Research Progress on the Mechanism of the Acupuncture Regulating Neuro-Endocrine-Immune Network System
Abstract
:1. Introduction
2. What Is the Neuro-Endocrine-Immune Network?
3. Brain Regions Associated with the Neuro-Endocrine-Immune Network
4. Physiological Significance of Acupoints
5. Characteristics of Acupuncture
6. Mechanisms of Acupuncture on the Neuro-Endocrine-Immune Network
6.1. Effects of Acupuncture on the Nervous System
6.1.1. The Effects of Acupuncture on Neurotransmitters
6.1.2. The Effects of Acupuncture on Neuropeptides
6.2. Effects of Acupuncture on the Endocrine System
6.3. Effects of Acupuncture on the Immune System
6.3.1. The Effects of Acupuncture on Innate Immunity
Immune Cells
Immune Factors
6.3.2. The Effects of Acupuncture on Acquired Immunity
6.3.3. The Effects of Acupuncture on the Skin Barrier
7. Deficiencies and Prospects of Acupuncture
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- WHO. WHO Traditional Medicine Strategy: 2014–2023; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Guo, Y. Experimental Acupuncture and Moxibustion; China Press of Traditional Chinese Medicine: Beijing, China, 2008. [Google Scholar]
- Besedovsky, H.O.; Sorkin, E. Network of immune-neuroendocrine interactions. Clin. Exp. Immunol. 1977, 27, 1–12. [Google Scholar]
- Chavan Sangeeta, S.; Pavlov Valentin, A.; Tracey Kevin, J. Mechanisms and Therapeutic Relevance of Neuro-immune Com-munication. Immunity 2017, 46, 927–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besedovsky, H.O.; Del Rey, A. Immune-Neuro-Endocrine Interactions: Facts and Hypotheses. Endocr. Rev. 1996, 17, 64–102. [Google Scholar] [CrossRef]
- Kawashima, K.; Fujii, T.; Moriwaki, Y.; Misawa, H. Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sci. 2012, 91, 1027–1032. [Google Scholar] [CrossRef]
- Dorshkind, K.; Horseman, N.D. Anterior pituitary hormones, stress, and immune system homeostasis. Bioessays 2001, 23, 288–294. [Google Scholar] [CrossRef]
- Berczi, I. Pituitary hormones and immune function. Acta Paediatr. 1997, 86, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Sapolsky, R.; Rivier, C.; Yamamoto, G.; Plotsky, P.; Vale, W. Interleukin-1 stimulates the secretion of hypothalamic corticotro-pin-releasing factor. Science 1987, 238, 522–524. [Google Scholar] [CrossRef]
- Hugo, B.; Adriana, D.R.; Ernst, S.A.D.C. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 1986, 233, 652–654. [Google Scholar]
- Rey, A.D.; Besedovsky, H.O. Immune-Neuro-Endocrine Reflexes, Circuits, and Networks: Physiologic and Evolutionary Impli-cations. Endocr. Immunol. 2017, 48, 1–18. [Google Scholar]
- Gidron, Y. Neuroimmunomodulation; Springer: New York, NY, USA, 2013. [Google Scholar]
- Besedovsky, H.O. The immune system as a sensorial system that can modulate brain functions and reset homeostasis. Ann. N. Y. Acad. Sci. 2019, 1437, 5–14. [Google Scholar] [CrossRef]
- Boelen, A.; Kwakkel, J.; Platvoet-Ter Schiphorst, M.; Mentrup, B.; Baur, A.; Koehrle, J.; Wiersinga, W.M. Interleukin-18, a proinflammatory cytokine, contributes to the pathogenesis of non-thyroidal illness mainly via the central part of the hypothala-mus-pituitary-thyroid axis. Eur. J. Endocrinol. 2004, 151, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Dunn, A.J. Cytokine activation of the HPA axis. Ann. N. Y. Acad. Sci. 2010, 917, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Kaname, H.; Mori, Y.; Sumida, Y.; Kojima, K.; Kubo, C.; Tashiro, N. Changes in the Leukocyte Distribution and Surface Expression of Adhesion Molecules Induced by Hypothalamic Stimulation in the Cat. Brain Behav. Immun. 2002, 16, 351–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.T. Advances in neuroimmunomodulatory brain regions. Sci. Technol. Inf. 2007, 23, 45. [Google Scholar]
- Hefco, V.; Olariu, A.; Hefco, A.; Nabeshima, T. The modulator role of the hypothalamic paraventricular nucleus on immune responsiveness. Brain Behav. Immun. 2004, 18, 158–165. [Google Scholar] [CrossRef]
- Tsuboi, H.; Miyazawa, H.; Wenner, M.; Iimori, H.; Kawamura, N. Lesions in lateral hypothalamic areas increase splenocyte apoptosis. Neuroimmunomodulation 2001, 9, 1–5. [Google Scholar] [CrossRef]
- Linthorst, A.C. Local administration of recombinant human interleukin-1 beta in the rat hippocampus increases serotonergic neurotransmission, hypothalamic-pituitary-adrenocortical axis activity, and body temperature. Endocrinology 1994, 135, 520. [Google Scholar] [CrossRef] [PubMed]
- Richard, J.C.; William, H.B.L.T. Hypothalamic-immune interactions: Effect of hypophysectomy on neuroimmunomodulation. J. Neurol. Sci. 1982, 53, 557–566. [Google Scholar]
- Li, F.; He, T.; Xu, Q.; Lin, L.T.; Li, H.; Liu, Y.; Shi, G.X.; Liu, C.Z. What is the Acupoint? A preliminary review of Acupoints. Pain Med. 2015, 16, 1905–1915. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Li, A.H.; Wang, W.; Xie, Y.K. Dense innervation of acupoints and its easier reflex excitatory character in rats. Acupunct. Res. 2009, 34, 36–42. [Google Scholar]
- Cheng, K.J. Neuroanatomical Characteristics of Acupuncture Points: Relationship between Their Anatomical Locations and Traditional Clinical Indications. Acupunct. Med. 2011, 29, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Willis, D.W., Jr.; Coggeshall, R.E. Sensory Receptors and Peripheral Nerves; Springer: Boston, MA, USA, 2004. [Google Scholar]
- Wu, M.L.; Xu, D.S.; Bai, W.Z.; Cui, J.J.; Shu, H.M.; He, W.; Wang, X.Y.; Shi, H.; Su, Y.S.; Hu, L.; et al. Local cutaneous nerve terminal and mast cell responses to manual acupuncture in acupoint LI4 area of the rats. J. Chem. Neuroanat. 2015, 68, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.F.; Wang, F.B.; Wang, K.; Zhong, Y.Q. Effect of Electroacupuncture at Fengchi on Astrocytes and Neurons in Rats with Acute Cerebral Infarction. Chin. J. Rehabil. Theory Pract. 2021, 3, 302–309. [Google Scholar]
- Chen, B.-G.; Qian, C.-Y.; Qu, T.; Mao, H.-R. Effects of acupuncture of FENGCHI (GB20) on blood pressure and serum IL-6 and plasma ET levels in patients with hypertension. World J. Acupunct.-Moxib. 2006, 16, 10–14. [Google Scholar]
- Zhao, L.; Liu, L.; Xu, X.; Qu, Z.; Zhu, Y.; Li, Z.; Zhao, J.; Wang, L.; Jing, X.; Li, B. Electroacupuncture Inhibits Hyperalgesia by Alleviating Inflammatory Factors in a Rat Model of Migraine. J. Pain Res. 2020, 13, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.T.; Feng, Y.; Wu, G.C.; Tian, Z.Z. Electro-acupuncture(EA) regulates the corticotropin-releasing factor(CRF) by activating GABA receptors in stress rats after surgery. In Proceedings of the 10th Biennial Conference of the Chinese Neuroscience Society, Beijing, China, 29–22 September 2013. [Google Scholar]
- Meng, L.; Hu, L.; Cai, R.L.; Wu, Z.J.; Wang, K.M. Effects of electroacupuncture at PC6 and BL15 on nerve electrical activity in spinal dorsal root and norepinephrine and dopamine contents in paraventricular nucleus of hypothalamus in rats with acute my-ocardial ischemia. Zhong Xi Yi Jie He Xue Bao 2012, 10, 874–879. [Google Scholar]
- Chen, Y.F.; Yang, W.J.; Fu, S.G.; Zhang, X.D. Effects of electro-acupuncture on hypothalamic-pituitary-adrenal index and cortico-tropin releasing hormone mRNA expression of rats with chronic fatigue syndrome. J. Acupunc. Tuina Sci. 2007, 5, 200–204. [Google Scholar] [CrossRef]
- Hua, S.; Zhang, Y.; Cui, H. Effects of electroacupuncture on receptor number and binding activity of 5-HT_1 and 5-HT_2 in the cerebral cortex of the chronic stress depression model rats. Chin. Acupunct. Moxib. 2003, 23, 553–555. [Google Scholar]
- Sun, H.; Zhao, H.; Zhang, J.; Bao, F.; Wei, J.; Wang, D.H.; Zhang, Y.X. Effect of acupuncture at Baihui (GV 20) and Zusanli (ST 36) on the level of serum inflammatory cytokines in patients with depression. Chin. Acupunct. Moxib. 2010, 30, 195–199. [Google Scholar]
- Wang, H.L.; Ling, H.U.; Gao, X.Z. Effects of Electroacupuncture of “Guanyuan” and “Sanyinjiao” on Neuroendocrine Function in Perimenopause Model Rats. Acupunct. Res. 2003, 28, 124–127. [Google Scholar]
- Zhang, X.R.; Wang, X.; Sun, C.L.; Wang, Y. Expression of NF-KB in spinal ganglia of CIA rats and therapeutic action of acu-puncture Jiaji points. Modern J. Integr. Tradit. Chin. West. Med. 2007, 16, 1460–1462. [Google Scholar]
- Langevin, H.M.; Yandow, J.A. Relationship of acupuncture points and meridians to connective tissue planes. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2002, 269, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Dong, X.; Song, X.; Jiang, J.; Zhann, J.; Han, Y. Study on the Dynamic Compound Structure Composed of Mast Cells, Blood Vessels, and Nerves in Rat Acupoint. Evidence-Based Complement. Altern. Med. 2013, 2013, 1–4. [Google Scholar] [CrossRef]
- Zhang, D.; Spielmann, A.; Wang, L.; Ding, G.; Huang, F.; Gu, Q.; Schwarz, W. Mast-Cell Degranulation Induced by Physical Stimuli Involves the Activation of Transient-Receptor-Potential Channel TRPV. Physiol. Res. 2012, 61, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, M.; Ding, S.; Hong, S.; Zhao, X. Research progress on regulations on nerve-endocrine-immune network by acu-puncture. World J. Acupunct. Moxib. 2014, 24, 49–58. [Google Scholar] [CrossRef]
- Chen, S.Z.; Zhu, B. Function Characteristics and Homeostasis Mechanism of Acupuncture and Moxibustion Intervention. Shandong J. Tradit. Chin. Med. 2018, 37, 877–881. [Google Scholar]
- Yang, Y.-Q.; Chen, H.-P.; Wang, Y. A Semicentennial Research on Biomedical Mechanisms of Acupuncture in China: Fundamental, Property and Advantage. J. Henan Univ. Chin. Med. 2008. [Google Scholar] [CrossRef]
- Witt, C.M.; Pach, D.; Brinkhaus, B.; Wruck, K.; Tag, B.; Mank, S.; Willich, S.N. Safety of Acupuncture: Results of a Prospective Observational Study with 229,230 Patients and Introduction of a Medical Information and Consent Form. Complement. Med. Res. 2009, 16, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Chen, W. Literature Review and Clinical Research on the Acupuncture Treatments and Acupoint Usage Rules of Diar-Rhea-Predominant Irritable Bowel Syndrom; Guangzhou University of Chinese Medicine: Guangzhou, China, 2016. [Google Scholar]
- Jin, B.X.; Jin, L.L.; Jin, G.-Y.; Xia, J.B.; Lei, J.L.; Guan-Yuan, J. The anti-inflammatory effect of acupuncture and its significance in analgesia. World J. Acupunct. Moxib. 2019, 29, 1–6. [Google Scholar] [CrossRef]
- Niu, W.M.; Niu, X.M.; Lei, Z.Q.; Wang, W.G.; Wang, Y.; Qu, H.Y. Effects of acupuncture at Zusanli acupoint on the neu-ro-endocrine-immune network system. J. Shanxi Coll. Tradit. Chin. Med. 2014, 37, 101–103. [Google Scholar]
- Elenkov, I.J.; Wilder, R.L.; Chrousos, G.P.; Vizi, E.S. The sympathetic nerve--an integrative interface between two supersystems: The brain and the immune system. Pharmacol. Rev. 2000, 52, 595–638. [Google Scholar] [PubMed]
- Xin, B.Y. Effect of Acupuncture on Dysmnesia and Mon oamine Neurotransmitter of Dementia Mice. Shanghai J. Acupunct. Moxib. 2003, 07, 23–25. [Google Scholar]
- Fu, L.X.; Zhao, J.G.; Zhao, C.B.; Shi, X.M. Effects of acupuncture on the contents of catecholamine and acetylcholine in different brain regions and myocardium of rats with experimental intracerebral hemorrhage. J. Chin. Med. 2003, 21, 1037. [Google Scholar]
- Baek, J.Y.; Trinh, T.A.; Huh, W.; Song, J.H.; Kim, H.Y.; Lim, J.; Kim, J.; Choi, H.J.; Kim, T.-H.; An, T.T. Electro-Acupuncture Alleviates Cisplatin-Induced Anorexia in Rats by Modulating Ghrelin and Monoamine Neurotransmitters. Biomolecules 2019, 9, 624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawashima, K.; Fujii, T.; Moriwaki, Y.; Misawa, H.; Horiguchi, K. Non-neuronal cholinergic system in regulation of immune function with a focus on α7 nAChRs. Int. Immunopharmacol. 2015, 29, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F. The Effect of Acupuncture on Related Factors and Transmitters in Immune Dysfunction Model Rats; Beijing University of Chinese Medicine: Beijing, China, 2008. [Google Scholar]
- Sun, H.N.; Zhu, M.D.; Zhang, W. Effects of Serum Acetyl Choline and Amyloid-Beta Protein by Using Acupuncture Baihui (GV20) and Yongquan (KI1) Acupoint to Treat Patients with Alzheimer Disease. World Chin. Med. 2018, 13, 2855–2857. [Google Scholar]
- Liu, Y.L.; Zhang, L.D.; Ma, T.M.; Song, S.T.; Liu, H.T.; Wang, X.; Li, N.; Yang, C.; Yu, S. Feishu Acupuncture Inhibits Acetylcholine Synthesis and Restores Muscarinic Acetylcholine Receptor M2 Expression in the Lung When Treating Allergic Asthma. Inflammation 2018, 41, 741–750. [Google Scholar] [CrossRef]
- Lundberg, J.M. Pharmacology of cotransmission in the autonomic nervous system: Integrative aspects on amines, neuropeptides, adenosine triphosphate, amino acids and nitric oxide. Pharmacol. Rev. 1996, 48, 113–178. [Google Scholar]
- Wang, G.Q.; Hu, S.; Zhang, B.L. Research progress on the regulatory role of central nervous system in neuro-endocrine-immune network. Infect. Inflamm. Repair. 2006, 7, 187–189. [Google Scholar]
- Peyton, W.W.; Michael, N.L.; Lique, M.C.; Robert, L.G. The Roles of Neurokinins and Endogenous Opioid Peptides in Control of Pulsatile LH Secretion. Vitam. Horm. 2018, 107, 89–135. [Google Scholar]
- Przewlocki, R.; Hassan, A.; Lason, W.; Epplen, C.; Herz, A.; Stein, C. Gene expression and localization of opioid peptides in immune cells of inflamed tissue: Functional role in antinociception. Neuroscience 1992, 48, 491–500. [Google Scholar] [CrossRef]
- Li, H. Research Progress of Neuropeptide and Acupuncture Immunoregulation. Shanghai J. Acupunct. Moxib. 2003, 3, 41–44. [Google Scholar]
- Chen, W.N.; Liu, J.L.; Jia, L.Q.; Li, X.M.; Shan, F.P. Signal Transduction Mechanism of Macrophages Polarization Induced by Me-thionine Enkephalin. Chin. Pharm. J. 2013, 48, 1550–1554. [Google Scholar]
- Zalys, R.; Zagon, I.S.; Bonneau, R.H.; Lang, C.; McLaughlin, P.J. In vivo effects of chronic treatment with [MET5]-enkephalin on hematological values and natural killer cell activity in athymic mice. Life Sci. 2000, 66, 829–834. [Google Scholar] [CrossRef]
- Burger, R.A. Role of vascular endothelial growth factor inhibitors in the treatment of gynecologic malignancies. J. Gynecol. Oncol. 2010, 21, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mclaughlin, P.J.; Zagon, I.S. The opioid growth factor–opioid growth factor receptor axis: Homeostatic regulator of cell pro-liferation and its implications for health and disease. Biochem. Pharmacol. 2012, 84, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.S.; Gao, X.H.; Yuan, Z.; Wang, Z.; Meng, Y.M.; Cao, Y.; Plotnikoff, N.P.; Griffin, N.; Shan, F. Methionine enkephalin (MENK) improves lymphocyte sub-populations in human peripheral blood of 50 cancer patients by inhibiting regulatory T cells (Tregs). Hum. Vacc. Immunother. 2014, 10, 1836–1840. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Wang, Q.; Zhang, Z.; Wang, E.; Plotnikoff, N.P.; Shan, F. Synergistic effect of methionine encephalin (MENK) combined with pidotimod(PTD) on the maturation of murine dendritic cells (DCs). Hum. Vaccines Immunother. 2013, 9, 773–783. [Google Scholar] [CrossRef] [Green Version]
- Ian, S.Z.; Renee, N.D.; Robert, H.B.; Patricia, J.M. B lymphocyte proliferation is suppressed by the opioid growth factor–opioid growth factor receptor axis: Implication for the treatment of autoimmune diseases. Immunobiology 2011, 216, 173–183. [Google Scholar]
- Shan, F.; Xia, Y.; Wang, N.; Meng, J.; Lu, C.; Meng, Y.; Plotnikoff, N.P.; Griffin, N.; Shan, F. Functional modulation of the pathway between dendritic cells (DCs) and CD4+T cells by the neuropeptide: Methionine enkephalin (MENK). Peptides 2011, 32, 929–937. [Google Scholar] [CrossRef]
- Dong, H.; Zhao, H.-Y.; Wang, J.-W.; Han, J.-X. [Observation on therapeutic effect and mechanism research of acupuncture on headache in the recovery phase of ischemic stroke]. Chin. Acupunct. Moxib. 2019, 39, 1149–1153. [Google Scholar]
- Han, Y.J.; Dai, W.W.; Peng, L.; Zhou, L.; Ma, H.F. Effect of acupuncture on contents of beta-endorphin in the plasma and hypo-thalamus in rats with stress-induced gastric mucosal injury. Acupunct. Res. 2011, 36, 341–346. [Google Scholar]
- Zhang, Y.X. Effects of Electroacupuncture on Dynorphin—A Level in the Central Nerve System of Rats with Exercise-Induced Fatigue; Huazhong Agricultural University: Wuhan, China, 2015. [Google Scholar]
- Jiao, C.L. The Role of Substance P and NK Cells in the Pathogenesis of Hirschsprung Disease Associated Enterocolitis; Huazhong University of Science and Technology: Wuhan, China, 2019. [Google Scholar]
- Juarranz, Y.; Abad, C.; Martinez, C.; Arranz, A.; Gutierrez-Cañas, I.; Rosignoli, F.; Gomariz, R.P.; Leceta, J. Protective effect of vasoactive intestinal peptide on bone destruction in the collagen-induced arthritis model of rheumatoid arthritis. Arthritis Res. 2005, 7, R1034–R1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, E.A.; McClellan, S.A.; Barrett, R.P.; Hazlett, L.D. VIP Promotes Resistance in thePseudomonas aeruginosa–Infected Cornea by Modulating Adhesion Molecule Expression. Investig. Opthalmol. Vis. Sci. 2010, 51, 5776–5782. [Google Scholar] [CrossRef] [Green Version]
- Delgado, M. Vasoactive intestinal peptide generates CD4+CD25+ regulatory T cells in vivo. J. Leukoc. Biol. 2005, 78, 1327–1338. [Google Scholar] [CrossRef] [PubMed]
- Pozo, D.; Anderson, P.; Gonzalez-Rey, E. Induction of Alloantigen-Specific Human T Regulatory Cells by Vasoactive Intestinal Peptide. J. Immunol. 2009, 183, 4346–4359. [Google Scholar] [CrossRef]
- Deng, S.; Xi, Y.; Wang, H.; Hao, J.; Niu, X.; Li, W.; Tao, Y.; Chen, G. Regulatory effect of vasoactive intestinal peptide on the balance of Treg and Th17 in collagen-induced arthritis. Cell. Immunol. 2010, 265, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Jimeno, R.; Gomariz, R.P.; Gutiérrez-Cañas, I.; Martínez, C.; Juarranz, Y.; Leceta, J. New insights into the role of VIP on the ratio of T-cell subsets during the development of autoimmune diabetes. Immunol. Cell Biol. 2010, 88, 734–745. [Google Scholar] [CrossRef]
- Yang, Y.; Tao, T.; Guo, X.-Y.; Yuan, Z.-Z.; Lv, Z.-H.; Li, X.-H.; Li, Z.-X. Effection of vasoactive intestinal peptide on content of IFN-γ,IL-4 in EAE rats’ brain tissue. J. Southeast Univ. 2017, 36, 67–70. [Google Scholar]
- De La Fuente, M.; Medina, S.; Del Rio, M.; Ferrández, M.; Hernanz, A. Effect of aging on the modulation of macrophage functions by neuropeptides. Life Sci. 2000, 67, 2125–2135. [Google Scholar] [CrossRef]
- Trejter, M.; Warchol, J.B.; De Caro, R.; Brelinska, R.; Nussdorfer, G.G.; Malendowicz, L.K. Studies on the involvement of endogenous neuropeptides in the control of thymocyte proliferation in the rat. Histol. Histopathol. 2001, 16, 155–158. [Google Scholar]
- Usha, K.M.; Jayantee, K.; Gyanesh, T.; Bhoi, S.K. Role of β endorphin in pain relief following high rate repetitive tran-scranial magnetic stimulation in migraine. Brain Stimul. 2017, 10, 618–623. [Google Scholar]
- Miao, H.Y.; Qu, C.Z.; Huang, H.X. Effect of Acupuncture on NGF and SP in Rats with Knee Osteoarthritis. J. Emerg. Tradit. Chin. Med. 2019, 9, 1598–1600. [Google Scholar]
- Liu, C.H.; Kung, Y.Y.; Lin, C.L.; Yang, J.L.; Wu, T.P.; Lin, H.C.; Chang, Y.K.; Chang, C.M.; Chen, F.P. Therapeutic Efficacy and the Impact of the “Dose” Effect of Ac-upuncture to Treat Sciatica: A Randomized Controlled Pilot Study. J. Pain Res. 2019, 2019, 3511–3520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Jeong, S.M.; Chang, H.L.; Yoon, J.Y.; Seo, B.K. A Review of Acupuncture Treatment Methods for Lumbar Herniated In-tervertebral Disc. J. Acupunct. Res. 2018, 35, 158–168. [Google Scholar] [CrossRef]
- Villanueva-Romero, R.; Gutiérrez-Cañas, I.; Carrión, M.; Pérez-García, S.; Seoane, I.V.; Martínez, M.; Gomariz, R.P.; Juarranz, Y. The Anti-Inflammatory Mediator, Vasoactive Intestinal Peptide, Modulates the Differentiation and Function of Th Subsets in Rheumatoid Arthritis. J. Immunol. Res. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Xu, Y.G.; Jiang, R.L.; Wu, J.N.; Zhu, M.F.; Zhi, Y.H. Effects of electro-acupuncture at ‘Zusanli’ on the apoptosis of thymocytes in rats with sepsis. China J. Tradit. Chin. Med. Pharm. 2009, 24, 1369–1371. [Google Scholar]
- Xue, Y.N. The Regulation Mechanism of Zusanli Acupoint on Spleen Qi Deficiency Rats Based on Brain-Gut Peptides and Nuclear Respiration Factor; Liaoning University of Traditional Chinese Medicine: Shenyang, China, 2019. [Google Scholar]
- Ortiga-Carvalho, T.M.; Chiamolera, M.I.; Pazos-Moura, C.C.; Wondisford, F.E. Hypothalamus-Pituitary-Thyroid Axis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Tsuda, R. Acupuncture’s Effectiveness in Treating Subclinical Hypothyroid Disease via the Hpa/Hpt Axis:a Multiple Case Series. J. Integr. Med. 2014, 12, 315–316. [Google Scholar]
- Bernal, J.; Morte, B. Thyroid hormone receptor activity in the absence of ligand: Physiological and developmental implications. Biochim. Biophys. Acta Gen. Subj. 2013, 1830, 3893–3899. [Google Scholar] [CrossRef]
- Wei, C.Z.; Wang, X.M.; Pan, Y.Z. Effect of exogenous thyroxine on regeneration and repair of central nervous system in rats with severe traumatic brain injury. Chin. J. Trauma 2019, 005, 400–406. [Google Scholar]
- Hwang, J.H.; Jung, H.W. Effects of the Pharmacopuncture with MOK on Immune Regulation by Th1/Th2 Cytokines in L-Thyroxine-Induced Hyperthyroid Rats. Korean J. Acupunct. 2018, 35, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Ning, Y.; Wang, R. [Effects of electroacupuncture on expression of CD36 in peritoneal macrophages of rabbits with atherosclerosis]. Chin. Acupunct. Moxib. 2018, 38, 179–184. [Google Scholar]
- Cheng, Z.-D.; Zhang, W. [Effect of Electroacupuncture on Expression of Scavenger Receptor A I in Peritoneal Macrophages of Atherosclerotic Rabbits]. Acupunct. Res. 2018, 43, 242–246. [Google Scholar]
- Johnston, M.F.; Sánchez, E.O.; Vujanovic, N.L.; Li, W. Acupuncture May Stimulate Anticancer Immunity via Activation of Natural Killer Cells. Evidence-Based Complement. Altern. Med. 2011, 2011, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.-M.; Zhang, H.; Tang, C.-Z. [Effects of electroacupuncture on IL-2-IFN-NKC immunity immunoloregulation net and IL-2 receptor in rats with exercise stress]. Chin. Acupunct. Moxib. 2011, 31, 817–820. [Google Scholar]
- Jia, Y.; Wang, H.D. Microglia and their roles in response to injury of the central nervous system. J. Med. Postgrad. 2012, 25, 418–421. [Google Scholar]
- Behnam, V.; Ahmad, S.; Leszek, K. MMP-9 in translation: From molecule to brain physiology, pathology, and therapy. J. Neurochem. 2016, 139 (Suppl. 2), 91–114. [Google Scholar]
- Chen, L.-Y.; Jiang, P.-X.; Xu, S.-T.; Luo, Y.-J.; Liu, Y.; Zhang, J.-S.; Wang, H.; Lin, X.-M. Effect of Matrix Metalloproteinase-9 Pathway Mediated by Microglia Activation on the Brain Protective Effect of Electroacupuncture Pretreatment in A Rat Model of Mid dle Cerebral Artery Oc-clusion. Shanghai J. Acu-Mox 2020, 1, 90–97. [Google Scholar]
- Xie, L.S.; Wu, Q.F.; Tang, Y.; Zhuang, Z.Q.; Zhao, N.; Huang, B.; Yu, S.G. Study on electroacupuncture promoting the polarization of M2 phenotype microglia cells in hippocampus of AD model rats. China J. Tradit. Chin. Med. Pharm. 2018, 33, 1816–1820. [Google Scholar]
- Christopher, D.J.; Julia, C.B. Cytokines: Regulation of the hypothalamo-pituitary-adrenocortical axis. Curr. Opin. Pharmacol. 2003, 3, 78–84. [Google Scholar]
- Deverman, B.E.; Patterson, P.H. Cytokines and CNS Development. Neuron 2009, 64, 61–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey, A.D.; Verdenhalven, M.; Lörwald, A.C.; Meyer, C.; Hernangómez, M.; Randolf, A.; Roggero, E.; König, A.M.; Heverhagen, J.T.; Guaza, C.; et al. Brain-borne IL-1 adjusts glucoregulation and provides fuel support to astrocytes and neurons in an autocrine/paracrine manner. Mol. Psychiatr. 2016, 21, 1309–1320. [Google Scholar]
- Del Rey, A.; Balschun, D.; Wetzel, W.; Randolf, A.; Besedovsky, H.O. A cytokine network involving brain-borne IL-1β, IL-1ra, IL-18, IL-6, and TNFα operates during long-term potentiation and learning. Brain Behav. Immun. 2013, 33, 15–23. [Google Scholar] [CrossRef]
- Cunningham, E.T.; Wada, E.; Carter, D.B.; Tracey, D.E.; Battey, J.F.; De Souza, E.B. In situ histochemical localization of type I inter-leukin-1 receptor messenger RNA in the central nervous system, pituitary, and adrenal gland of the mouse. J. Neurosci. 1992, 12, 1101–1114. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.C.; Lee, J.Y.; Lim, E.J.; Baik, H.H.; Oh, T.H.; Yune, T.Y. Inhibition of ROS-induced p38MAPK and ERK activation in microglia by acupuncture relieves neuropathic pain after spinal cord injury in rats. Exp. Neurol. 2012, 236, 268–282. [Google Scholar] [CrossRef]
- Han, B.; Lu, Y.; Zhao, H.; Wang, Y.; Wang, T. Electroacupuncture modulated the inflammatory reaction in MCAO rats via inhibiting the TLR4/NF-κB signaling pathway in microglia. Int. J. Clin. Exp. Pathol. 2015, 8, 11199–11205. [Google Scholar]
- Su, T.; Zhao, Y.Q.; Zhang, L.H.; Peng, M.; Wu, C.H.; Pei, L.; Tian, B.; Zhang, J.; Shi, J.; Pan, H.L.; et al. Electroacupuncture reduces the expression of proinflammatory cytokines in inflamed skin tissues through activation of cannabinoid CB2 receptors. Eur. J. Pain 2011, 16, 624–635. [Google Scholar] [CrossRef]
- Dong, M.; Xie, S.Y.; Li, F.C.; Lv, N.; Wei, X.P. Is acupuncture better than sham acupuncture for attenuated airway inflammation and regulated cytokines produced by diverse Th subtypes in chronic OVA inhalation in asthma induced mice. Eur. J. Integr. Med. 2015, 7, 485–491. [Google Scholar] [CrossRef]
- Liu, M. Gatgut Implantation at Acupoints for Th1 /Th2, Th17/Treg in Rat’s Nasal Mucous of Allergic Rhinitis; Chengdu University of TCM: Chengdu, China, 2013. [Google Scholar]
- Chen, Y. The Regulation Effect of Acupuncture on Serum th1 /th2 in Allergic Rhinitis Rats; Southern Medical University: Guangzhou, China, 2012. [Google Scholar]
- Wang, C.; Xie, W.J.; Liu, M.; Yan, J.; Zhang, J.-L.; Liu, Z.; Guo, L.-N. Effect of manual acupuncture stimulation of “Baihui” (GV 20), etc. on serum IFN-gamma and IL-4 contents in rats with chronic fatigue syndrome. Acupunct. Res. 2014, 39, 387–389. [Google Scholar]
- Liu, Y.; Feng, H.; Mao, H.; Mo, Y.; Yin, Y.; Liu, W.; Song, M.; Wang, S. Impact on serum 5-HT and TH1/TH2 in patients of depressive disorder at acute stage treated with acupuncture and western medication. Chin. Acupunct. Moxib. 2015, 35, 539–543. [Google Scholar]
- Gui, J.; Xiong, F.; Li, J.; Huang, G. Effects of Acupuncture on Th1, Th2 Cytokines in Rats of Implantation Failure. Evidence-Based Complement. Altern. Med. 2012, 2012, 1–10. [Google Scholar] [CrossRef]
- Wang, C.; Luo, O.; Huang, H. [Research progress on the role of Th17 and Treg in the pathogenesis of various cardiovascular diseases]. Zhonghua Xin Xue Guan Bing Za Zhi 2015, 43, 281–284. [Google Scholar] [PubMed]
- Giuliana, G.; Rita, G.A.; Stefania, R.; Giuseppina, G.; Guido, S.; Francesco, D.; Marco, P.; Riccardo, A.; Giovanni, T.; Francesco, C. Targeting IL-6 signalling in early rheumatoid arthritis is followed by Th1 and Th17 suppression and Th2 expansion. Clin. Exp. Rheumatol. 2014, 32, 77–81. [Google Scholar]
- Ivaylo, I.I.; Brent, S.M.; Liang, Z.; Carlos, E.T.; Alice, L.; Juan, J.L.; Daniel, J.C.; Dan, R.L. The orphan nuclear receptor RORgammat directs the dif-ferentiation program of proinflammatory IL-17+ T helper cells. Cell 2006, 126, 1121–1133. [Google Scholar]
- Zhou, L.; Lopes, J.E.; Chong, M.M.W.; Ivanov, I.I.; Min, R.; Victora, G.D.; Chen, Y.; Du, J.; Rubtsov, Y.P.; Rudensky, A.Y. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing ROR γ t function. Nature 2008, 453, 236–240. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.X. Study on the Treatment of CIA Rats by Regulating the Balance of th17/Treg Cells by Catgut Implantation at Zusanli and Guanyuan Point; Hubei University of Chinese Medicine: Wuhan, China, 2017. [Google Scholar]
- Cheng, M. Effect of Acupuncture on th17/Treg Balance in Chronic Obstructive Pulmonary Diseases Model Rats; Anhui University of Chinese Medicine: Hefei, China, 2014. [Google Scholar]
- Min, H. Effects of acupuncture combined with Fluoxetine on behavior and Treg in mice of chronic depression. Word J. Acupunct. Moxib. 2011, 21, 43–48. [Google Scholar]
- Tang, Y. Experimental Study on Electroacupuncture-Mediated Immune Tolerance in Rheumatoid Arthritis; Chengdu University of TCM: Chengdu, China, 2001. [Google Scholar]
- Wang, F.L.; Li, H.; Wei, Z.Q. Effects of moxibustion at ST-6 on immune function and systemic status of the elder. Chin. Acupunct. Moxib. 1996, 16, 39–40. [Google Scholar]
- Zhao, H.; Liu, X.-Y. Effects of Acupuncture Combined with Immunosuppressor on the Related Antibodies and Electromy-ogram Index in the Treatment of Paraneoplastic Syndrome Patients. World Chin. Med. 2018, 13, 727–730. [Google Scholar]
- He, J.; Yu, J.C. Research progress on the effects of acupuncture-moxibustion serum. Chin. Acupunct. Moxib. 2014, 34, 1042–1046. [Google Scholar]
- Liu, Z.D.; Pei, J.; Fu, Q.H.; Li, H.Y.; Yu, Q.W.; Zhang, J.Y.; Zhang, D.Q. Influence of electroacupuncture and moxibustion and their treated mouse serum on the proliferation of the cultured splenetic CD4+ CD25+ regulatory T cells of tumor-bearing mice. Acupunct. Res. 2009, 34, 219–224. [Google Scholar]
- Zhao, Y.X.; Wang, J.; Qin, Y.R.; Wang, Y.; Xu, W.R.; Tang, X.H.; Ye, Q.M. Effect of acupuncture serum on the number of osteclast cultured in vitro. Chin. Acupunct. Moxib. 2007, 27, 521–524. [Google Scholar]
- Zmijewski, M.A.; Slominski, A.T. Neuroendocrinology of the skin: An overview and selective analysis. Dermato-Endocrinology 2011, 3, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, N.; Ito, T.; Kromminga, A.; Bettermann, A.; Takigawa, M.; Kees, F.; Straub, H.R.; Paus, R. Human hair follicles display a functional equivalent of the hy-pothalamic-pituitary-adrenal axis and synthesize cortisol. FASEB J. 2005, 19, 1332–1334. [Google Scholar] [CrossRef]
- Zouboulis, C.C.; Seltmann, H.; Hiroi, N.; Chen, W.; Young, M.; Oeff, M.; Scherbaum, W.A.; Orfanos, C.E.; McCann, S.M.; Bornstein, S.R. Corticotropin-releasing hormone: An autocrine hormone that promotes lipogenesis in human sebocytes. Proc. Natl. Acad. Sci. USA 2002, 99, 7148–7153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Fu, Y.; Zhang, L.; Fu, J.; Li, B.; Zhao, L.; Di, T.; Meng, Y.; Li, N.; Guo, J.; et al. Acupuncture Needling, Electroacupuncture, and Fire Needling Improve Imiquimod-Induced Psoriasis-Like Skin Lesions through Reducing Local Inflammatory Responses. Evidence-Based Complement. Altern. Med. 2019, 2019, 4706865. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Chen, L.P.; Wang, Y. Basic rules, characteristics and advantages of acupuncture therapy. J. Henan Univ. Chin. Med. 2008, 6, 1–4. [Google Scholar]
Acupoints | Pathway/Mediators Can Be Regulated | Regulating Effect | Reference |
---|---|---|---|
LI4 | HA, 5-HT | Increasing mast cell degranulation rate, Increasing the concentration of HA and 5-HT, Demonstrating the connection between mast cells and nerve fibers. | [26] |
GB20 | BDNF, GFAP, NSE, IL-6, plasma ET | Reducing astrocyte and neuron damage, Lower blood pressure, Regulating cellular immunity and secretion functions of the vascular endothelial cells in hypertension patients. | [27,28] |
GB20, GB34 | CGRP, COX-2, BDNF, IL-1β, IL-6, TNF-α | Inhibition of dural mast cells, macrophages, and serum inflammatory factors, Alleviating hyperalgesia. | [29] |
ST36, SP6 | CRF, y-GABA, GAD | Accelerating the synthesis of GABA, Inhibiting CRF neurons, Inhibiting the overactivity of the HPA axis. | [30] |
PC6, BL15 | NE, DA | Decreasing the nerve electrical activity in spinal dorsal roots, Increasing the NE and DA concentrations in the paraventricular nucleus of the hypothalamus. | [31] |
GV20, ST36 | TNF-α, IL-1β, IL-6, 5-HT, CRH | Up-regulation of 5-HT1 receptor, Down-regulation of 5-HT2 receptor, Reducing the concentration of serum IL-1β and IL-6, the hypothalamic index and CRH mRNA decreased significantly, Relieving depression and chronic fatigue. | [32,33,34] |
CV4, SP6 | E2, FSH, LH, β-EP | Increasing E2 content, Reducing the contents of FSH and LH, Increasing the content of β-EP in hypothalamus, Regulating reproductive endocrine and autonomic nervous dysfunction | [35] |
EX-B2 | NF-κB pathway | Inhibiting NF-κB expression and activation, Inhibiting NF-κB signal transduction pathway through neuro-endocrine-immune network. | [36] |
Categories | Functions |
---|---|
I | Conducting activity of muscle spindle |
II | Conducting mechanical stimulation |
III | Conducting algesia and thermesthesia |
IV | Conducting algesia and thermesthesia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Song, W.; Jin, Y.; Xu, H.; Fan, K.; Lin, D.; Hao, Z.; Lin, J. Research Progress on the Mechanism of the Acupuncture Regulating Neuro-Endocrine-Immune Network System. Vet. Sci. 2021, 8, 149. https://doi.org/10.3390/vetsci8080149
Cui J, Song W, Jin Y, Xu H, Fan K, Lin D, Hao Z, Lin J. Research Progress on the Mechanism of the Acupuncture Regulating Neuro-Endocrine-Immune Network System. Veterinary Sciences. 2021; 8(8):149. https://doi.org/10.3390/vetsci8080149
Chicago/Turabian StyleCui, Jingwen, Wanrong Song, Yipeng Jin, Huihao Xu, Kai Fan, Degui Lin, Zhihui Hao, and Jiahao Lin. 2021. "Research Progress on the Mechanism of the Acupuncture Regulating Neuro-Endocrine-Immune Network System" Veterinary Sciences 8, no. 8: 149. https://doi.org/10.3390/vetsci8080149