Magnesium Hydroxide Nanoparticles Improve the Ocular Hypotensive Effect of Twice Daily Topical Timolol Maleate in Healthy Dogs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Drugs
2.3. Experimental Design
2.4. Measurements
2.5. Statistical Analysis
3. Results
3.1. Baseline Establishment
3.2. Treatment Phase
3.2.1. IOP
3.2.2. PS
3.2.3. HR
3.2.4. MAP
3.3. Adverse Effects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alario, A.F.; Strong, T.D.; Pizzirani, S. Medical Treatment of Primary Canine Glaucoma. Vet. Clin. North. Am. Small Anim. Pract. 2015, 45, 1235–1259. [Google Scholar] [CrossRef] [PubMed]
- Doozandeh, A.; Yazdani, S. Neuroprotection in glaucoma. J. Ophthalmic Vis. Res. 2016, 11, 209–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonas, J.B.; Aung, T.; Bourne, R.R.; Bron, A.M.; Ritch, R.; Panda-Jonas, S. Glaucoma. Lancet 2017, 390, 2183–2193. [Google Scholar] [CrossRef]
- Komáromy, A.M.; Bras, D.; Esson, D.W.; Fellman, R.L.; Grozdanic, S.D.; Kagemann, L.; Miller, P.E.; Moroi, S.E.; Plummer, C.E.; Sapienza, J.S.; et al. The future of canine glaucoma therapy. Vet. Ophthalmol. 2019, 22, 726–740. [Google Scholar] [CrossRef]
- Lusthaus, J.; Goldberg, I. Current management of glaucoma. Med. J. Aust. 2019, 210, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Oddone, F.; Rossetti, L.; Tanga, L.; Berardo, F.; Ferrazza, M.; Michelessi, M.; Roberti, G.; Manni, G.; Centofanti, M. Effects of topical bimatoprost 0.01% and timolol 0.5% on circadian IOP, blood pressure and perfusion pressure in patients with glaucoma or ocular hypertension: A randomized, double masked, placebo-controlled clinical trial. PLoS ONE 2015, 10, e0140601. [Google Scholar] [CrossRef]
- Johnstone McLean, N.S.; Ward, D.A.; Hendrix, D.V.H. The effect of a single dose of topical 0.005% latanoprost and 2% dorzolamide/0.5% timolol combination on the blood-aqueous barrier in dogs: A pilot study. Vet. Ophthalmol. 2008, 11, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Krohne, S.G. Effect of topically applied 2% pilocarpine and 0.25% demecarium bromide on blood-aqueous barrier permeability in dogs. Am. J. Vet. Res. 1994, 55, 1729–1733. [Google Scholar]
- Sato, K.; Iwasaki, K.; Nagai, N.; Yamashita, Y.; Chikazawa, S.; Hoshi, F.; Kanai, K. Comparison of early posttreatment effects of two steroidal anti-inflammatory ophthalmic drugs on the ocular inflammatory response induced by paracentesis in healthy canine eyes. Vet. Ophthalmol. 2019, 22, 607–613. [Google Scholar] [CrossRef]
- Gum, G.; Larocca, R.; Gelatt, K.N.; Mead, J.; Gelatt, J. The effect of topical timolol maleate on intraocular pressure in normal beagles and beagles with inherited glaucoma. Prog. Vet. Comp. Ophthalmol. 1991, 1, 141–149. [Google Scholar]
- Wilkie, D.A.; Latimer, C.A. Effects of topical administration of timolol maleate on intraocular pressure and pupil size in dogs. Am. J. Vet. Res. 1991, 52, 432–435. [Google Scholar]
- Gelatt, K.N.; Larocca, R.D.; Gelatt, J.K.; Strubbe, D.T.; MacKay, E.O. Evaluation of multiple doses of 4 and 6% timolol, and timolol combined with 2% pilocarpine in clinically normal beagles and beagles with glaucoma. Am. J. Vet. Res. 1995, 56, 1325–1331. [Google Scholar]
- Maehara, S.; Ono, K.; Ito, N.; Tsuzuki, K.; Seno, T.; Yokoyama, T.; Yamashita, K.; Izumisawa, Y.; Kotani, T. Effects of topical nipradilol and timolol maleate on intraocular pressure, facility of outflow, arterial blood pressure and pulse rate in dogs. Vet. Ophthalmol. 2004, 7, 147–150. [Google Scholar] [CrossRef]
- Maślanka, T. Autonomic drugs in the treatment of canine and feline glaucoma—Part II: Medications that lower intraocular pressure by reducing aqueous humour production. Pol. J. Vet. Sci. 2014, 17, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Piltz, J.; Gross, R.; Shin, D.H.; Beiser, J.A.; Dorr, D.A.; Kass, M.A.; Gordon, M.O. Contralateral effect of topical β-adrenergic antagonists in initial one-eyed trials in the Ocular Hypertension Treatment Study. Am. J. Ophthalmol. 2000, 130, 441–453. [Google Scholar] [CrossRef]
- Smith, L.N.; Miller, P.E.; Felchle, L.M. Effects of topical administration of latanoprost, timolol, or a combination of latanoprost and timolol on intraocular pressure, pupil size, and heart rate in clinically normal dogs. Am. J. Vet. Res. 2010, 71, 1055–1061. [Google Scholar] [CrossRef]
- Svec, A.L.; Strosberg, A.M. Therapeutic and systemic side effects of ocular β-adrenergic antagonists in anesthetized dogs. Invest. Ophthalmol. Vis. Sci. 1986, 27, 401–405. [Google Scholar] [PubMed]
- Nagai, N.; Ogata, F.; Otake, H.; Kawasaki, N.; Nakazawa, Y.; Kanai, K.; Okamoto, N.; Shimomura, Y. Co-instillation of nano-solid magnesium hydroxide enhances corneal permeability of dissolved timolol. Exp. Eye Res. 2017, 165, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Nagai, N.; Yamaoka, S.; Fukuoka, Y.; Ishii, M.; Otake, H.; Kanai, K.; Okamoto, N.; Shimomura, Y. Enhancement in corneal permeability of dissolved carteolol by its combination with magnesium hydroxide nanoparticles. Int. J. Mol. Sci. 2018, 19, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urtti, A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv. Drug Deliv. Rev. 2006, 58, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- El-Feky, G.S.; Zayed, G.M.; Elshaier, Y.A.M.M.; Alsharif, F.M. Chitosan-Gelatin Hydrogel Crosslinked With Oxidized Sucrose for the Ocular Delivery of Timolol Maleate. J. Pharm. Sci. 2018, 107, 3098–3104. [Google Scholar] [CrossRef]
- Nagai, N.; Iwai, Y.; Deguchi, S.; Otake, H.; Kanai, K.; Okamoto, N.; Shimomura, Y. Therapeutic potential of a combination of magnesium hydroxide nanoparticles and sericin for epithelial corneal wound healing. Nanomaterials 2019, 9, 768. [Google Scholar] [CrossRef] [Green Version]
- Nagai, N.; Yoshioka, C.; Mano, Y.; Tnabe, W.; Ito, Y.; Okamoto, N.; Shimomura, Y. A nanoparticle formulation of disulfiram prolongs corneal residence time of the drug and reduces intraocular pressure. Exp. Eye Res. 2015, 132, 115–123. [Google Scholar] [CrossRef]
- Peng, C.C.; Ben-Shlomo, A.; MacKay, E.O.; Plummer, C.E.; Chauhan, A. Drug delivery by contact lens in spontaneously glaucomatous dogs. Curr. Eye Res. 2012, 37, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Takiyama, N.; Shoji, S.; Habata, I.; Ohba, S. The effects of a timolol maleate gel-forming solution on normotensive beagle dogs. J. Vet. Med. Sci. 2006, 68, 631–633. [Google Scholar] [CrossRef] [Green Version]
- Che Arif, F.A.; Hilmi, M.R.; Mohd Kamal, K.; Ithnin, M.H. Evaluation of 18 artificial tears based on viscosity and pH. Malays. J. Ophthalmol. 2020, 2, 96–111. [Google Scholar] [CrossRef]
- Zhu, H.; Chauhan, A. Effect of viscosity on tear drainage and ocular residence time. Optom. Vis. Sci. 2008, 85, 715–725. [Google Scholar] [CrossRef]
- Diehl, K.A.; Bowden, A.C.; Knudsen, D. Bandage contact lens retention in dogs—A pilot study. Vet. Ophthalmol. 2019, 22, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Meekins, J.M.; Overton, T.L.; Rankin, A.J.; Roush, J.K. Effect of oral administration of carprofen on intraocular pressure in normal dogs. J. Vet. Pharmacol. Ther. 2016, 39, 344–349. [Google Scholar] [CrossRef]
- Acierno, M.J.; Brown, S.; Coleman, A.E.; Jepson, R.E.; Papich, M.; Stepien, R.L.; Syme, H.M. ACVIM consensus statement: Guidelines for the identification, evaluation, and management of systemic hypertension in dogs and cats. J. Vet. Intern. Med. 2018, 32, 1803–1822. [Google Scholar] [CrossRef]
- Eaton, J.S.; Miller, P.E.; Bentley, E.; Thomasy, S.M.; Murphy, C.J. The SPOTS System: An Ocular Scoring System Optimized for Use in Modern Preclinical Drug Development and Toxicology. J. Ocul. Pharmacol. Ther. 2017, 33, 718–734. [Google Scholar] [CrossRef]
- Strompfová, V.; Pogány Simonová, M.; Gancarčíková, S.; Mudroňová, D.; Farbáková, J.; Mad’ari, A.; Lauková, A. Effect of Bifidobacterium animalis B/12 administration in healthy dogs. Anaerobe 2014, 28, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Giannetto, C.; Piccione, G.; Giudice, E. Daytime profile of the intraocular pressure and tear production in normal dog. Vet. Ophthalmol. 2009, 12, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Hughes, E.H.; Spry, P.; Diamond, J. 24-Hour monitoring of intraocular pressure in glaucoma management: A retrospective review. J. Glaucoma 2003, 12, 232–236. [Google Scholar] [CrossRef]
- Orzalesi, N.; Rossetti, L.; Invernizzi, T.; Bottoli, A.; Autelitano, A. Effect of timolol, latanoprost, and dorzolamide on circadian IOP in glaucoma or ocular hypertension. Invest. Ophthalmol. Vis. Sci. 2000, 41, 2566–2573. [Google Scholar]
- Piccione, G.; Giannetto, C.; Fazio, F.; Giudice, E. Influence of different artificial lighting regimes on intraocular pressure circadian profile in the dog (Canis familiaris). Exp. Anim. 2010, 59, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansouri, K.; Tanna, A.P.; De Moraes, C.G.; Camp, A.S.; Weinreb, R.N. Review of the measurement and management of 24-hour intraocular pressure in patients with glaucoma. Surv. Ophthalmol. 2020, 65, 171–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, R.F.; Vieira da Silva, M.J.; Dawson, C. Design of an intraocular pressure curve protocol for use in dogs. J. Small Anim. Pract. 2017, 58, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Nieminen, T.; Lehtimäki, T.; Mäenpää, J.; Ropo, A.; Uusitalo, H.; Kähönen, M. Ophthalmic timolol: Plasma concentration and systemic cardiopulmonary effects. Scand. J. Clin. Lab. Invest. 2007, 67, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Volotinen, M.; Mäenpää, J.; Kautiainen, H.; Tolonen, A.; Uusitalo, J.; Ropo, A.; Vapaatalo, H.; Aine, E. Ophthalmic timolol in a hydrogel vehicle leads to minor inter-individual variation in timolol concentration in aqueous humor. Eur. J. Pharm. Sci. 2009, 36, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Rao, H.L.; Senthil, S.; Garudadri, C.S. Contralateral intraocular pressure lowering effect of prostaglandin analogues. Indian J. Ophthalmol. 2014, 62, 575–579. [Google Scholar] [CrossRef] [PubMed]
Drug | Eye | D1 | D2 | D3 | D4 | D5 |
---|---|---|---|---|---|---|
Saline | Treated eye | 11.5 ± 1.1 | 11.6 ± 0.8 | 11.7 ± 0.9 | 11.3 ± 0.9 | 11.8 ± 1.0 |
Contralateral eye | 11.6 ± 1.0 | 11.8 ± 0.8 | 11.5 ± 1.0 | 11.3 ± 0.9 | 11.7 ± 1.0 | |
TM | Treated eye | 11.8 ± 0.6 | 11.2 ± 0.7 | 11.3 ± 0.9 | 11.5 ± 0.9 | 11.6 ± 0.7 |
Contralateral eye | 11.8 ± 0.6 | 11.2 ± 0.8 | 11.4 ± 0.8 | 11.3 ± 0.7 | 11.4 ± 0.9 | |
0.01% nMH–TM | Treated eye | 11.3 ± 0.8 | 11.5 ± 0.6 | 11.7 ± 0.7 | 11.4 ± 0.6 | 11.2 ± 0.7 |
Contralateral eye | 11.5 ± 0.8 | 11.5 ± 0.5 | 11.7 ± 0.6 | 11.6 ± 0.6 | 11.4 ± 0.7 | |
0.1% nMH–TM | Treated eye | 11.7 ± 0.8 | 11.7 ± 1.1 | 12.0 ± 1.0 | 11.3 ± 0.6 | 11.8 ± 0.8 |
Contralateral eye | 11.7 ± 0.9 | 11.7 ± 1.0 | 12.3 ± 1.1 | 11.2 ± 0.7 | 11.9 ± 0.9 |
Drug | Eye | D1 | D2 | D3 | D4 | D5 |
---|---|---|---|---|---|---|
Saline | Treated eye | 4.4 ± 0.4 | 4.4 ± 0.4 | 4.5 ± 0.4 | 4.5 ± 0.3 | 4.4 ± 0.5 |
Contralateral eye | 4.4 ± 0.4 | 4.4 ± 0.4 | 4.5 ± 0.3 | 4.5 ± 0.3 | 4.4 ± 0.5 | |
TM | Treated eye | 4.0 ± 0.4 | 4.2 ± 0.3 | 4.1 ± 0.3 | 4.2 ± 0.3 | 4.4 ± 0.4 |
Contralateral eye | 4.0 ± 0.4 | 4.2 ± 0.3 | 4.1 ± 0.3 | 4.2 ± 0.3 | 4.4 ± 0.4 | |
0.01% nMH–TM | Treated eye | 4.7 ± 0.5 | 4.3 ± 0.3 | 4.5 ± 0.4 | 4.6 ± 0.3 | 4.8 ± 0.3 |
Contralateral eye | 4.7 ± 0.4 | 4.3 ± 0.3 | 4.5 ± 0.4 | 4.6 ± 0.3 | 4.8 ± 0.2 | |
0.1% nMH–TM | Treated eye | 4.2 ± 0.3 | 4.4 ± 0.6 | 4.0 ± 0.3 | 4.0 ± 0.3 | 4.1 ± 0.4 |
Contralateral eye | 4.3 ± 0.3 | 4.4 ± 0.6 | 4.1 ± 0.3 | 4.1 ± 0.4 | 4.1 ± 0.4 |
Drug | D1 | D2 | D3 | D4 | D5 |
---|---|---|---|---|---|
Saline | 87.1 ± 7.7 | 85.7 ± 9.3 | 88.1 ± 10.2 | 87.3 ± 8.6 | 84.4 ± 8.6 |
TM | 85.9 ± 10.1 | 87.5 ± 12.5 | 83.3 ± 8.7 | 84.8 ± 11.2 | 90.0 ± 7.5 |
0.01% nMH–TM | 86.8 ± 4.5 | 83.5 ± 8.3 | 84.3 ± 7.9 | 82.7 ± 5.4 | 84.1 ± 5.4 |
0.1% nMH–TM | 91.7 ± 9.9 | 92.5 ± 14.9 | 90.5 ± 15.6 | 90.1 ± 10.3 | 89.5 ± 12.9 |
Drug | D1 | D2 | D3 | D4 | D5 |
---|---|---|---|---|---|
Saline | 90.8 ± 10.4 | 86.3 ± 9.0 | 88.3 ± 12.0 | 85.6 ± 9.3 | 84.0 ± 7.2 |
TM | 93.0 ± 6.6 | 89.2 ± 4.1 | 89.3 ± 10.5 | 87.0 ± 6.8 | 92.8 ± 7.8 |
0.01% nMH–TM | 86.7 ± 8.7 | 84.4 ± 9.8 | 86.0 ± 5.6 | 90.0 ± 9.6 | 85.4 ± 8.1 |
0.1% nMH–TM | 90.4 ± 10.3 | 86.6 ± 9.6 | 90.7 ± 8.3 | 87.8 ±10.6 | 92.8 ± 10.8 |
Drug | Parameter | Baseline | Treatment Phase | ||||||
---|---|---|---|---|---|---|---|---|---|
9 A.M. | 3 P.M. | 9 P.M. | Overall Mean | 9 A.M. | 3 P.M. | 9 P.M. | Overall Mean | ||
Saline | ΔIOP (mmHg) | 11.4 ± 1.1 | 11.7 ± 0.9 | 11.7 ± 0.8 | 11.6 ± 0.9 | 0.0 ± 0.4 | 0.2 ± 0.4 | 0.1 ± 0.2 | 0.1 ± 0.2 |
IOP (mmHg) | 11.4 ± 0.9 | 11.9 ± 1.0 | 11.7 ± 0.7 | 11.7 ± 0.8 | |||||
TM | ΔIOP (mmHg) | 11.6 ± 0.7 | 10.9 ± 0.8 | 11.9 ± 0.5 | 11.5 ± 0.6 | 0.0 ± 0.2 | 0.6 ± 0.4 | −0.6 ± 0.4 | 0.0 ± 0.2 |
IOP (mmHg) | 11.5 ± 0.8 | 11.6 ± 0.8 | 11.3 ± 0.8 | 11.5 ± 0.8 | |||||
0.01% nMH–TM | ΔIOP (mmHg) | 11.6 ± 0.9 | 11.5 ± 0.5 | 11.2 ± 0.7 | 11.4 ± 0.6 | −0.9 ± 0.4 a,b | −1.0 ± 0.1 a,b | −0.7 ± 0.6 | −0.8 ± 0.3 a,b |
IOP (mmHg) | 10.7 ± 0.6 | 10.5 ± 0.5 | 10.5 ± 0.4 | 10.6 ± 0.4 | |||||
0.1% nMH–TM | ΔIOP (mmHg) | 11.4 ± 0.9 | 11.7 ± 0.8 | 12.0 ± 0.8 | 11.7 ± 0.8 | −1.1 ± 0.4 a,b | −1.2 ± 0.6 a,b | −1.3 ± 0.5 a | −1.2 ± 0.4 a,b |
IOP (mmHg) | 10.3 ± 0.6 | 10.5 ± 0.6 | 10.7 ± 0.8 | 10.5 ± 0.6 |
Drug | Parameter | Baseline | Treatment Phase | ||||||
---|---|---|---|---|---|---|---|---|---|
9 A.M. | 3 P.M. | 9 P.M. | Overall Mean | 9 A.M. | 3 P.M. | 9 P.M. | Overall Mean | ||
Saline | ΔIOP (mmHg) | 11.5 ± 1.0 | 11.7 ± 0.9 | 11.6 ± 0.8 | 11.6 ± 0.9 | 0.0 ± 0.3 | 0.2 ± 0.4 | 0.0 ± 0.2 | 0.1 ± 0.2 |
IOP (mmHg) | 11.5 ± 0.8 | 11.9 ± 0.9 | 11.6 ± 0.7 | 11.7 ± 0.8 | |||||
TM | ΔIOP (mmHg) | 11.6 ± 0.7 | 10.9 ± 0.8 | 11.8 ± 0.6 | 11.4 ± 0.7 | 0.0 ± 0.2 | 0.6 ± 0.4 | −0.5 ± 0.4 | 0.0 ± 0.2 |
IOP (mmHg) | 11.6 ± 0.7 | 11.6 ± 0.9 | 11.3 ± 0.9 | 11.5 ± 0.8 | |||||
0.01% nMH–TM | ΔIOP (mmHg) | 11.8 ± 0.8 | 11.6 ± 0.5 | 11.2 ± 0.7 | 11.5 ± 0.5 | −0.7 ± 0.3 a,b | −0.8 ± 0.2 a,b | −0.2 ± 0.5 | −0.5 ± 0.2 a,b |
IOP (mmHg) | 11.1 ± 0.6 | 10.8 ± 0.6 | 11.0 ± 0.4 | 11.0 ± 0.5 | |||||
0.1% nMH–TM | ΔIOP (mmHg) | 11.6 ± 0.9 | 11.7 ± 0.9 | 11.9 ± 1.0 | 11.8 ± 0.9 | −1.0 ± 0.3 a,b | −1.0 ± 0.6 a,b | −1.1 ± 0.5 a,c | −1.0 ± 0.4 a,b |
IOP (mmHg) | 10.6 ± 0.7 | 10.8 ± 0.7 | 10.8 ± 0.8 | 10.7 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kita, M.; Kanai, K.; Mitsuhashi, H.; Noguchi, T.; Nagai, N.; Yamaguchi, M.; Otaka, Y.; Kudo, R.; Yamashita, Y.; Tajima, K. Magnesium Hydroxide Nanoparticles Improve the Ocular Hypotensive Effect of Twice Daily Topical Timolol Maleate in Healthy Dogs. Vet. Sci. 2021, 8, 168. https://doi.org/10.3390/vetsci8080168
Kita M, Kanai K, Mitsuhashi H, Noguchi T, Nagai N, Yamaguchi M, Otaka Y, Kudo R, Yamashita Y, Tajima K. Magnesium Hydroxide Nanoparticles Improve the Ocular Hypotensive Effect of Twice Daily Topical Timolol Maleate in Healthy Dogs. Veterinary Sciences. 2021; 8(8):168. https://doi.org/10.3390/vetsci8080168
Chicago/Turabian StyleKita, Mizuki, Kazutaka Kanai, Hiroki Mitsuhashi, Tomoki Noguchi, Noriaki Nagai, Mizuki Yamaguchi, Yuya Otaka, Rina Kudo, Yohei Yamashita, and Kazuki Tajima. 2021. "Magnesium Hydroxide Nanoparticles Improve the Ocular Hypotensive Effect of Twice Daily Topical Timolol Maleate in Healthy Dogs" Veterinary Sciences 8, no. 8: 168. https://doi.org/10.3390/vetsci8080168
APA StyleKita, M., Kanai, K., Mitsuhashi, H., Noguchi, T., Nagai, N., Yamaguchi, M., Otaka, Y., Kudo, R., Yamashita, Y., & Tajima, K. (2021). Magnesium Hydroxide Nanoparticles Improve the Ocular Hypotensive Effect of Twice Daily Topical Timolol Maleate in Healthy Dogs. Veterinary Sciences, 8(8), 168. https://doi.org/10.3390/vetsci8080168