz, J.; Shurtliff, M. Hemodynamic and Sedative Effects of Dexmedetomidine in Dog. J. Pharmacol. Exp. Ther. 1992, 263, 690–697. [Google Scholar]
- Pypendop, B.H.; Ilkiw, J.E. Pharmacokinetics of Dexmedetomidine after Intravenous Administration of a Bolus to Cats. Am. J. Vet. Res. 2014, 75, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Pypendop, B.H.; Honkavaara, J.; Ilkiw, J.E. Pharmacokinetics of Dexmedetomidine, MK-467 and Their Combination Following Intramuscular Administration in Male Cats. Vet. Anaesth. Analg. 2017, 44, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Ansah, O.B. Use of the Alpha-2-Adrenoceptor Agonists Medetomidine and Dexmedetomidine in the Sedation and Analgesia of Domestic Cats. Academic Dissertetion. University of Helsinki, Helsinki, Finland, 2004. [Google Scholar]
- Sinclair, M.D. A Review of the Physiological Effects of Alpha2-Agonists Related to the Clinical Use of Medetomidine in Small Animal Practice. Can. Vet. J. Rev. Vet. Can. 2003, 44, 885–897. [Google Scholar]
- Clanachan, A.S.; McGrath, J.C.; MacKenzie, J.E. Cardiovascular Effects of Ketamine in the Pithed Rat, Rabbit and Cat. Br. J. Anaesth. 1976, 48, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Trinka, E.; Höfler, J.; Leitinger, M.; Brigo, F. Pharmacotherapy for Status Epilepticus. Drugs 2015, 75, 1499–1521. [Google Scholar] [CrossRef] [PubMed]
- Idvall, J.; Holasek, J.; Stenberg, P. Rectal Ketamine for Induction of Anaesthesia in Children. Anaesthesia 1983, 38, 60–64. [Google Scholar] [CrossRef]
- Malinovsky, J.M.; Servin, F.; Cozian, A.; Lepage, J.Y.; Pinaud, M. Ketamine and Norketamine Plasma Concentrations after i.v., Nasal and Rectal Administration in Children. Br. J. Anaesth. 1996, 77, 203–207. [Google Scholar] [CrossRef]
- Saint-Maurice, C.; Estève, C.; Holzer, J.; Carrier, O.; Rey, E.; de Lauture, D.; Bouvier d’Yvoire, M. Prémédication par le midazolam intrarectal. Recherche de la dose efficace en anesthésie pédiatrique. Ann. Fr. Anesth. Réanimation 1984, 3, 181–184. [Google Scholar] [CrossRef]
- Porters, N.; Bosmans, T.; Debille, M.; de Rooster, H.; Duchateau, L.; Polis, I. Sedative and Antinociceptive Effects of Dexmedetomidine and Buprenorphine after Oral Transmucosal or Intramuscular Administration in Cats. Vet. Anaesth. Analg. 2014, 41, 90–96. [Google Scholar] [CrossRef]
- Stevens, B.J.; Frantz, E.M.; Orlando, J.M.; Griffith, E.; Harden, L.B.; Gruen, M.E.; Sherman, B.L. Efficacy of a Single Dose of Trazodone Hydrochloride given to Cats Prior to Veterinary Visits to Reduce Signs of Transport- and Examination-Related Anxiety. J. Am. Vet. Med. Assoc. 2016, 249, 202–207. [Google Scholar] [CrossRef]
- Simon, B.T.; Steagall, P.V. Feline Procedural Sedation and Analgesia: When, Why and How. J. Feline Med. Surg. 2020, 22, 1029–1045. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, K.; Day, M.J.; Thiry, E.; Lloret, A.; Frymus, T.; Addie, D.; Boucraut-Baralon, C.; Egberink, H.; Gruffydd-Jones, T.; Horzinek, M.C.; et al. Feline Injection-Site Sarcoma: ABCD Guidelines on Prevention and Management. J. Feline Med. Surg. 2015, 17, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Zabielska-Koczywąs, K.; Wojtalewicz, A.; Lechowski, R. Current Knowledge on Feline Injection-Site Sarcoma Treatment. Acta Vet. Scand. 2017, 59, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- William Tank, A.; Lee Wong, D. Peripheral and Central Effects of Circulating Catecholamines. In Comprehensive Physiology; Terjung, R., Ed.; Wiley: Hoboken, NJ, USA, 2014; pp. 1–15. ISBN 978-0-470-65071-4. [Google Scholar]
Assessement | Score and Definition |
---|---|
Posture | 0: Standing position, walking. |
1: In sternal or lateral position but stands when stimulated | |
2: Remains in sternal recumbency; resists lateral recumbency | |
3: Remains in lateral recumbency but might lift head | |
4: Remains in lateral recumbency even when stimulated; flat out | |
Response to clipper sounds | 0: Reacts strongly when clippers are turned on |
1: Reacts mildly when clippers are turned on | |
2: No response when clippers are turned on | |
Response to clipping | 0: Reacts strongly when hair is clipped |
1: Reacts mildly when hair is clipped | |
2: No response when hair is clipped | |
Response to restraint | 0: Alert, readily reacts to sounds and resists restraint (looks, lifts head) |
1: Alert but minimally responds to sounds and restraint (appears sedated) | |
2: No reaction or movement in response to sounds or restraint |
Vital Sign | IMG | IRG | p Value ≤ 0.05 |
---|---|---|---|
fR (arm) | 43.6 ± 3.26 | 47.2 ± 16.31 | 0.830 |
HR (bpm) | 185 ± 24.8 | 176 ± 24.7 | 0.437 |
SAP (mmHg) | 157 ± 33.89 | 159 ± 31.1 | 0.805 |
MAP (mmHg) | 99.3 ± 22.9 | 101.6 ± 22.8 | 0.608 |
DAP (mmHg) | 76.1 ± 21.60 | 74.8 ± 9.81 | 0.684 |
Heart Rate | fR | SAP | MAP | DAP | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t | IM | IR | p | IM | IR | p | IM | IR | p | IM | IR | p | IM | IR | p |
2 | 180 ± 30.9 | 173 ± 31.2 | 0.649 | 46.0 ± 20.2 | 51.6± 23.1 | 0.732 | 167 ± 27.9 | 150 ± 18.9 | 0.297 | 113 ± 23.6 | 98.0 ± 23.3 | 0.27 | 91.8 ± 24.6 | 74.2 ± 31.2 | 0.747 |
5 | 170 ± 24.4 | 160 ± 31.1 | 0.413 | 42.0 ± 21.6 | 54.2± 23.4 | 0.210 | 165 ± 30.3 | 152 ± 30.3 | 0.417 | 111 ± 22.2 | 106 ± 25.3 | 0.57 | 89.8 ± 22.2 | 79.1 ± 27.5 | 0.248 |
10 | 147 ± 25.6 | 160 ± 26.6 | 0.276 | 34.0 ± 24.2 | 46.4± 16.7 | 0.027 * | 151 ± 23.5 | 153 ± 36.0 | 0.364 | 93.3 ± 20.5 | 99.7 ± 30.4 | 0.589 | 71.5 ± 19.3 | 71.4 ± 30.7 | 0.929 |
15 | 136 ± 24.2 | 154 ± 25.9 | 0.122 | 27.2 ± 12.3 | 43.4± 20.5 | 0.062 | 149 ± 31.1 | 151 ± 38.4 | 0.787 | 97.1 ± 29.3 | 97.9 ± 32.7 | 0.82 | 74.6 ± 26.3 | 70.6 ± 26.9 | 0.790 |
20 | 132 ± 21.0 | 165 ± 25.2 | 0.010 * | 22.0 ± 8.69 | 42.8± 18.9 | 0.003 * | 139 ± 23.9 | 155 ± 21.1 | 0.143 | 90.2 ± 26.5 | 99.2 ± 23.1 | 0.205 | 65.4 ± 19.4 | 75.0 ± 24.3 | 0.494 |
25 | 132 ± 22.5 | 174 ± 45.8 | 0.014 * | 23.6 ± 9.51 | 46.4 ± 19.5 | 0.004 * | 131 ± 19.4 | 158 ± 25.1 | 0.020 * | 78.4 ± 16.9 | 110 ± 22.3 | 0.009 * | 56.6 ± 16.0 | 92.4 ± 21.2 | 0.01 * |
30 | 130 ± 26.1 | 166 ± 43.4 | 0.041 * | 23.8 ± 9.64 | 47.6 ± 24.0 | 0.012 * | 140 ± 22.7 | 151 ± 20.9 | 0.322 | 78.8 ± 17.5 | 93.3 ± 24.4 | 0.17 | 58.9 ± 12.4 | 80.7 ± 37.3 | 0.143 |
35 | 134 ± 27.1 | 172 ± 50.4 | 0.054 | 27.6 ± 13.3 | 48.8 ± 22.0 | 0.009 * | 145 ± 22.5 | 158 ± 28.6 | 0.451 | 81.6 ± 13.3 | 105 ± 33.4 | 0.076 | 59.7 ± 13.3 | 82.7 ± 35.7 | 0.143 |
40 | 142 ± 34.8 | 176 ± 47.4 | 0.084 | 31.2 ± 14.8 | 47.6 ± 24.8 | 0.073 | 142 ± 20.9 | 156 ± 28.9 | 0.207 | 83.8 ± 14.7 | 98.7 ± 27.4 | 0.176 | 65.6 ± 14.9 | 81.6 ± 23.5 | 0.223 |
t | Median and Range Sedation Score | ||
---|---|---|---|
IMG | IRG | p | |
0 | 0 (0) | 0 (0) | 0.900 |
2 | 1.00 (7) | 0.50 (2) | 0.3600 |
5 | 3.00 (6) | 2.00 (8) | 0.36 |
10 | 4.50 (5) | 2.50 (6) | 0.02 * |
15 | 6.00 (5) | 3.50 (6) | 0.03 * |
20 | 7.00 (5) | 3.00 (4) | 0.02 * |
25 | 7.00 (5) | 3.00 (5) | 0.01 * |
30 | 7.00 (6) | 2.00 (5) | 0.02 * |
35 | 5.00 (6) | 1.00 (5) | 0.02 * |
40 | 3.50 (5) | 0.50 (4) | 0.03 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paolini, A.; Vignoli, M.; Guerri, G.; Falerno, I.; Tamburro, R.; Simeoni, F.; Signore, F.D.; De Bonis, A.; Collivignarelli, F.; Salvo, M.C.; et al. Comparison of Certain Intrarectal versus Intramuscular Pharmacodynamic Effects of Ketamine, Dexmedetomidine and Midazolam in Cats. Vet. Sci. 2022, 9, 520. https://doi.org/10.3390/vetsci9100520
Paolini A, Vignoli M, Guerri G, Falerno I, Tamburro R, Simeoni F, Signore FD, De Bonis A, Collivignarelli F, Salvo MC, et al. Comparison of Certain Intrarectal versus Intramuscular Pharmacodynamic Effects of Ketamine, Dexmedetomidine and Midazolam in Cats. Veterinary Sciences. 2022; 9(10):520. https://doi.org/10.3390/vetsci9100520
Chicago/Turabian StylePaolini, Andrea, Massimo Vignoli, Giulia Guerri, Ilaria Falerno, Roberto Tamburro, Francesco Simeoni, Francesca Del Signore, Andrea De Bonis, Francesco Collivignarelli, Maria Cristina Salvo, and et al. 2022. "Comparison of Certain Intrarectal versus Intramuscular Pharmacodynamic Effects of Ketamine, Dexmedetomidine and Midazolam in Cats" Veterinary Sciences 9, no. 10: 520. https://doi.org/10.3390/vetsci9100520
APA StylePaolini, A., Vignoli, M., Guerri, G., Falerno, I., Tamburro, R., Simeoni, F., Signore, F. D., De Bonis, A., Collivignarelli, F., Salvo, M. C., & Cerasoli, I. (2022). Comparison of Certain Intrarectal versus Intramuscular Pharmacodynamic Effects of Ketamine, Dexmedetomidine and Midazolam in Cats. Veterinary Sciences, 9(10), 520. https://doi.org/10.3390/vetsci9100520